45-734 PROBABILITY AND STATISTICS II Homework Answers #2 (4th Mini AY1997-98)



    1.                         _          _
         Xi         Yi    Xi - Xn   (Xi - Xn)2    ki    
        ---------------------------------------------------
         0         -2       -2         4      -2/10 = -.200     
         1         -1       -1         1      -1/10 = -.100      
         2          1        0         0          0 =  .000      
         3          1        1         1       1/10 =  .100      
         4          1        2         4       2/10 =  .200    
        ---------------------------------------------------
        10          0        0        10       0/10 =  .000
      
      From the Table:

      åi=1,5 ki = 0

      åi=1,5 kixi = (-2/10)*0+(-1/10)*1+(0)*2+(1/10)*3+(2/10)*4 = 1

                                _
      åi=1,5 ki2 = 1/[åi=1,5 (xi - Xn)2] = 1/10 =
                = (-2/10)2  + (-1/10)2 + (0)2 + (1/10)2 + (2/10)2 = 
                = 10/100 = 1/10 = .100
      
    2. ^
      b1  = åi=1,5 kiyi
          = (-2/10)*-2 + (-1/10)*-1 + (0)*1 + (1/10)*1 + (2/10)*1
          = (4+1+0+1+2)/10 = .800
      ^     _   ^ _
      b0  = y - b1X = 0 - (8/10)*2 = -16/10 = -1.6
      
    3. and d. The estimated equation is:
                                ^
         yi  = -1.6 + .800*xi + ei
      Which produces the fitted values:
         ^ 
         yi  = -1.6 + .800*xi
      and the estimated residuals
              ^         ^
         ei = ei = yi - yi = yi + 1.6 - .800*xi
      
      This produces the table
      
                      ^              ^                   _
       xi     yi      yi    ei = yi - yi     eixi     yi - y
      ----------------------------------------------------
       0     -2     -1.6      -.400         0.0       -2
       1     -1     - .8      -.200         -.2       -1
       2      1      0.0      1.000         2.0        1
       3      1       .8       .200          .6        1
       4      1      1.6      -.600        -2.4        1
      ----------------------------------------------------
      10      0      0.0      0.000         0.0        0
      
    1. SSE = åi=1,5 ei2 = -.42 + -.22 + 12 + .22 + -.62 = 1.6
                         _
      SSTO = åi=1,5 (yi - y)2 = -22 + -12 + 12 + 12 + 12 = 8
      
           SSTO - SSE    8 - 1.6
      R2  = ---------- = --------- = .8
              SSTO          8
      
    2. s2 = [åi=1,5 ei2]/(n - 2) = 1.6/(5-2) = .53333

         ^                    _
      s2{b1} = s2/[åi=1,5 (xi - X)2] = .53333/10 = .053333
         ^                                 _
      s2{b0} = [s2åi=1,5 xi2]/{n[åi=1,5 (xi - X)2]} 
             = (.53333*30)/(5*10) = .31999
      Hence:  
        ^
      s{b1} = .23094
        ^                              
      s{b0} = .56568
      
    3. The hypothesis test is:

      Ho: b1 = 0
      H1: b1 ¹ 0


      Our test statistic has a t distribution with n - 2 = 3 degrees of freedom:
                        ^          ^
      test statistic = (b1 - b1)/s{b1} = .800/.23094 = 3.4641
      
      Using EVIEWS, P-Value (two-tail) = .04052.

      Ho: b0 = 0
      H1: b0 ¹ 0


      Our test statistic has a t distribution with n - 2 = 3 degrees of freedom:
                        ^          ^
      test statistic = (b0 - b0)/s{b0} = -1.6/.56568 = -2.8284
      
      Using EVIEWS, P-Value (two-tail) = .06628.

      Below is the EVIEWS output. The first three columns of the table contain exactly the same values as those calculated in parts b, f and g respectively. As for the statistics below the table, we found R (R-squared) in part e, s (SE of regression) and the SSE (sum of squared residuals) in part f. The Mean of the dependent variable (Y) can be found in parts b,c or d. The 2 tail significance values below are the same as the ones computed above.
      ============================================================
      LS // Dependent Variable is Y                                         
      Date: 03/02/98   Time: 22:21                                          
      Sample: 1 5                                                           
      Included observations: 5                                              
      ============================================================
            Variable      CoefficienStd. Errort-Statistic  Prob.            
      ============================================================
               C          -1.600000   0.565685  -2.828427   0.0663          
               X           0.800000   0.230940   3.464102   0.0405          
      ============================================================
      R-squared            0.800000    Mean dependent var 0.000000          
      Adjusted R-squared   0.733333    S.D. dependent var 1.414214          
      S.E. of regression   0.730297    Akaike info criter-0.339434          
      Sum squared resid    1.600000    Schwarz criterion -0.495659          
      Log likelihood      -4.246107    F-statistic        12.00000          
      Durbin-Watson stat   1.725000    Prob(F-statistic)  0.040519          
      ============================================================
      

  1. The results of the simple linear regression are given below:

    1. ============================================================
      LS // Dependent Variable is FUEL                                      
      Date: 03/02/98   Time: 22:29                                          
      Sample: 1 8                                                           
      Included observations: 8                                              
      ============================================================
            Variable      CoefficienStd. Errort-Statistic  Prob.            
      ============================================================
               C           15.83786   0.801773   19.75353   0.0000          
              TEMP        -0.127922   0.017457  -7.327679   0.0003          
      ============================================================
      R-squared            0.899489    Mean dependent var 10.21250          
      Adjusted R-squared   0.882737    S.D. dependent var 1.910451          
      S.E. of regression   0.654209    Akaike info criter-0.636340          
      Sum squared resid    2.567934    Schwarz criterion -0.616480          
      Log likelihood      -6.806148    F-statistic        53.69488          
      Durbin-Watson stat   3.017045    Prob(F-statistic)  0.000330          
      ============================================================
      
    2. The plot looks like this:

      The tons of coal consumed decrease by .1279 for every degree that the temperature decreases. At a temperature of 0, an estimate for the average number of tons of coal consumed is 15.8378.

    3. To find a point estimate of the expected value of fuel consumed when the average hourly temperature is 41, we simply plug 41 into our estimated equation:
              ^     ^     ^
              yp  = b0  + b1 xp  = 15.83786 - .127922*41 = 10.593058
      
    4. The 95% confidence interval for the point estimate in (c) is given by:
      ^     ^                                   _     ^
      b0  + b1 xp ± t.025,n-2[s2(1 + 1/n) + (xp - X)2s2{b1}]1/2  
      
      Thus we find

      15.83786 - .127922*41 ± 2.447*[.6542092(1 + 1/8) + (41 - 43.975)2(.017457)2]1/2

      and the confidence limits are: (8.8904, 12.2958)

  2. Below is the EVIEWS output for the Windmill example:
    ============================================================
    Dependent Variable: DCOUT                                             
    Method: Least Squares                                                 
    Date: 03/03/98   Time: 14:56                                          
    Sample: 1 25                                                          
    Included observations: 25                                             
    ============================================================
         Variable      CoefficientStd. Errort-Statistic  Prob.            
    ============================================================
             C           0.130875   0.125989   1.038779   0.3097          
           WIND          0.241149   0.019049   12.65927   0.0000          
    ============================================================
    R-squared            0.874493    Mean dependent var 1.609600          
    Adjusted R-squared   0.869036    S.D. dependent var 0.652278          
    S.E. of regression   0.236052    Akaike info criter 0.027090          
    Sum squared resid    1.281573    Schwarz criterion  0.124600          
    Log likelihood       1.661381    F-statistic        160.2571          
    Durbin-Watson stat   0.536610    Prob(F-statistic)  0.000000          
    ============================================================
    
    And here is a graph of the fitted function and the residuals:

    The pattern of the residuals is clearly not random. This is an unambiguous sign that we have a specification error and some sort of transformation of the current variables or addition of new variables is necessary.

  3. Below is the EVIEWS output for the paper strength example:
    ============================================================
    Dependent Variable: TENSILE                                           
    Method: Least Squares                                                 
    Date: 03/03/98   Time: 15:17                                          
    Sample: 1 19                                                          
    Included observations: 19                                             
    ============================================================
         Variable      CoefficientStd. Errort-Statistic  Prob.            
    ============================================================
             C           21.32126   5.430178   3.926439   0.0011          
         HARDWOOD        1.770986   0.647814   2.733788   0.0141          
    ============================================================
    R-squared            0.305374    Mean dependent var 34.18421          
    Adjusted R-squared   0.264513    S.D. dependent var 13.77777          
    S.E. of regression   11.81589    Akaike info criter 7.876068          
    Sum squared resid    2373.458    Schwarz criterion  7.975482          
    Log likelihood      -72.82264    F-statistic        7.473597          
    Durbin-Watson stat   0.246890    Prob(F-statistic)  0.014140          
    ============================================================
    
    And here is a graph of the fitted function and the residuals:

    Once again the pattern of the residuals is clearly not random. This is an unambiguous sign that we have a specification error and some sort of transformation of the current variables or addition of new variables is necessary.