

THE QUADRATIC UTILITY MODEL

With the quadratic distribution utility model, legislator i 's utility for the Yea outcome on roll call j is just:

$$u_{ijy} = -d_{ijy}^2 = -\sum_{k=1}^s (X_{ik} - O_{jky})^2 \quad (4.4)$$

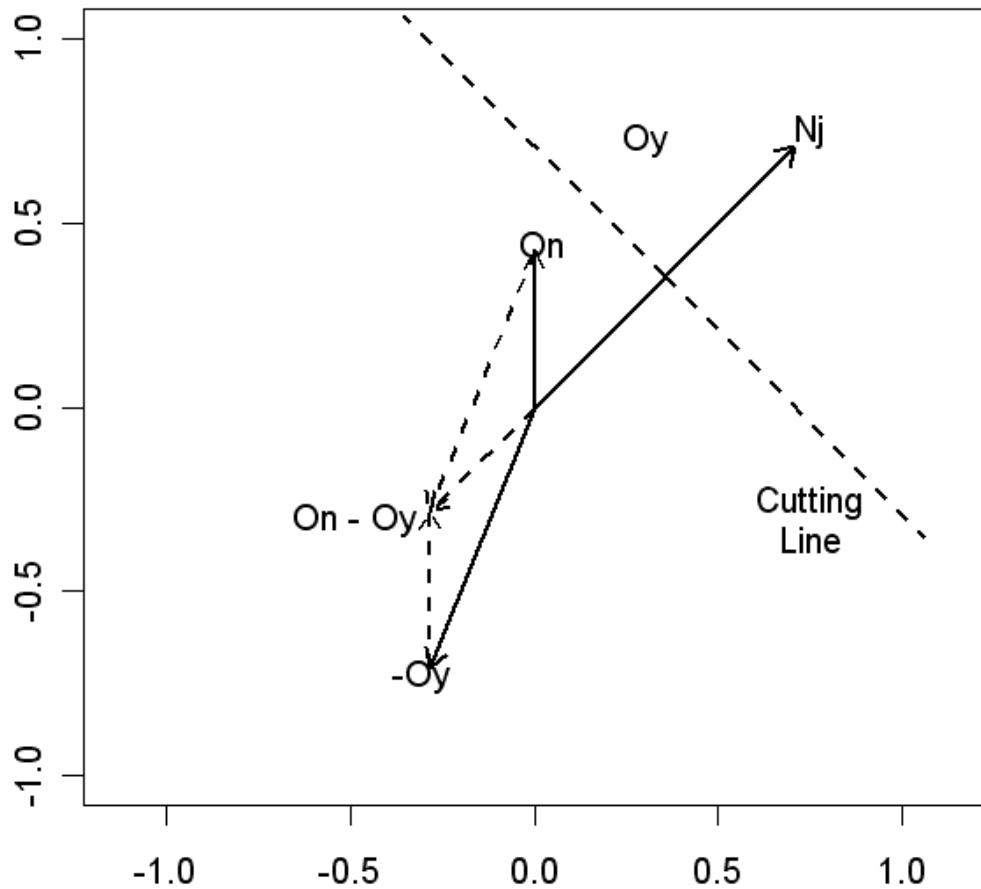
The difference between the two deterministic utility functions is:

$$u_{ijy} - u_{ijn} = -d_{ijy}^2 + d_{ijn}^2 = -2 \sum_{k=1}^s X_{ik} (O_{jkn} - O_{jky}) + \sum_{k=1}^s (O_{jkn} - O_{jky})(O_{jkn} + O_{jky}) \quad (4.5)$$

Now consider the geometry of $O_{jn} + O_{jy}$ and $O_{jn} - O_{jy}$ where

$$O_{jn} + O_{jy} = \begin{bmatrix} O_{j1n} + O_{j1y} \\ O_{j2n} + O_{j2y} \\ \vdots \\ O_{jsn} + O_{jsy} \end{bmatrix} \text{ and } O_{jn} - O_{jy} = \begin{bmatrix} O_{j1n} - O_{j1y} \\ O_{j2n} - O_{j2y} \\ \vdots \\ O_{jsn} - O_{jsy} \end{bmatrix}$$

Figure 4.1: Vector Difference of Outcome Coordinates



So that the vector $\mathbf{O}_{jn} - \mathbf{O}_{jy}$ is simply a constant times the normal vector:

$$\gamma_j \mathbf{N}_j = \mathbf{O}_{jn} - \mathbf{O}_{jy} \quad (4.6)$$

where

$$\gamma_j = \left[\sum_{k=1}^s (\mathbf{O}_{jkn} - \mathbf{O}_{jky})^2 \right]^{\frac{1}{2}} \text{ if } \mathbf{O}_{jn}' \mathbf{N}_j > \mathbf{O}_{jy}' \mathbf{N}_j \text{ or}$$

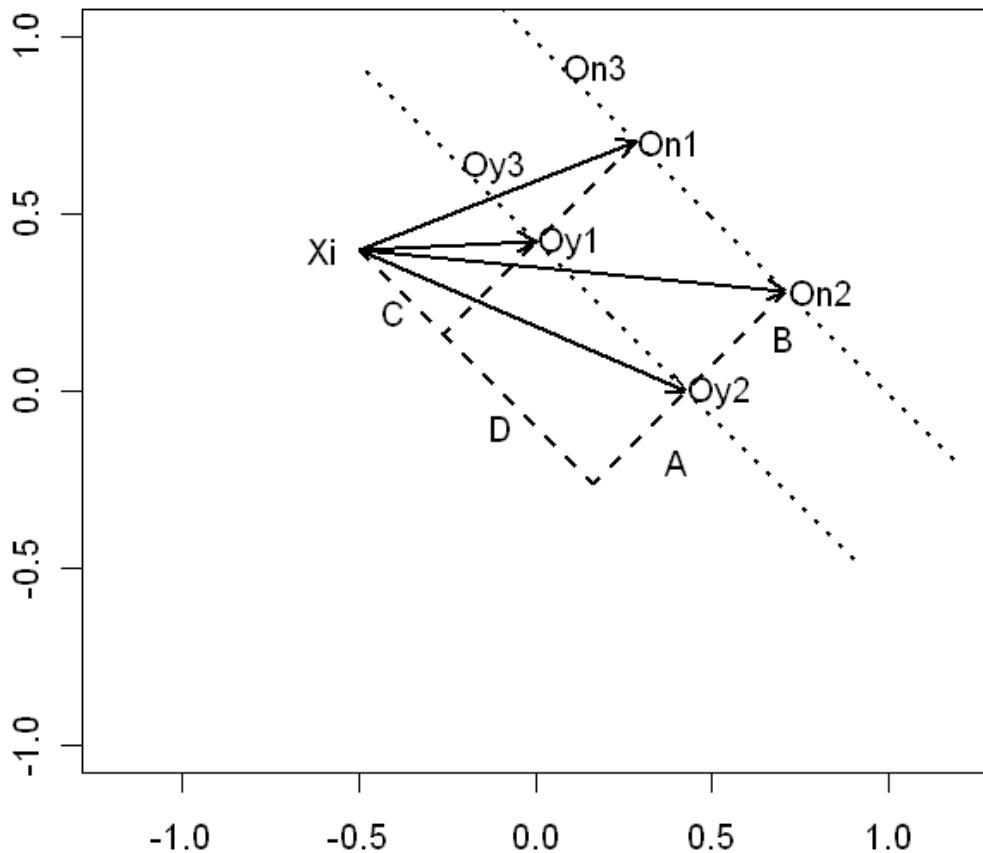
$$\gamma_j = - \left[\sum_{k=1}^s (\mathbf{O}_{jkn} - \mathbf{O}_{jky})^2 \right]^{\frac{1}{2}} \text{ if } \mathbf{O}_{jn}' \mathbf{N}_j < \mathbf{O}_{jy}' \mathbf{N}_j$$

and the vector $\mathbf{O}_{jn} + \mathbf{O}_{jy}$ divided by 2 is the midpoint of the Yea and Nay outcomes:

$$\mathbf{Z}_j = \frac{\mathbf{O}_{jn} + \mathbf{O}_{jy}}{2}$$

The outcomes are only identified up to parallel tracks through the space:

Figure 4.2: Identification of Outcome Coordinates



$$u_{iy} - u_{in} = -d_{iy}^2 + d_{in}^2 = -(C^2 + A^2) + [C^2 + (A+B)^2] = 2AB + B^2$$

$$u_{iy} - u_{in} = -d_{iy}^2 + d_{in}^2 = -(C^2 + A^2) + [(C+D)^2 + (A+B)^2] = 2AB + B^2$$

This allows equation (4.5) to be rewritten as the vector equation:

$$u_{ijy} - u_{ijn} = -d_{iy}^2 + d_{in}^2 = 2\gamma_j(Z_j'N_j - X_i'N_j) = 2\gamma_j(c_j - w_i) \quad (4.7)$$

If you assume that the error process is normally distributed:

$$\varepsilon_{ijn} - \varepsilon_{ijy} \sim N(0, 1)$$

Then the distribution of the difference between the overall utilities is

$$U_{ijy} - U_{ijn} \sim N(u_{ijy} - u_{ijn}, 1)$$

Hence the probability that legislator i votes Yea on the j^{th} roll call can be rewritten as:

$$P_{ijy} = P(U_{ijy} > U_{ijn}) = P(\varepsilon_{ijn} - \varepsilon_{ijy} < u_{ijy} - u_{ijn}) = \Phi[u_{ijy} - u_{ijn}] \quad (4.8)$$

Therefore, the probability of the observed choice can be written as:

$$\Phi[2\gamma_j(c_j - w_i)] \quad (4.10)$$

where $2\gamma_j(c_j - w_i) > 0$ if the legislator is on the same side of the cutting plane as the policy outcome she voted for (this is picked up by the signed distance term, γ_j).

For the quadratic utility model the probability of the observed choice can also be written in the more traditional form:

$$\Phi\left[\frac{2\gamma_j(c_j - w_i)}{\sigma_i}\right] \quad (4.12)$$

where σ_i^2 is the legislator specific variance, that is:

$$\varepsilon_{ijn} - \varepsilon_{ijy} \sim N(0, \sigma_i^2)$$

This model is explored in depth in Poole (2001).

The likelihood function is:

$$L = \prod_{i=1}^p \prod_{j=1}^q \prod_{\tau=1}^2 P_{ij\tau}^{C_{ij\tau}} \quad (4.15)$$

where τ is the index for Yea and Nay, $P_{ij\tau}$ is the probability of voting for choice τ , and $C_{ij\tau} = 1$ if the legislator's actual choice is τ and zero otherwise.

It is standard practice to work with the natural log of the likelihood function:

$$\mathcal{L} = \sum_{i=1}^p \sum_{j=1}^q \sum_{\tau=1}^2 C_{ij\tau} \ln P_{ij\tau} \quad (4.16)$$

The Quadratic-Normal (QN) model is isomorphic with the standard IRT model.

Specifically, using equations (4.5) to (4.7) let

$$\alpha_j = \left(\sum_{k=1}^s O_{jkn}^2 - \sum_{k=1}^s O_{jky}^2 \right) = 2\gamma_j \mathbf{Z}_j' \mathbf{N}_j \quad \text{and}$$

$$\beta_j = \begin{bmatrix} -2(O_{j1n} - O_{j1y}) \\ -2(O_{j2n} - O_{j2y}) \\ \vdots \\ -2(O_{jsn} - O_{jsy}) \end{bmatrix} = -2\gamma_j \mathbf{N}_j \quad (4.30)$$

This transformation allows the difference between the latent utilities for Yea and Nay to be written in the same form as the item response model; namely:

$$y_{ij}^* = U_{ijy} - U_{ijn} = \alpha_j + \mathbf{X}_i' \beta_j + \varepsilon_{ij} \quad (4.31)$$

where y_{ij}^* is the difference between the latent utilities and

$$\varepsilon_{ij} = \varepsilon_{ijn} - \varepsilon_{ijy} \sim N(0, 1)$$

Let $\tau=Yea$, then

$$P_{ij\tau} = \Phi[u_{ijy} - u_{ijn}] = \Phi\left[\frac{2\gamma_j(c_j - w_i)}{\sigma_i}\right] = \Phi(\alpha_j + \mathbf{X}_i' \beta_j)$$

To set up the Bayesian Framework let the prior distribution for the legislator ideal points be:

$$\mathbf{X}_i \sim N(\mathbf{0}, \mathbf{I}_s) = \xi(\mathbf{X}_i) \quad (4.34)$$

Where $\mathbf{0}$ is a s length vector of zeroes and \mathbf{I}_s is an s by s identity matrix. The prior distribution for the roll call outcome parameters is:

$$\begin{bmatrix} \alpha_j \\ \beta_j \end{bmatrix} \sim N(\mathbf{b}_0, \mathbf{B}_0) = \xi(\alpha_j, \beta_j) \quad (4.35)$$

where \mathbf{b}_0 is an $s+1$ length vector and \mathbf{B}_0 is a $s+1$ by $s+1$ variance-covariance matrix. Clinton, Jackman, and Rivers (2004) set \mathbf{b}_0 to a vector of zeroes and \mathbf{B}_0 to $\eta \mathbf{I}_{s+1}$ where η is a large positive constant (typically 25). The posterior distribution is:

$$\xi(\alpha, \beta, \mathbf{X} | \mathbf{Y}) \propto f(\mathbf{Y} | \alpha, \beta, \mathbf{X}) \xi(\mathbf{X}) \xi(\alpha, \beta) \propto L(\alpha, \beta, \mathbf{X} | \mathbf{Y}) \xi(\mathbf{X}) \xi(\alpha, \beta) \quad (4.36)$$

The conditional distributions for $\xi(\mathbf{Y}^* | \alpha, \beta, \mathbf{X} | \mathbf{Y})$ that implement equation (4.36) are:

$$1) \quad g_{y_{ij}^*}(\mathbf{y}_{ij}^* | \alpha_j, \beta_j, \mathbf{X}_i, \mathbf{y}_{ij}) = \begin{cases} N_{[0, \infty)}(\alpha_j + \mathbf{X}_i' \beta_j, 1) & \text{if } \mathbf{y}_{ij} = \text{Yea} \\ N_{(-\infty, 0]}(\alpha_j + \mathbf{X}_i' \beta_j, 1) & \text{if } \mathbf{y}_{ij} = \text{Nay} \\ N_{(-\infty, \infty)}(\alpha_j + \mathbf{X}_i' \beta_j, 1) & \text{if } \mathbf{y}_{ij} = \text{Missing} \end{cases}$$

where the subscript on the normal distribution indicates the range. For Yea and Nay the normal is truncated as indicated and the missing data is sampled over the entire real line.

$$2) \quad g_{\alpha, \beta}(\alpha_j, \beta_j | \mathbf{Y}_j^*, \mathbf{X}, \mathbf{Y}_j) = N(\mathbf{v}_j, \Xi_j)$$

where \mathbf{Y}_j^* and \mathbf{Y}_j are the j^{th} columns of \mathbf{Y}^* and \mathbf{Y} , respectively, \mathbf{v}_j is an $s+1$ length vector of means, and Ξ_j is the $s+1$ by $s+1$ variance-covariance matrix. Specifically,

$$\mathbf{v}_j = \Xi_j \left[\mathbf{X}^{*'} \mathbf{Y}_j^* + \mathbf{B}_0^{-1} \mathbf{b}_0 \right]$$

and

$$\Xi_j = \left[\mathbf{X}^{*'} \mathbf{X}^* + \mathbf{B}_0^{-1} \right]^{-1} \text{ where } \mathbf{X}^* \text{ is the } p \text{ by } s+1 \text{ matrix of legislator ideal points bordered}$$

by ones; that is, $\mathbf{X}^* = [\mathbf{J}_p | \mathbf{X}]$ and \mathbf{J}_p is a p length vector of ones.

$$3) \quad g_x(X_i | \alpha, \beta, Y_i^*, Y_i) = N(t_i, T_i)$$

where Y_i^* and Y_i are the i^{th} rows of Y^* and Y , respectively, t_i is an s length vector of means, and T_i is the s by s variance-covariance matrix. Specifically,

$$t_i = T_i [\beta'(\alpha - Y_i^*)]$$

and

$$T_i = [\beta'\beta + I_s]^{-1}$$

Note that if a more general prior distribution is used for the legislator ideal points, namely:

$$X_i \sim N(t_0, T_0)$$

Where t_0 is a s length vector of means and T_0 is a s by s variance-covariance matrix, then the expressions for t_i and T_i are:

$$t_i = T_i [\beta'(\alpha - Y_i^*) + T_0^{-1}t_0]$$

and

$$T_i = [\beta'\beta + T_0]^{-1}$$

At the h^{th} iteration the MCMC sampling procedure outlined in equation set (4.29) for these conditional distributions is:

- 1) Sample $y_{ij}^{*(h)}$ from $g_{y_{ij}^*}(y_{ij}^* | \alpha_j^{(h-1)}, \beta_j^{(h-1)}, X_i^{(h-1)}, y_{ij})$, $i=1, \dots, p$, $j=1, \dots, q$
- 2) Sample $\alpha_j^{(h)}, \beta_j^{(h)}$ from $g_{\alpha, \beta}(\alpha_j, \beta_j | Y_j^{*(h-1)}, X^{(h-1)}, Y_j)$, $j=1, \dots, q$ (4.37)
- 3) Sample $X_i^{(h)}$ from $g_x(X_i | \alpha^{(h-1)}, \beta^{(h-1)}, Y_i^{*(h-1)}, Y_i)$, $i=1, \dots, p$

Sampling from these conditional distributions is straightforward because they are all normal distributions with known means and variances.

This boils down to three simple OLS type steps:

1) Given $\alpha_j, \beta_j, X_i, y_{ij}$, sample y_{ij}^* (the latent Yea/Nay variable) from the appropriate normal distribution:

$$g_{y_{ij}^*} (y_{ij}^* | \alpha_j, \beta_j, X_i, y_{ij}) = \begin{cases} N_{[0, \infty)}(\alpha_j + X_i' \beta_j, 1) & \text{if } y_{ij} = \text{Yea} \\ N_{(-\infty, 0]}(\alpha_j + X_i' \beta_j, 1) & \text{if } y_{ij} = \text{Nay} \\ N_{(-\infty, \infty)}(\alpha_j + X_i' \beta_j, 1) & \text{if } y_{ij} = \text{Missing} \end{cases}$$

2) Given X_i, y_{ij}, y_{ij}^* , sample α_j, β_j from the normal distribution:

$$g_{\alpha, \beta} (\alpha_j, \beta_j | Y_j^*, X, Y_j) = N \left(\left[X^* X^* + B_0^{-1} \right]^{-1} \left[X^* Y_j^* + B_0^{-1} b_0 \right], \left[X^* X^* + B_0^{-1} \right]^{-1} \right)$$

3) Given $\alpha_j, \beta_j, y_{ij}^*, y_{ij}$ sample X_i from the normal distribution:

$$g_X (X_i | \alpha, \beta, Y_i^*, Y_i) = N \left(\left[\beta' \beta + I_s \right]^{-1} \left[\beta' (\alpha - Y_i^*) \right], \left[\beta' \beta + I_s \right]^{-1} \right)$$