Here are the regressions for Clinton, Bush, and Perot:
============================================================
LS // Dependent Variable is CLINT92
Date: 03/27/98 Time: 14:21
Sample: 1 407
Included observations: 407
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 40.71648 1.473157 27.63893 0.0000
AFRAM 0.417606 0.022756 18.35184 0.0000
HISP 0.161357 0.021758 7.416127 0.0000
INCOME -0.090043 0.042894 -2.099211 0.0364
SOUTH -3.292143 0.824754 -3.991666 0.0001
LCECON103 -14.92176 1.049951 -14.21187 0.0000
LCSOC103 -4.266176 0.831283 -5.132037 0.0000
============================================================
R-squared 0.750458 Mean dependent var 43.92138
Adjusted R-squared 0.746715 S.D. dependent var 12.17377
S.E. of regression 6.126750 Akaike info criter 3.642378
Sum squared resid 15014.83 Schwarz criterion 3.711326
Log likelihood -1311.732 F-statistic 200.4892
Durbin-Watson stat 1.335062 Prob(F-statistic) 0.000000
============================================================
============================================================
LS // Dependent Variable is BUSH92
Date: 03/27/98 Time: 14:22
Sample: 1 407
Included observations: 407
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 34.01372 1.286647 26.43594 0.0000
AFRAM -0.192880 0.019875 -9.704868 0.0000
HISP -0.092295 0.019003 -4.856866 0.0000
INCOME 0.149004 0.037463 3.977354 0.0001
SOUTH 7.393401 0.720336 10.26383 0.0000
LCECON103 12.53965 0.917021 13.67433 0.0000
LCSOC103 3.054497 0.726038 4.207077 0.0000
============================================================
R-squared 0.671402 Mean dependent var 36.98034
Adjusted R-squared 0.666473 S.D. dependent var 9.265626
S.E. of regression 5.351069 Akaike info criter 3.371642
Sum squared resid 11453.58 Schwarz criterion 3.440590
Log likelihood -1256.637 F-statistic 136.2152
Durbin-Watson stat 1.488689 Prob(F-statistic) 0.000000
============================================================
============================================================
LS // Dependent Variable is PEROT92
Date: 03/27/98 Time: 14:23
Sample: 1 407
Included observations: 407
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 24.44912 0.991061 24.66964 0.0000
AFRAM -0.225134 0.015309 -14.70626 0.0000
HISP -0.069345 0.014637 -4.737525 0.0000
INCOME -0.054807 0.028857 -1.899291 0.0582
SOUTH -3.747834 0.554850 -6.754673 0.0000
LCECON103 2.357762 0.706351 3.337948 0.0009
LCSOC103 1.109201 0.559243 1.983397 0.0480
============================================================
R-squared 0.536450 Mean dependent var 18.50369
Adjusted R-squared 0.529496 S.D. dependent var 6.008972
S.E. of regression 4.121750 Akaike info criter 2.849605
Sum squared resid 6795.529 Schwarz criterion 2.918553
Log likelihood -1150.403 F-statistic 77.15089
Durbin-Watson stat 0.946190 Prob(F-statistic) 0.000000
============================================================
The coefficients in the Clinton and Bush regressions all have the
correct signs and are statistically significant -- the largest p-value
is only .0364 on the INCOME variable in the Clinton equation.
Clinton did very well in districts with sizable African-American
populations and in districts represented by liberal congressmen.
Bush did very well in the South, higher income districts, and in
districts represented by conservative congressmen. He did poorly
in districts with sizable African-American populations but the negative
effect was not as large as Clinton's positive effect.
Perot clearly hurt Bush in 1992. Perot's voters outside the South
tended to be White Conservatives from somewhat lower income districts.
These voters were part of Ronald Reagan's base of support.
Note that the size of the coefficients on the measure of economic
liberalism/conservativism is much larger than the size of the
coefficients on the measure of social liberalism/conservatism. Since
the scale of the two measures is the same, this is a clear indication
that voters place more importance on economic issues.
Here are the regressions for Clinton, Dole, and Perot:
============================================================
LS // Dependent Variable is CLINT96
Date: 03/27/98 Time: 14:57
Sample: 1 407
Included observations: 407
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 46.67272 1.421413 32.83545 0.0000
AFRAM 0.380007 0.022350 17.00282 0.0000
HISP 0.217946 0.021059 10.34908 0.0000
INCOME -0.032785 0.041479 -0.790384 0.4298
SOUTH -4.212347 0.775116 -5.434470 0.0000
LCECON104 -16.02892 0.965621 -16.59960 0.0000
LCSOC104 -5.472769 0.790804 -6.920517 0.0000
============================================================
R-squared 0.791252 Mean dependent var 50.41769
Adjusted R-squared 0.788121 S.D. dependent var 12.74948
S.E. of regression 5.868626 Akaike info criter 3.556290
Sum squared resid 13776.31 Schwarz criterion 3.625238
Log likelihood -1294.213 F-statistic 252.6980
Durbin-Watson stat 1.378019 Prob(F-statistic) 0.000000
============================================================
============================================================
LS // Dependent Variable is DOLE96
Date: 03/27/98 Time: 14:59
Sample: 1 407
Included observations: 407
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 38.47091 1.504226 25.57522 0.0000
AFRAM -0.250124 0.023652 -10.57529 0.0000
HISP -0.143436 0.022286 -6.436031 0.0000
INCOME 0.107895 0.043896 2.457973 0.0144
SOUTH 6.465954 0.820276 7.882661 0.0000
LCECON104 16.25024 1.021879 15.90231 0.0000
LCSOC104 5.418992 0.836877 6.475258 0.0000
============================================================
R-squared 0.725911 Mean dependent var 39.73464
Adjusted R-squared 0.721799 S.D. dependent var 11.77471
S.E. of regression 6.210538 Akaike info criter 3.669545
Sum squared resid 15428.31 Schwarz criterion 3.738492
Log likelihood -1317.260 F-statistic 176.5629
Durbin-Watson stat 1.426119 Prob(F-statistic) 0.000000
============================================================
============================================================
LS // Dependent Variable is PEROT96
Date: 03/27/98 Time: 14:59
Sample: 1 407
Included observations: 407
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 13.70630 0.441327 31.05702 0.0000
AFRAM -0.116052 0.006939 -16.72412 0.0000
HISP -0.082123 0.006539 -12.55963 0.0000
INCOME -0.097065 0.012879 -7.536853 0.0000
SOUTH -1.479197 0.240662 -6.146370 0.0000
LCECON104 0.189186 0.299811 0.631018 0.5284
LCSOC104 0.472191 0.245532 1.923131 0.0552
============================================================
R-squared 0.604723 Mean dependent var 8.289926
Adjusted R-squared 0.598794 S.D. dependent var 2.876689
S.E. of regression 1.822119 Akaike info criter 1.217049
Sum squared resid 1328.047 Schwarz criterion 1.285997
Log likelihood -818.1775 F-statistic 101.9915
Durbin-Watson stat 1.146324 Prob(F-statistic) 0.000000
============================================================
The regression results for Clinton in 1996 are essentially the same as
those for 1992. The only big difference is the intercept. Clinton's
vote, all else held equal, was higher across the board in 1996. Interestingly,
the income effect is no longer statistically significant. This could reflect
Clinton's success in protraying himself as a fiscal conservative. However,
on the other hand, note that the coefficients on the ideological variables
have increased slightly in magnitude.
The pattern of the coefficents for Dole in 1996 is very similar to that for
Bush in 1992. However, Dole did much better than Bush in 1992 -- the intercept
term for Dole is larger. Dole drew better from Conservatives of all stripes
than Bush did but did more poorly with African-Americans and Hispanics.
Perot's base of support in 1996 clearly shifted from 1992. Note that the
coefficient on economic liberalism/conservatism is very small and statistically
insignificant, the coefficent on social liberalism/conservatism is half what
it was in 1992, the South coefficient is smaller, the income effect is more pronounced, and the coefficient on
percent African-American is half what it was in 1992. In other words, Perot
was appealing even more so to "downscale" voters but now they were largely
non-ideological (that is, moderate) and drawn from a broader segment of the
population than 1992 (that is, his support was not as concentrated
demographically as it was in 1992). Perot may have hurt Dole more than
Clinton but it is hard to tell from these regression results.
Here are the regression results for Clinton, Dole, and Perot with
the indicator variables for seat switches:
============================================================
LS // Dependent Variable is CLINT96
Date: 03/27/98 Time: 16:08
Sample: 1 407
Included observations: 407
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 47.09082 1.381522 34.08618 0.0000
AFRAM 0.368268 0.021727 16.94977 0.0000
HISP 0.211036 0.020340 10.37540 0.0000
INCOME -0.047721 0.040007 -1.192812 0.2337
SOUTH -3.799335 0.748587 -5.075344 0.0000
LCECON104 -17.40202 0.961411 -18.10050 0.0000
LCSOC104 -5.134018 0.770416 -6.663957 0.0000
REP104*(1-REP105) 7.064975 1.326490 5.326069 0.0000
(1-REP104)*REP105 -4.381055 1.734261 -2.526180 0.0119
============================================================
R-squared 0.807977 Mean dependent var 50.41769
Adjusted R-squared 0.804118 S.D. dependent var 12.74948
S.E. of regression 5.642741 Akaike info criter 3.482605
Sum squared resid 12672.53 Schwarz criterion 3.571252
Log likelihood -1277.218 F-statistic 209.3341
Durbin-Watson stat 1.350070 Prob(F-statistic) 0.000000
============================================================
====================================================
Wald Test:
Equation: Untitled
====================================================
Null HypothesisC(8)=-C(9)
====================================================
F-statistic 1.515547 Probability 0.219022
Chi-square 1.515547 Probability 0.218295
====================================================
============================================================
LS // Dependent Variable is DOLE96
Date: 03/27/98 Time: 16:11
Sample: 1 407
Included observations: 407
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 38.00511 1.464857 25.94458 0.0000
AFRAM -0.237542 0.023038 -10.31105 0.0000
HISP -0.136022 0.021567 -6.306931 0.0000
INCOME 0.123671 0.042421 2.915344 0.0038
SOUTH 6.039659 0.793742 7.609093 0.0000
LCECON104 17.68563 1.019404 17.34898 0.0000
LCSOC104 5.049261 0.816888 6.181092 0.0000
REP104*(1-REP105) -7.203941 1.406505 -5.121874 0.0000
(1-REP104)*REP105 4.807518 1.838874 2.614382 0.0093
============================================================
R-squared 0.746888 Mean dependent var 39.73464
Adjusted R-squared 0.741801 S.D. dependent var 11.77471
S.E. of regression 5.983118 Akaike info criter 3.599749
Sum squared resid 14247.49 Schwarz criterion 3.688396
Log likelihood -1301.057 F-statistic 146.8036
Durbin-Watson stat 1.411552 Prob(F-statistic) 0.000000
============================================================
====================================================
Wald Test:
Equation: Untitled
====================================================
Null HypothesisC(8)=-C(9)
====================================================
F-statistic 1.074688 Probability 0.300518
Chi-square 1.074688 Probability 0.299889
====================================================
============================================================
LS // Dependent Variable is PEROT96
Date: 03/27/98 Time: 16:13
Sample: 1 407
Included observations: 407
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 13.76346 0.446793 30.80498 0.0000
AFRAM -0.116878 0.007027 -16.63351 0.0000
HISP -0.082622 0.006578 -12.56016 0.0000
INCOME -0.097749 0.012939 -7.554774 0.0000
SOUTH -1.475876 0.242098 -6.096195 0.0000
LCECON104 0.149666 0.310927 0.481356 0.6305
LCSOC104 0.506470 0.249158 2.032728 0.0427
REP104*(1-REP105) -0.081821 0.428996 -0.190726 0.8488
(1-REP104)*REP105 -0.483862 0.560871 -0.862696 0.3888
============================================================
R-squared 0.605498 Mean dependent var 8.289926
Adjusted R-squared 0.597568 S.D. dependent var 2.876689
S.E. of regression 1.824900 Akaike info criter 1.224915
Sum squared resid 1325.443 Schwarz criterion 1.313562
Log likelihood -817.7782 F-statistic 76.35835
Durbin-Watson stat 1.143984 Prob(F-statistic) 0.000000
============================================================
====================================================
Wald Test:
Equation: Untitled
====================================================
Null HypothesisC(8)=-C(9)
====================================================
F-statistic 0.643692 Probability 0.422856
Chi-square 0.643692 Probability 0.422377
====================================================
The magnitude of the coefficients on the party-switch indicator
variables in the Clinton and Dole regressions is about the same. In
those districts that switched from Republican to Democrat in the 1996
elections, Clinton picked up 7 percentage points and Dole lost 7
percentage points; and in those districts that switched from
Democrat to Republican in 1996, Clinton lost a bit over 4 percentage
points and Dole picked up a bit under 5 percentage points. This makes
sense and is consistent with a story of voter punishment of the House
Republicans for shutting down the government. However, the Wald tests for
Clinton and Dole show that we cannot reject the null hypothesis that the
effect is the same. Even so, the effect appears to be present but it
is not very large in magnitude. Finally, note that in the Perot regresssion
these coefficients are both negative and statistically insignificant!
This does not support a story about Perot appealling to the disaffected!