THE LOG-NORMAL MODEL OF RELATIONAL DATA

Let Zsx be the jt» stimulus coordinate on the k" dimension,
k=1,..,8, where s is the number of dimensions. Let djm be the

Euclidean distance between stimulus J and stimulus m in the s-

dimensional space:
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We assume that the observed distances, d%,

are
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And that they are drawn from the log-normal distribution because

distances are inherently positive:

In(d},) ~N(In(d,),o?) (3)
That is
) 1 ()t )
f(djm)z l e[ 20 j (4)
(27o?)?d],

The log-normal is a more realistic model of the noise

process because, by definition of the log-normal, d;1>0 so that

(dj, +€;n) >0 and 6>0, where o is a shape parameter. The mean

and variance are:
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E[d}, |=d,e?" and VAR(dj,)=(e” ~1)d}e” (5)
So that as d;, >0 E(d%)—éo and VAR(d;)—»O. The upshot is
that the smaller the observed distance the smaller the variance

of that distance becausedﬁn::dm1+'gm

Our likelihood function is:
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To implement a Bayesian model we use simple normal prior

distributions for the stimuli coordinates:

and a uniform prior for the variance term:
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Where, empirically, b is no greater than 2.

Hence, our posterior distribution is:
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Taking the log of the right hand side and dropping the

unnecessary constants:
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