Package ‘pscl’

March 29, 2015

Version 1.4.9
Date 2015-03-29
Title Political Science Computational Laboratory, Stanford University

Author Simon Jackman, with contributions from
Alex Tahk, Achim Zeileis, Christina Maimone and Jim Fearon

Maintainer Simon Jackman <jackman@stanford.edu>

Depends MASS, lattice

Suggests MCMCpack, car, Imtest, sandwich, zoo, coda, ved, mvtnorm,
mgcv

Enhances stats

Description Bayesian analysis of item-response theory (IRT) models,
roll call analysis; computing highest density regions; maximum
likelihood estimation of zero-inflated and hurdle models for count
data; goodness-of-fit measures for GLMs; data sets used

in writing and teaching at the Political Science
Computational Laboratory; seats-votes curves.

LazyData true
License GPL-2

URL http://pscl.stanford.edu/
NeedsCompilation yes

Repository CRAN

Date/Publication 2015-03-29 11:23:22

R topics documented:

absSentee . . . . . . . . e e e e
admit . . . . e e e e e
AustralianElectionPolling . . . . . . . . . ... L
AustralianElections . . . . . . . .. e
betaHPD . . . . . . . . . e
bioChemisSts . . . . . . . . . . . e


http://pscl.stanford.edu/

R topics documented:

ca2006 . . . . .o e 12
computeMargins . . . . .. ... e e 13
CONSLIAIN.ALEMS . . . . . . . o v vttt e ettt e e e e e e 14
constrain.degis . . . . . ... e 16
convertCodes . . . . . . . .. e 19
dropRollCall . . . . . . .. . .. 20
dropUnanimous . . . . . . . . . ... e e e 22
EfronMorris . . . . . . . o e 23
extractRollCallObject . . . . . . . . . . . .. 24
hitmiss . . . . . . . 25
hurdle . . . . . o 26
hurdle.control . . . . . . . . .. 30
hurdletest . . . . . . .. 31
ideal . . . . e 32
idealTOMCMC . . . . . . . e 38
1gaMmMa . . . .. e e e 39
raqVote . . . . . L 41
NjO7 . e 43
ntable . . . . 44
odTest . . . . . o e e 45
partycodes . . . ... e e e 46
plotideal . . . . . . L e 47
plot.predictideal . . . . . . . ... 49
plotseatsVotes . . . . . . L L 50
politicallnformation . . . . . . . . . . .. 51
POStProcess . . . ..o L e e 52
PR 55
predicthurdle . . . . . . . .. L 56
predictideal . . . . . ... L e e e 58
predict.zeroinfl . . . . . ... L 60
predprob . . ..o 62
predprob.glm . . . . ... e e e e 63
predprobideal . . . . . ... 64
presidentialElections . . . . . . . . ... 65
PIUSSIAN . . . . v v v o e e e e e e e e e 66
readKH . . . . . . e 67
RockTheVote . . . . . . . . o . e 70
rollcall . . . . . . L 72
SI00 . . e 74
SCOA0T L L 75
SEAtSVOLES . . . . . . e e e e e e 76
SIMPL . v v o e e e e e e e e e e e e e e 78
state.info . . . . .o L L e 79
summary.ideal . . . . . ... 80
summary.rollcall . . . . ... oL 82
18 217> 84
UKHouseOfCommons . . . . . . . . . ... ittt e 86

unionDensity . . ... L 87



absentee

vectorRepresentation . . . . . . . . . ... e e
VOtEO2 . . . e e e e e
VUONZ © o v v vt e e e e e e e e e e e e e e e
zeroinfl . . .. e e
zeroinfl.control . . . . . .. L L.

Index

absentee Absentee and Machine Ballots in Pennsylvania State Senate Races

Description

Absentee ballot outcomes contrasted with machine ballots, cast in Pennsylvania State Senate elec-

tions, selected districts, 1982-1993.

Usage

data(absentee)

Format

A data frame with 22 observations on the following 8 variables.

year anumeric vector, year of election, 19xx

district anumeric vector, Pennsylvania State Senate district

absdem a numeric vector, absentee ballots cast for the Democratic candidate

absrep a numeric vector, absentee ballots cast for the Republican candidate

machdem a numeric vector, votes cast on voting machines for the Democratic candidate
machrep a numeric vector, votes cast on voting machines for the Republican candidate
dabs a numeric vector, Democratic margin among absentee ballots

dmach a numeric vector, Democratic margin among ballots case on voting machines

Details

In November 1993, the state of Pennsylvania conducted elections for its state legislature. The
result in the Senate election in the 2nd district (based in Philadelphia) was challenged in court, and
ultimately overturned. The Democratic candidate won 19,127 of the votes cast by voting machine,
while the Republican won 19,691 votes cast by voting machine, giving the Republican a lead of
564 votes. However, the Democrat won 1,396 absentee ballots, while the Republican won just
371 absentee ballots, more than offsetting the Republican lead based on the votes recorded by
machines on election day. The Republican candidate sued, claiming that many of the absentee
ballots were fraudulent. The judge in the case solicited expert analysis from Orley Ashenfelter, an
economist at Princeton University. Ashenfelter examined the relationship between absentee vote
margins and machine vote margins in 21 previous Pennsylvania Senate elections in seven districts

in the Philadelphia area over the preceding decade.



4 absentee

Source

Ashenfelter, Orley. 1994. Report on Expected Asbentee Ballots. Typescript. Department of Eco-
nomics, Princeton University.

References

Ashenfelter, Orley, Phillip Levine and David Zimmerman. 2003. Statistics and Econometrics:
Methods and Applications. New York: John Wiley and Sons.

Jackman, Simon. 2009. Bayesian Analysis for the Social Sciences. Wiley: Hoboken, New Jersey.
Examples 2.13, 2.14, 2.15.

Examples

data(absentee)
summary (absentee)

denom <- absentee$absdem + absentee$absrep

y <- (absentee$absdem - absentee$absrep)/denom * 100
denom <- absentee$machdem + absentee$machrep

x <- (absentee$machdem - absentee$machrep)/denom *100

ols <- 1Im(y ~ x,
subset=c(rep(TRUE,21),FALSE) ## drop data point 22
)

## predictions for disputed absentee point
yhat22 <- predict(ols,

newdata=1list(x=x[22]),

se.fit=TRUE,

interval="prediction")
tstat <- (y[22]-yhat22$fit[,"fit"]1)/yhat22%$se.fit
cat("tstat on actual outcome for obs 22:", tstat,”\n")
cat(paste("Pr(t>",round(tstat,2),”) i.e., one-sided:\n",sep=""))
cat(1-pt(tstat,df=yhat22$df),"\n")

## make a picture
xseq <- seq(min(x)-.1xdiff(range(x)),
max(x)+.1xdiff(range(x)),
length=100)
yhat <- predict(ols,interval="prediction”,
newdata=1list(x=xseq))

plot(y~x,
type:”n“ s
axes=FALSE,

ylim=range(yhat,y),
xlim=range(xseq),xaxs="1i",
xlab="Democratic Margin, Machine Ballots (Percentage Points)",
ylab="Democratic Margin, Absentee Ballots (Percentage Points)")
polygon(x=c(xseq,rev(xseq)), #i# overlay 95% prediction CI
y=c(yhat[,"lwr"],rev(yhatl, "upr”])),
border=FALSE,



admit 5

col=gray(.85))
abline(ols,1lwd=2) ## overlay ols
points(x[-22],y[-22],pch=1) ## data
points(x[22],y[22],pch=16) ## disputed data point

text(x[221,y[221],

"Disputed\nElection”,
cex=.75,
adj=1.25)
axis(1)
axis(2)
admit Applications to a Political Science PhD Program
Description

Ordinal ratings (faculty evaluations) of applicants to a Political Science PhD Program.

Usage

data(admit)

Format

A data frame with 106 observations on the following 6 variables.

score an ordered factor with levels 1<2<3<4<5

gre.quant applicant’s score on the quantitative section of the GRE; the maximum score is 800
gre.verbal applicant’s score on the verbal section of the GRE; the maximum score is 800

ap 1 if the applicant indicated an interest in American politics; 0 otherwise

pt 1 if the applicant indicated an interest in Political Theory; O otherwise

female 1 for female applicants; 0 otherwise

References

Jackman, Simon. 2004. "What Do We Learn From Graduate Admissions Committees?: A Multiple-
Rater, Latent Variable Model, with Incomplete Discrete and Continuous Indicators." Political Anal-
ysis. 12(4):400-424.



6 AustralianElectionPolling

Examples

data(admit)

summary (admit)

## ordered probit model

opl <- MASS::polr(score ~ gre.quant + gre.verbal + ap + pt + female,
Hess=TRUE,
data=admit,
method="probit")

summary (op1)

hitmiss(op1)

loglLik(op1)

pR2(op1)

AustralianElectionPolling
Political opinion polls in Australia, 2004-07

Description

The results of 239 published opinion polls measuring vote intentions (1st preference vote intention
in a House of Representatives election) between the 2004 and 2007 Australian Federal elections,
from 4 survey houses.

Usage

data(AustralianElectionPolling)

Format

A data frame with 239 observations on the following 14 variables.

ALP a numeric vector, percentage of respondents reported as intending to vote for the Australian
Labor Party

Lib a numeric vector, percentage of respondents reported as intending to vote for the Liberal Party

Nat anumeric vector, percentage of respondents reported as intending to vote for the National Party

Green anumeric vector, percentage of respondents reported as intending to vote for the Greens

FamilyFirst a numeric vector, percentage of respondents reported as intending to vote for the
Family First party

Dems a numeric vector, percentage of respondents reported as intending to vote for the Australian
Democrats

OneNation a numeric vector, percentage of respondents reported as intending to vote for One Na-
tion

DK a numeric vector, percentage of respondents reported as expressing no preference or a “don’t
know” response

sampleSize anumeric vector, reported sample size of the poll



AustralianElectionPolling 7

org afactor with levels Galaxy, Morgan, F2F,Newspoll, Nielsen and Morgan, Phone, indicating
the survey house and/or mode of the poll

startDate a Date, reported start of the field period
endDate a Date, reported end of the field period
source a character vector, source of the poll report

remark a character vector, remarks noted by author and/or research assistant coders

Details

Morgan uses two modes: phone and face-to-face.

The 2004 Australian election was on October 9; the ALP won 37.6% of the 1st preferences cast in
elections for the House of Representatives. The ALP won the 2007 election (November 24) with
43.4% of 1st preferences.

The ALP changed leaders twice in the 2004-07 inter-election period spanned by these data: (1)
Mark Latham resigned the ALP leadership on January 18 2005 and was replaced by Kim Beazley;
(2) Beazley lost the ALP leadership to Kevin Rudd on December 4, 2006.

The then Prime Minister, John Howard, announced the November 2007 election on October 14,
2007.

Source

See the source variable. Andrea Abel assisted with the data collection.

References

Jackman, Simon. 2009. Bayesian Analysis for the Social Sciences. Wiley: Hoboken, New Jersey.
Example 9.3.

Examples

data(AustralianElectionPolling)
lattice: :xyplot(ALP ~ startDate | org,
data=AustralianElectionPolling,
layout=c(1,5),
type="b",
xlab="Start Date”,
ylab="ALP")

## test for house effects

y <- AustralianElectionPolling$ALP/100

v <- yx(1-y)/AustralianElectionPolling$sampleSize

w <- 1/v

ml <- mgcv::gam(y ~ s(as.numeric(startDate)),
weight=w,
data=AustralianElectionPolling)

m2 <- update(ml, ~ . + org)

anova(m1,m2)



8 AustralianElections

AustralianElections elections to Australian House of Representatives, 1949-2007

Description

Aggregate data on the 24 elections to Australia’s House of Representatives, 1949 to 2007.

Usage

data(AustralianElections)

Format
A data frame with the following variables:

date date of election, stored using the Date class

Seats numeric, number of seats in the House of Representatives
Uncontested numeric, number of uncontested seats

ALPSeats numeric, number of seats won by the Australian Labor Party
LPSeats numeric, number of seats won by the Liberal Party

NPSeats numeric, number of seats won by the National Party (previously known as the Country
Party)

OtherSeats numeric, number of seats won by other parties and/or independent candidates
ALP numeric, percentage of first preference votes cast for Australian Labor Party candidates

ALP2PP numeric, percentage of the two-party preferred vote won by Australian Labor Party candi-
dates

LP numeric, percent of first preference votes cast for Liberal Party candidates

NP numeric, percent of first preference votes cast for National Party (Country Party) candidates
DLP numeric, percent of first preference votes cast for Democratic Labor Party candidates

Dem numeric, percent of first preference votes cast for Australian Democrat candidates

Green numeric, percent of first preference votes cast for Green Party candidates

Hanson numeric, percent of first preference votes cast for candidates from Pauline Hanson’s One
Nation party

Com numeric, percent of first preference votes cast for Communist Party candidates
AP numeric, percent of first preference votes cast for Australia Party candidates

Informal numeric, percent of ballots cast that are spoiled, blank, or otherwise uncountable (usually
because of errors in enumerating preferences)

Turnout numeric, percent of enrolled voters recorded as having turned out to vote (Australia has
compulsory voting)

Source

Australian Electoral Commission. http://www.aec.gov.au.


http://www.aec.gov.au

betaHPD 9

References

Jackman, Simon. 2009. Bayesian Analysis for the Social Sciences. Wiley: Hoboken, New Jersey.
Example 3.5.

Examples

data(AustralianElections)
attach(AustralianElections)
alpSeatShare <- ALPSeats/Seats
alpVoteShare <- ALP2PP/100

## log-odds transforms
x <- log(alpVoteShare/(1-alpVoteShare))
y <- log(alpSeatShare/(1-alpSeatShare))

ols <- Im(y~x)  ## Tufte-style seats-votes regression

xseq <- seq(-4.5,4.5,length=500)
yhat <- coef(ols)[1] + coef(ols)[2]*xseq
yhat <- exp(yhat)/(1+exp(yhat))
xseq <- exp(xseq)/(1+exp(xseq))

## seats vote curve
plot(x=alpVoteShare,
y=alpSeatShare,
xlab="ALP Vote Share”,
ylab="ALP Seat Share")
lines(xseq,yhat, lwd=2)
abline(h=.5,1ty=2)
abline(v=.5,1ty=2)

betaHPD compute and optionally plot beta HDRs

Description

Compute and optionally plot highest density regions for the Beta distribution.

Usage
betaHPD(alpha,beta,p=.95,plot=FALSE,x1im=NULL, debug=FALSE)

Arguments
alpha scalar, first shape parameter of the Beta density. Must be greater than 1, see
details
beta scalar, second shape parameter of the Beta density. Must be greater than 1, see

details



10 betaHPD

p scalar, content of HPD, must lie between O and 1
plot logical flag, if TRUE then plot the density and show the HDR
x1lim numeric vector of length 2, the limits of the density’s support to show when

plotting; the default is NULL, in which case the function will confine plotting to
where the density is non-neglible

debug logical flag, if TRUE produce messages to the console

Details

The Beta density arises frequently in Bayesian models of binary events, rates, and proportions,
which take on values in the open unit interval. For instance, the Beta density is a conjugate prior
for the unknown success probability in binomial trials. With shape parameters « > 1 and § > 1,
the Beta density is unimodal.

In general, suppose # € © C RF is a random variable with density f(6). A highest density region
(HDR) of f(6) with content p € (0, 1] is a set @ C © with the following properties:

(éfwme=p

and

f(0) > f(0")VOe€ Q0" ¢ Q.

For a unimodal Beta density (the class of Beta densities handled by this function), a HDR of content
0 < p < 1is simply an interval Q € (0, 1).

This function uses numerical methods to solve for the end points of a HDR for a Beta density with
user-specified shape parameters, via repeated calls to the functions dbeta, pbeta and gbeta. The
function optimize is used to find points v and w such that

subject to the constraint
w
| 100000 =5,

where f(6; «, 8) is a Beta density with shape parameters « and 3.

In the special case of & = 3 > 1, the end points of a HDR with content p are given by the (1+p)/2
quantiles of the Beta density, and are computed with the gbeta function.

Again note that the function will only compute a HDR for a unimodal Beta density, and exit with
an error if alpha<=1 | beta <=1. Note that the uniform density results with o = 8 = 1, which
does not have a unique HDR with content 0 < p < 1. With shape parameters &« < 1 and 8 > 1
(or vice-versa, respectively), the Beta density is infinite at O (or 1, respectively), but still integrates
to one, and so a HDR is still well-defined (but not implemented here, at least not yet). Similarly,
with 0 < «, 8 < 1 the Beta density is infinite at both 0 and 1, but integrates to one, and again a
HDR of content p < 1 is well-defined in this case, but will be a set of two disjoint intervals (again,
at present, this function does not cover this case).



bioChemists 11

Value

If the numerical optimization is successful an vector of length 2, containing v and w, defined above.
If the optimization fails for whatever reason, a vector of NAs is returned.

The function will also produce a plot of the density with area under the density supported by the
HDR shaded, if the user calls the function with plot=TRUE; the plot will appear on the current
graphics device.

Debugging messages are printed to the console if the debug logical flag is set to TRUE.

Author(s)
Simon Jackman <jackman@stanford.edu>. Thanks to John Bullock who discovered a bug in an
earlier version.

See Also

pbeta, gbeta, dbeta, uniroot

Examples

betaHPD(4,5)
betaHPD(2,120)
betaHPD(120,45,p=.75,x1im=c(0,1))

bioChemists article production by graduate students in biochemistry Ph.D. pro-
grams

Description

A sample of 915 biochemistry graduate students.

Usage

data(bioChemists)

Format

art count of articles produced during last 3 years of Ph.D.

fem factor indicating gender of student, with levels Men and Women

mar factor indicating marital status of student, with levels Single and Married
kid5 number of children aged 5 or younger

phd prestige of Ph.D. department

ment count of articles produced by Ph.D. mentor during last 3 years



12 ca2006

References

Long, J. Scott. 1990. The origins of sex differences in science. Social Forces. 68(3):1297-1316.

Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Thou-
sand Oaks, California: Sage.

ca20e6 California Congressional Districts in 2006

Description

Election returns and identifying information, California’s 53 congressional districts in the 2006
Congresisonal elections.

Usage

data(ca2006)

Format
A data frame with 53 observations on the following 11 variables.

district numeric, number of Congressional district

D numeric, number of votes for the Democratic candidate

R numeric, votes for the Republican candidate

Other numeric, votes for other candidates

IncParty character, party of the incumbent (or retiring member), D or R

IncName character, last name of the incumbent, character NA if no incumbent running
open logical, TRUE if no incumbent running

contested logical, TRUE if both major parties ran candidates

Bush2004 numeric, votes for George W. Bush (R) in the district in the 2004 presidential election
Kerry2004 numeric, votes for John Kerry (D) in 2004

Other2004 numeric votes for other candidates in 2004

Bush2000@ numeric, votes for George W. Bush in 2000

Gore2000 numeric, votes for Al Gore (D) in 2000

Source

2006 data from the California Secretary of State’s web site, http://vote2006.sos.ca.gov/Returns/
usrep/all.htm.

2004 and 2000 presidential vote in congressional districts from the 2006 Almanac of American
Politics.

Thanks to Arthur Aguirre for the updated links, above.


http://vote2006.sos.ca.gov/Returns/usrep/all.htm
http://vote2006.sos.ca.gov/Returns/usrep/all.htm

computeMargins

References

13

Michael Baraon and Richard E. Cohen. 2006. The Almanac of American Politics, 2006. National

Journal Group: Washington, D.C.

Examples

data(ca2006)

## 2006 CA congressional vote against 2004 pvote
y <- ca2006%D/(ca2006$D+ca2006%R)
X <- Cca2006%$Kerry2004/(ca2006%$Kerry2004+ca2006$Bush2004)

pch <- rep(19,length(y))
pch[ca2006$open] <- 1
col <- rep("black”,length(y))
col[11] <- "red" ## Pembo (R) loses to McNerney (D)
plot(y~x,pch=pch,
col=col,
xlim=range(x,y,na.rm=TRUE),
ylim=range(x,y,na.rm=TRUE),
xlab="Kerry Two-Party Vote, 2004",
ylab="Democratic Two-Party Vote Share, 2006")
abline(0,1)
abline(h=.5,1ty=2)
abline(v=.5,1ty=2)
legend(x="topleft",
bty="n",
col=c("red","black"”,"black"),
pch=c(19,19,1),
legend=c("Seat Changing Hands",
"Seat Retained by Incumbent Party”,
"Open Seat (no incumbent running)")

)

computeMargins add information about voting outcomes to a rollcall object

Description

Add summaries of each roll call vote to a rollcall object.

Usage

computeMargins(object, dropList = NULL)

Arguments
object an object of class rollcall
dropList alist (or alist) listing voting decisions, legislators and/or votes to be dropped

from the analysis; see dropRol1Call for details.



14 constrain.items

Details

The subseting implied by the dropList is first applied to the rollcall object, via dropRollCall.
Then, for each remaining roll call vote, the number of legislators voting “Yea”, “Nay”, and not
voting are computed, using the encoding information in the codes component of the rollcall
object via the convertCodes function. The matrix of vote counts are added to the rollcall object
as a component voteMargins.

Value

An object of class rollcall, with a component voteMargins that is a matrix with four columns:

Yea number of legislators voting “Yea”

Nay number of legislators voting “Nay”

NA number of legislators not voting “Nay”

Min the number of legislators voting on the losing side of the roll call
Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

dropRollCall on specifying a dropList. The vote-specific marginals produced by theis function
are used by as dropRol1Call, summary.ideal and predict.ideal.

Examples

data(s109)
tmp <- computeMargins(s109)
dim(tmp$voteMargins)  ## 645 by 4

tmp <- computeMargins(s109,
dropList=list(codes="notInLegis", lop=0))
dim(tmp$voteMargins)  ## 544 by 4

constrain.items constrain item parameters in analysis of roll call data

Description
Sets constraints on specified item parameters in Bayesian analysis of roll call data by generating
appropriate priors and start values for Markov chain Monte Carlo iterations.

Usage

constrain.items(obj, dropList = list(codes = "notInLegis”, lop = 0),
x, d=1)



constrain.items 15

Arguments
obj an object of class rollcall.
dropList a list (or alist) indicating which voting decisions, legislators and/or roll calls
are to be excluded from the subsequent analysis; see dropRol1Call for details.
X a list containing elements with names matching votes found in dimnames (object$votes)[[2]]
(but after any subsetting specified by dropList). Each component of the list
must be a vector containing d elements, specifying the value to which the item
discrimination parameters should be constrained, in each of the d dimensions.
The intercept or item difficultly parameter will not be constrained.
d numeric, positive integer, the number of dimensions for which to set up the
priors and start values.
Details

constrain.items and its cousin, constrain.legis are usefully thougt of as “pre-processor” func-
tions, generating priors and start values for both the item parameters and the ideal points. For the
items specified in X, the prior mean for each dimension is set to the value given in x, and the prior
precision for each dimension is set to 1e12 (i.e., a near-degenerate “spike” prior). For the other
items, the priors are set to a mean of 0 and precision 0.01. All of the ideal points are given normal
priors with mean 0, precision 1.

Start values are also generated for both ideal points and item parameters. The start values for the
items specified in x are set to the values specified in x. The list resulting from constrain.items
can then be given as the value for the parameters priors and startvals when ideal is run. The
user is responsible for ensuring that a sufficient number of items are constrained such that when
ideal is run, the model parameters are identified.

dropRollCall is first called to generate the desired roll call matrix. The entries of the roll call
matrix are mapped to c(@,1,NA) using the codes component of the rollcall object. See the
discussion in the documentation of ideal for details on the generation of start values.

Value

a list with elements:

Xp prior means for ideal points. A matrix of dimensions number of legislators in
obj by d.

Xpv prior meansprecisions for ideal points. A matrix of dimensions number of leg-
islators in obj by d.

bp prior means for item parameters. A matrix of dimensions number of items or
votes in obj by d+1.

bpv prior meansprecisions for item parameters. A matrix of dimensions number of
items or votes in obj by d+1.

xstart start values for ideal points. A matrix of dimensions number of legislators in
obj by d.

bstart start values for ideal points. A matrix of dimensions number of items or votes

in obj by d+1.



16 constrain.legis

See Also

rollcall, ideal, constrain.legis

Examples

## Not run:

data(s109)

f <- system.file("extdata”,"id1.rda",package="pscl")
load(f)

id1sum <- summary(id1,include.beta=TRUE)

suspect1 <- id1sum$bSig[[1]1]=="95

close60 <- id1sum$bResults[[1]][,"Yea"] < 60

close40 <- id1sum$bResults[[111[,"Yea"] > 40

suspect <- suspectl & close6@ & close40d
id1sum$bResults[[1]][suspect,]

suspectVotes <- dimnames(id1sum$bResults[[1]]1[suspect,]1)[[1]1]

## constraints on 2d model,
## close rollcall poorly fit by 1d model
## serves as reference item for 2nd dimension

cl <- constrain.items(s109,
x=1ist("2-150"=c(0,7),
"2-169"=c(7,0)),
d=2)

id1Constrained <- ideal(s1@9,
d=2,
meanzero=TRUE,
priors=cl,
startvals=cl,
maxiter=1e5,
burnin=1e3,
thin=1e2)

summary (id1Constrained, include.beta=TRUE)

## End(Not run)

constrain.legis constrain legislators’ ideal points in analysis of roll call data

Description

Sets constraints on specified legislators for ideal point estimation by generating appropriate priors
and start values.



constrain.legis 17

Usage
constrain.legis(obj, dropList = list(codes = "notInLegis”, lop = @),
x, d=1)
Arguments
obj an object of class rollcall.
dropList a list (or alist) indicating which voting decisions, legislators and/or roll calls
are to be excluded from the subsequent analysis; see dropRol1Call for details.
X a list containing elements with names partially matching legislators found in
dimnames(object$votes)[[1]] (but after any sub-setting specified by dropList).
Each element must be a vector containing d elements, specifying the value to
which the ideal point should be constrained in each of d dimensions. x must
have at least d+1 components; i.e., supplying a necessary (but not sufficient)
set of constraints for global identification of the parameters of a d-dimensional
item-response model, see Details.
d the number of dimensions for which to set up the priors and start values.
Details

constrain.items and its cousin, constrain.legis are usefully thought of as “pre-processor”
functions, implementing identification constraints for the ideal point model by generating priors
and start values for both the item parameters and the ideal points.

For the legislators specified in x, the prior mean for each dimension is set to the specified value
and the prior precision for each dimension is set to 1e12 (i.e., a near-degenerate “spike” prior, and,
for all practical purposes, constraining that parameter to a fixed value). For the other legislators,
the priors on their ideal points are set to a mean of 0 and a small precision of .01, corresponding
to a prior variance of 100, or a prior 95 percent confidence interval of -20 to 20. All of the item
parameter priors are set to mean 0, precision 0.01.

Start values are also generated for both ideal points and item parameters. The start values for the
legislators named in x are set to the values specified in x. The list resulting from constrain.legis
can then be given as the value for the parameters priors and startvals when ideal is run.
constrain.legis requires that d+1 constraints be specified; if the constrained ideal points points
are linearly independent, then the parameters of the item-response model are (at least locally) iden-
tified. For instance, when fitting a 1 dimensional model, constraining the ideal points of two legis-
lators is sufficient to globally identify the model parameters.

dropRollCall is first called to generate the desired roll call matrix. The entries of the roll call
matrix are mapped to c(@,1,NA) using the codes component of the rollcall object. See the
discussion in the documentation of ideal for details on the generation of start values.

Value

a list with elements:

Xp prior means for ideal points. A matrix of dimensions number of legislators in rc
by d.



18

XpV

bp

bpv

See Also

constrain.legis

prior meansprecisions for ideal points. A matrix of dimensions number of leg-
islators in rc by d.

prior means for item parameters. A matrix of dimensions number of items or
votes in rc by d+1.

prior meansprecisions for item parameters. A matrix of dimensions number of
items or votes in rc by d+1.

start values for ideal points. A matrix of dimensions number of legislators in rc
by d.

start values for ideal points. A matrix of dimensions number of items or votes
in rc by d+1.

rollcall, ideal, constrain.items. See pmatch on how supplied names are matched against the
names in the rollcall object.

Examples

data(s109)

cl <- constrain.legis(s109,

## Not run:

x=1ist ("KENNEDY"=-1,
"ENZI"=1),
d=1)

## too long for examples
id1Constrained <- ideal(s109,

d=1,

priors=cl, ## use cl
startvals=cl, ## use cl
maxiter=5000,

burnin=500,

thin=25)

summary (id1Constrained)

cl2 <- constrain.legis(s109,

x=1ist ("KENNEDY"=c(-1,0),

"ENZI"=c(1,9),
"CHAFEE"=c(0,-.5)),
d=2)

id2Constrained <- ideal(s1@9,

d=2,
priors=cl2, ## priors (w constraints)
startvals=cl2, ## start value (w constraints)

store.item=TRUE,
maxiter=5000,
burnin=500,
thin=25)



convertCodes 19

summary (id2Constrained, include.items=TRUE)

## End(Not run)

convertCodes convert entries in a rollcall matrix to binary form

Description

Convert roll call matrix to binary form using encoding information.

Usage

convertCodes(object, codes = object$codes)

Arguments
object rollcall object
codes list, mapping entries in the votes component of rollcall object to 0 (‘Nay’),
1 (‘Yea’) and NA (missing, abstentions, etc). Defaults to the codes component
of the rollcall object.
Details

See rollcall for details on the form of the codes list.

Value

amatrix with dimensions equal to the dimensions of the votes component of the rol1lcall object.

Note
Any entries in the votes matrix that can not be mapped into c(@,1,NA) using the information in
codes are mapped to NA, with an informative message sent to the console.

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also
rollcall

Examples

data(s109)
mat <- convertCodes(s109)
table(mat,exclude=NULL)



20

dropRollCall

dropRollCall

drop user-specified elements from a rollcall object

Description

Drop user-specified elements of rollcall object, returning a roll call object.

Usage

dropRollCall(object, dropList,debug=FALSE)

Arguments

object
droplList

debug

Details

an object of class rollcall
alist (or alist) with some (or all) of the following components:

codes character or numeric, possibly a vector. If character, it should match the
names of object$codes, indicating the set of entries in object$votes to
be set to NA. If numeric, then codes indicates the entries in object$votes
that will be set to NA.

lop numeric, non-negative integer, less than number of legislators represented
in object. Roll calls with lop or fewer legislators voting in the minority
are dropped.

legisMin numeric, non-negative integer, less than number of roll calls repre-
sented in object. Legislators with legisMin or fewer votes are dropped.

dropLegis an expression that evaluates to mode logical, vector of length
equal to the number of legislators represented in object. The expression is
evaluated in the legis.data component of the rollcall object. Legislators
for whom the expression evaluates to TRUE are dropped.

dropVotes an expression that evaluates to mode logical, vector of length
equal to the number of rollcalls represented in object. The expression is
evaluated in the vote.data component of the rollcall object. Rollcalls for
which the expression evaluates to TRUE are dropped.

logical, set to TRUE to see messages printed to the console as inspection and
subsetting of the rollcall object takes place

It is often desirable to restrict the analysis of roll call data in various ways. For one thing, unani-
mous votes provide no information discriminating among legislators: hence, summary and analysis
should almost always use dropList=1ist(lop=0). See the examples for other possibilities, limited
only by the information supplied in legis.data and votes.data.

Value

An object of class rollcall with components modified/added by the subsetting indicated in the

dropList.



dropRollCall 21

Note

With the exception of codes, each component of dropList generates a vector of mode logical,
either with respect to legislators or votes. These logical vectors are then combined element-wise,
such that if any one of the subseting restrictions is TRUE for a particular legislator or vote, then
that legislator or vote is dropped. Some summaries are reported to the console along the way if
debug=TRUE.

dropRollCall adds a component named dropInfo to the rollcall object it returns. This compo-

nent is itself a list containing named components

legislators a vector of mode logical, with each element TRUE if the legislator is retained in the
returned rollcall object.

votes a vector of mode logical, with each element TRUE if the corresponding is retained in the
returned rollcall object.

dropList the dropList supplied as input to dropRol1Call.

If the input rollcall object is itself the product of a call to dropRollCall, the dropInfo compo-
nent on output is a list with named components

previous the dropInfo component of the input rollcall object.

new the dropInfo list created by the current call to dropRol1Call.

Functions like summary.rollcall try to handle this information sensibly.

When dropList uses the dropLegis or dropVotes components then dropList should be con-
structed via the alist command; this ensures that the dropLegis and dropVotes components of
dropList are objects of mode expression, and evaluated to mode logical in the legis.data
and vote.data environments by the function, if possible (rather than being evaluated immedi-
ately in the environment calling dropRol1Call or constructing dropList). See the examples. This
is not entirely satisfactory, and behavior more like the subset argument in function 1m would be
preferable.

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

dropUnanimous, summary.rollcall, ideal, alist.

Examples

data(s109)

s109.working <- dropRollCall(s109,
dropList=list(lop=0))

summary (s109.working)

s109.working <- dropRollCall(s109,
dropList=1list(lop=0,
code="notInLegis"))
summary (s109.working)



22 dropUnanimous

s109.working <- dropRollCall(s109,

dropList=1list(lop=3,
code="notInLegis"))

summary (s109.working)

## note use of alist, since dropLegis is an expression

dropList <- alist(lop=3,

dropLegis=party!="D",
code="notInLegis")

s109.working <- dropRollCall(s109,dropList=dropList,debug=TRUE)

summary(s109.working)

s109.working <- dropRollCall(s109.working,dropList=1ist(legisMin=25))

summary(s109.working)

## Not run:

## read 102nd House from Poole web site

h102 <- readKH("ftp://voteview.ucsd.edu/dtaord/houl@2kh.ord")

## drop President from roll call matrix

h102 <- dropRollCall(h102,

dropList=alist(droplLegis=state=="USA"))
summary (h102)
## End(Not run)
dropUnanimous drop unanimous votes from rollcall objects and matrices

Description

Drop unanimous votes from rollcall objects and rollcall matrices.
Usage

dropUnanimous(obj, lop = 0)
Arguments

obj object, either of class rollcall or matrix

lop numeric, non-negative integer, less than number of legislators represented in

obj. Roll calls with 1lop or fewer legislators voting in the minority are dropped.
Default is 0, meaning that unanimous votes are dropped.



EfronMorris 23

Details

Unanimous votes are the equivalent of test items that all subjects score “correct” (or all subjects
scores “incorrect”); since there is no variation among the legislators/subjects, these votes/items
provide no information as to latent traits (ideology, preferences, ability). A reasonably large number
of rollcalls in any contemporary U.S. Congress are unanimous.

Specific methods are provided for objects of class rollcall or matrix.

Value

A rollcall object or a matrix depending on the class of object.

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

dropRollCall, rollcall, summary.rollcall, ideal

Examples

data(s109)
s109.working <- dropUnanimous(s109)
summary (s109.working)

EfronMorris Batting Averages for 18 major league baseball players, 1970

Description

Batting averages for 18 major league baseball players, first 45 at bats of the 1970 season.

Usage

data(EfronMorris)

Format

name character, name of player

team character, team of player, abbreviated

league character, National League or American League
r numeric, hits in 1st 45 at bats

y numeric, r/45, batting average over 1st 45 at bats

n numeric, number of at bats, remainder of 1970 season

p numeric, batting average over remainder of 1970 season



24 extractRollCallObject

Source

Efron, Bradley and Carl Morris. 1975. Data Analysis Using Stein’s Estimator and Its Generaliza-
tions. Journal of the American Statistical Association. 70:311-319.

Examples

data(EfronMorris)
attach(EfronMorris)
plot(p~y,
xlim=range(p,y),
ylim=range(p,y),
xlab="Batting Average, 1st 45 at bats”,
ylab="Batting Average, Remainder of Season")
abline(0,1)

extractRollCallObject return the roll call object used in fitting an ideal model

Description

Given a fitted model of class ideal, return the rollcall object that was used in the model fitting
(i.e., apply all subseting and recoding implied by the droplList passed to ideal).

Usage

extractRollCallObject(object)

Arguments

object an object of class ideal

Details

This function is used by many post-estimation commands that operate on objects of class ideal.
The function inspects the call attribute of the ideal object, extracting the name of the rollcall
object and the dropList, then hands them over to dropRollCall.

Value

An object of class rollcall

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

rollcall; see dropRollCall for details on the form of a dropList.



hitmiss 25

Examples
data(s109)
f = system.file("extdata”,"”id1.rda",package="pscl")
load(f)
tmp <- extractRollCallObject(id1)
summary (tmp)
v <- convertCodes(tmp) ## roll call matrix per se
hitmiss Table of Actual Outcomes against Predicted Outcomes for discrete
data models
Description

Cross-tabulations of actual outcomes against predicted outcomes for discrete data models, with
summary statistics such as percent correctly predicted (PCP) under fitted and null models. For
models with binary responses (generalized linear models with family=binomial), the user can
specific a classification threshold for the predicted probabilities.

Usage

hitmiss(obj, digits = max(3, getOption("digits") - 3), ...)

## S3 method for class 'glm'
hitmiss(obj,digits=max(3,getOption("digits"”)-3),

k=.5)

Arguments
obj a fitted model object, such as a glm with family=binomial, a polr model for
ordinal responses, or a multinom model for unordered/multinomial outcomes
digits number of digits to display in on-screen output
additional arguments passed to or from other functions
k classification threshold for binary models
Details

For models with binary responses, the user can specify a parameter 0 < k < 1; if the predicted
probabilities exceed this threshold then the model is deemed to have predicted y=1, and otherwise
to have predicted y=0. Measures like percent correctly predicted are crude summaries of model
fit; the cross-tabulation of actual against predicted is somewhat more informative, providing a little
more insight as to where the model fits less well.



26 hurdle

Value

For hitmiss.glm, a vector of length 3:

pcp Percent Correctly Predicted

pcp@ Percent Correctly Predicted among y=0

pcpl Percent Correctly Predicted among y=1
Note

To-do: The glm method should also handle binomial data presented as two-vector success/failures
counts; and count data with family=poisson, the glm.nb models and zeroinfl and hurdle etc.
We should also make the output a class with prettier print methods, i.e., save the cross-tabulation in
the returned object etc.

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

pR2 for pseudo r-squared; predict; extractAIC. See also the ROCR package and the 1roc func-
tion in the epicale package for ROC computations for assessing binary classifications.

Examples

data(admit)
## ordered probit model
opl <- MASS::polr(score ~ gre.quant + gre.verbal + ap + pt + female,

Hess=TRUE,
data=admit,
method="probit")
hitmiss(op1)
hurdle Hurdle Models for Count Data Regression

Description

Fit hurdle regression models for count data via maximum likelihood.

Usage
hurdle(formula, data, subset, na.action, weights, offset,
dist = c("poisson”, "negbin”, "geometric"),
zero.dist = c("binomial”, "poisson”, "negbin"”, "geometric"),

link = c("logit”, "probit"”, "cloglog”, "cauchit”, "log"),
control = hurdle.control(...),
model = TRUE, y = TRUE, x = FALSE, ...)



hurdle 27

Arguments

formula symbolic description of the model, see details.
data, subset, na.action
arguments controlling formula processing via model. frame.

weights optional numeric vector of weights.

offset optional numeric vector with an a priori known component to be included in the
linear predictor of the count model. See below for more information on offsets.

dist character specification of count model family.

zero.dist character specification of the zero hurdle model family.

link character specification of link function in the binomial zero hurdle (only used if
zero.dist = "binomial”.

control a list of control arguments specified via hurdle.control.

model, y, x logicals. If TRUE the corresponding components of the fit (model frame, re-

sponse, model matrix) are returned.

arguments passed to hurdle. control in the default setup.

Details

Hurdle count models are two-component models with a truncated count component for positive
counts and a hurdle component that models the zero counts. Thus, unlike zero-inflation models,
there are not two sources of zeros: the count model is only employed if the hurdle for modeling
the occurence of zeros is exceeded. The count model is typically a truncated Poisson or negative
binomial regression (with log link). The geometric distribution is a special case of the negative
binomial with size parameter equal to 1. For modeling the hurdle (occurence of positive counts)
either a binomial model can be employed or a censored count distribution. Binomial logit and
censored geometric models as the hurdle part both lead to the same likelihood function and thus
to the same coefficient estimates. A censored negative binomial model for the zero hurdle is only
identified if there is at least one non-constant regressor with (true) coefficient different from zero
(and if all coefficients are close to zero the model can be poorly conditioned).

The formula can be used to specify both components of the model: If a formulaof typey ~ x1 + x2
is supplied, then the same regressors are employed in both components. This is equivalent to
y ~ x1 + x2 | x1 + x2. Of course, a different set of regressors could be specified for the
zero hurdle component, e.g., y ~ x1 + x2 | z1 + z2 + z3 giving the count data model
y ~ x1 + x2 conditional on (|) the zero hurdle model y ~ z1 + z2 + z3.

Offsets can be specified in both parts of the model pertaining to count and zero hurdle model:
y ~ x1 + offset(x2) | z1 + z2 + offset(z3), where x2 is used as an offset (i.e., with
coefficient fixed to 1) in the count part and z3 analogously in the zero hurdle part. By the rule stated
abovey ~ x1 + offset(x2) isexpandedtoy ~ x1 + offset(x2) | x1 + offset(x2). Instead
of using the of fset () wrapper within the formula, the of fset argument can also be employed
which sets an offset only for the count model. Thus, formula = y ~ x1 and offset = x2is
equivalent to formula = y ~ x1 + offset(x2) | x1.

All parameters are estimated by maximum likelihood using optim, with control options set in
hurdle.control. Starting values can be supplied, otherwise they are estimated by glm.fit (the
default). By default, the two components of the model are estimated separately using two optim



28 hurdle

calls. Standard errors are derived numerically using the Hessian matrix returned by optim. See
hurdle.control for details.

The returned fitted model object is of class "hurdle” and is similar to fitted "glm"” objects. For
elements such as "coefficients” or "terms” a list is returned with elements for the zero and
count components, respectively. For details see below.

A set of standard extractor functions for fitted model objects is available for objects of class "hurdle”,
including methods to the generic functions print, summary, coef, vcov, loglLik, residuals,
predict, fitted, terms, model.matrix. See predict.hurdle for more details on all methods.

Value

An object of class "hurdle”, i.e., a list with components including

coefficients  a list with elements "count” and "zero” containing the coefficients from the
respective models,

residuals a vector of raw residuals (observed - fitted),

fitted.values a vector of fitted means,

optim a list (of lists) with the output(s) from the optim call(s) for minimizing the neg-
ative log-likelihood(s),

control the control arguments passed to the optim call,

start the starting values for the parameters passed to the optim call(s),

weights the case weights used,

offset a list with elements "count"” and "zero” containing the offset vectors (if any)
from the respective models,

n number of observations (with weights > 0),

df.null residual degrees of freedom for the null model (=n - 2),

df.residual residual degrees of freedom for fitted model,

terms a list with elements "count”, "zero"” and "full” containing the terms objects

for the respective models,

theta estimate of the additional § parameter of the negative binomial model(s) (if neg-
ative binomial component is used),

SE.logtheta standard error(s) for log(#),

loglik log-likelihood of the fitted model,

vcov covariance matrix of all coefficients in the model (derived from the Hessian of
the optim output(s)),

dist a list with elements "count” and "zero" with character strings describing the
respective distributions used,

link character string describing the link if a binomial zero hurdle model is used,

linkinv the inverse link function corresponding to link,

converged logical indicating successful convergence of optim,

call the original function call,

formula the original formula,



hurdle 29

levels levels of the categorical regressors,

contrasts alist with elements "count” and "zero” containing the contrasts corresponding
to levels from the respective models,

model the full model frame (if model = TRUE),

y the response count vector (if y = TRUE),

X a list with elements "count” and "zero” containing the model matrices from

the respective models (if x = TRUE).

Author(s)

Achim Zeileis <Achim.Zeileis @R-project.org>

References

Cameron, A. Colin and Pravin K. Trivedi. 1998. Regression Analysis of Count Data. New York:
Cambridge University Press.

Cameron, A. Colin and Pravin K. Trivedi 2005. Microeconometrics: Methods and Applications.
Cambridge: Cambridge University Press.

Mullahy, J. 1986. Specification and Testing of Some Modified Count Data Models. Journal of
Econometrics. 33:341-365.

Zeileis, Achim, Christian Kleiber and Simon Jackman 2008. “Regression Models for Count Data
in R.” Journal of Statistical Software, 27(8). URL http://www. jstatsoft.org/v27/108/.

See Also

hurdle.control, glm, glm.fit, glm.nb, zeroinfl

Examples

## data
data("bioChemists”, package = "pscl”)

## logit-poisson

## "art ~ ." is the same as "art ~ . | .", i.e.
## "art ~ fem + mar + kid5 + phd + ment | fem + mar + kid5 + phd + ment”
fm_hp1 <- hurdle(art ~ ., data = bioChemists)

summary (fm_hp1)

## geometric-poisson
fm_hp2 <- hurdle(art ~ ., data = bioChemists, zero = "geometric")
summary (fm_hp2)

## logit and geometric model are equivalent
coef (fm_hp1, model = "zero") - coef(fm_hp2, model = "zero")

## logit-negbin
fm_hnb1 <- hurdle(art ~ ., data = bioChemists, dist = "negbin”)
summary (fm_hnb1)


http://www.jstatsoft.org/v27/i08/

30

hurdle.control

## negbin-negbin

## (poorly conditioned zero hurdle, note the standard errors)

fm_hnb2 <- hurdle(art ~ ., data = bioChemists, dist = "negbin”, zero = "negbin")
summary (fm_hnb2)

hurdle.control Control Parameters for Hurdle Count Data Regression

Description

Various parameters that control fitting of hurdle regression models using hurdle.

Usage
hurdle.control(method = "BFGS", maxit = 10000, trace = FALSE,
separate = TRUE, start = NULL, ...)
Arguments
method characters string specifying the method argument passed to optim.
maxit integer specifying the maxit argument (maximal number of iterations) passed
to optim.
trace logical or integer controlling whether tracing information on the progress of the

optimization should be produced (passed to optim).

separate logical. Should the estimation of the parameters in the truncated count compo-
nent and hurdle zero component be carried out separately? See details.

start an optional list with elements "count” and "zero” (and potentially "theta")
containing the coefficients for the corresponding component.

arguments passed to optim.

Details

All parameters in hurdle are estimated by maximum likelihood using optim with control options
set in hurdle.control. Most arguments are passed on directly to optim, only trace is also used
within hurdle and separate/start control how optim is called.

Starting values can be supplied via start or estimated by glm. fit (default). If separate = TRUE
(default) the likelihoods of the truncated count component and the hurdle zero component will be
maximized separately, otherwise the joint likelihood is set up and maximized. Standard errors are
derived numerically using the Hessian matrix returned by optim. To supply starting values, start
should be a list with elements "count” and "zero"” and potentially "theta” (a named vector, for
models with negative binomial components only) containing the starting values for the coefficients
of the corresponding component of the model.

Value

A list with the arguments specified.



hurdletest 31

Author(s)

Achim Zeileis <Achim.Zeileis @R-project.org>

See Also

hurdle

Examples

data("bioChemists”, package = "pscl”)

## default start values
fml <- hurdle(art ~ fem + ment, data = bioChemists,
dist = "negbin”, zero = "negbin")

## user-supplied start values and other options
fm2 <- hurdle(art ~ fem + ment, data = bioChemists,

dist = "negbin”,
zero = "negbin”,
trace=TRUE,

separate=FALSE,
start = list(count = c(0.3, -0.2, 0),
zero = c(4, -2, 0.8),
theta = c(count = 2, zero = 0.1)))

hurdletest Testing for the Presence of a Zero Hurdle

Description

Wald test of the null hypothesis that no zero hurdle is required in hurdle regression models for count

data.
Usage
hurdletest(object, ...)
Arguments
object A fitted model object of class "hurdle” as returned by hurdle, see details for

more information.

arguments passed to linearHypothesis.



32 ideal

Details

If the same count distribution and the same set of regressors is used in the hurdle model for both,
the count component and the zero hurdle component, then a test of pairwise equality between all
coefficients from the two components assesses the null hypothesis that no hurdle is needed in the
model.

The function hurdletest is a simple convenience interface to the function linearHypothesis
from the car packages that can be employed to carry out a Wald test for this hypothesis.

Value

An object of class "anova” as returned by linearHypothesis.

Author(s)

Achim Zeileis <Achim.Zeileis @R-project.org>

References

Cameron, A. Colin and Pravin K. Trivedi. 1998. Regression Analysis of Count Data. New York:
Cambridge University Press.

Cameron, A. Colin and Pravin K. Trivedi 2005. Microeconometrics: Methods and Applications.
Cambridge: Cambridge University Press.

See Also

hurdle, linearHypothesis

Examples

data("bioChemists”, package = "pscl")

fm <- hurdle(art ~ ., data = bioChemists, dist = "negbin"”, zero = "negbin")
hurdletest(fm)
ideal analysis of educational testing data and roll call data with IRT models,

via Markov chain Monte Carlo methods

Description

Analysis of rollcall data via the spatial voting model; equivalent to a 2 parameter item-response
model to educational testing data. Model fitting via Markov chain Monte Carlo (MCMC).



ideal

Usage

33

ideal(object, codes = object$codes,
dropList = list(codes = "notInLegis”, lop = 0),
d =1, maxiter = 10000, thin = 100, burnin = 5000,
impute = FALSE,

normalize
meanzero
priors =

= FALSE,

= normalize,
NULL, startvals = "eigen”,
store.item = FALSE, file

NULL,

verbose=FALSE)

Arguments

object

codes

dropList

maxiter
thin

burnin

impute

normalize

meanzero

priors

an object of class rollcall

a list describing the types of voting decisions in the roll call matrix (the votes
component of the rollcall object); defaults to object$codes, the codes in
the rollcall object.

alist (or alist) listing voting decisions, legislators and/or votes to be dropped
from the analysis; see dropRol1Call for details.

numeric, (small) positive integer (default = 1), dimensionality of the ability
space (or "policy space" in the rollcall context).

numeric, positive integer, multiple of thin, number of MCMC iterations
numeric, positive integer, thinning interval used for recording MCMC iterations.

number of MCMC iterations to run before recording. The iteration numbered
burnin will be recorded. Must be a multiple of thin.

logical, whether to treat missing entries of the rollcall matrix as missing at
random, sampling from the predictive density of the missing entries at each
MCMC iteration.

logical, impose identification with the constraint that the ideal points have
mean zero and standard deviation one, in each dimension. For one dimensional
models this option is sufficient to locally identify the model parameters. See
Details.

to be deprecated/ignored; use normalize instead.

a list of parameters (means and variances) specifying normal priors for the
legislators’ ideal points. The default is NULL, in which case the normal priors
used have mean zero and precision 1 for the ideal points (ability parameters)
and mean zero and precision .04 (variance 25) for the bill parameters (item dis-
crimination and difficulty parameters). If not NULL, priors must be a 1ist with
as many as four named components xp, xpv, bp, bpv:

xp a n by d matrix of prior means for the legislators’ ideal points; or alterna-
tively, a scalar, which will be replicated to fill a n by d matrix.

xpv a n by d matrix of prior precisions (inverse variances); or alternatively, a
scalar, which will be replicated to fill a n by d matrix.



34 ideal

bp a m by d+1 matrix of prior means for the item parameters (with the item
difficulty parameter coming last); or alternatively, a scalar, which will be
replicated to fill a m by d+1 matrix.

bpv a m by d+1 matrix of prior precisions for the item parameters; or alterna-
tively, a scalar, which will be replicated to fill a m by d+1 matrix.

None of the components should contain NA. If any of the four possible compo-
nents are not provided, then the corresponding component of priors is assigned
using the default values described above.

startvals either a string naming a method for generating start values, valid options are
"eigen” (the default), "random” or a 1list containing start values for legisla-
tors’ ideal points and item parameters. See Details.

store.item logical, whether item discrimination parameters should be stored. Storing item
discrimination parameters can consume a large amount of memory. These need
to be stored for prediction; see predict.ideal.

file string, file to write MCMC output. Default is NULL, in which case MCMC output
is stored in memory. Note that post-estimation commands like plot will not
work unless MCMC output is stored in memory.

verbose logical, default is FALSE, which generates relatively little output to the R console
during execution.

Details

The function fits a d+1 parameter item-response model to the roll call data object, so in one dimen-
sion the model reduces to the two-parameter item-response model popular in educational testing.
See References.

Identification: The model parameters are not identified without the user supplying some restric-
tions on the model parameters; i.e., translations, rotations and re-scalings of the ideal points are
observationally equivalent, via offsetting transformations of the item parameters. It is the user’s
responsibility to impose these identifying restrictions if desired. The following brief discussion
provides some guidance.

For one-dimensional models (i.e., d=1), a simple route to identification is the normalize option, by
imposing the restriction that the means of the posterior densities of the ideal points (ability parame-
ters) have mean zero and standard deviation one, across legislators (test-takers). This normalization
supplies local identification (that is, identification up to a 180 degree rotation of the recovered di-
mension).

Near-degenerate “spike” priors (priors with arbitrarily large precisions) or the constrain.legis
option on any two legislators’ ideal points ensures global identification in one dimension.

Identification in higher dimensions can be obtained by supplying fixed values for d+1 legislators’
ideal points, provided the supplied fixed points span a d-dimensional space (e.g., three supplied
ideal points form a triangle in d=2 dimensions), via the constrain.legis option. In this case the
function defaults to vague normal priors on the unconstrained ideal points, but at each iteration
the sampled ideal points are transformed back into the space of identified parameters, applying the
linear transformation that maps the d+1 fixed ideal points from their sampled values to their fixed
values. Alternatively, one can impose restrictions on the item parameters via constrain.items.
See the examples in the documentation for the constrain.legis and constrain.items.



ideal 35

Another route to identification is via post-processing. That is, the user can run ideal without any
identification constraints. This does not pose any formal/technical problem in a Bayesian analysis.
The fact that the posterior density may have mulitple modes doesn’t imply that the posterior is
improper or that it can’t be explored via MCMC methods. — but then use the function postProcess
to map the MCMC output from the space of unidentified parameters into the subspace of identified
parameters. See the example in the documentation for the postProcess function.

When the normalize option is set to TRUE, an unidentified model is run, and the ideal object is
post-processed with the normalize option, and then returned to the user (but again, note that the
normalize option is only implemented for unidimensional models).

Start values. Start values can be supplied by the user, or generated by the function itself.

The default method, corresponding to startvals="eigen", first forms a n-by-n correlation matrix
from the double-centered roll call matrix (subtracting row means, and column means, adding in the
grand mean), and then extracts the first d principal components (eigenvectors), scaling the eigen-
vectors by the square root of their corresponding eigenvector. If the user is imposing constraints on
ideal points (via constrain.legis), these constraints are applied to the corresponding elements
of the start values generated from the eigen-decomposition. Then, to generate start values for the
rollcall/item parameters, a series of binomial glms are estimated (with a probit 1ink), one for each
rollcall/item, j = 1,...,m. The votes on the j-th rollcall/item are binary responses (presumed to
be conditionally independent given each legislator’s latent preference), and the (constrained or un-
constrained) start values for legislators are used as predictors. The estimated coefficients from these
probit models are used as start values for the item discrimination and difficulty parameters (with
the intercepts from the probit GLMs multiplied by -1 so as to make those coefficients difficulty
parameters).

The default eigen method generates extremely good start values for low-dimensional models fit
to recent U.S. congresses, where high rates of party line voting result in excellent fits from low
dimensional models. The eigen method may be computationally expensive or lead to memory
errors for rollcall objects with large numbers of legislators.

The random method generates start values via iid sampling from a N(0,1) density, via rnorm, im-
posing any constraints that may have been supplied via constrain.legis, and then uses the probit
method described above to get start values for the rollcall/item parameters.

If startvals is a 1ist, it must contain the named components x and/or b, or named components
that (uniquely) begin with the letters x and/or b. The component x must be a vector or a matrix of
dimensions equal to the number of individuals (legislators) by d. If supplied, startvals$b must be
a matrix with dimension number of items (votes) by d+1. The x and b components cannot contain
NA. If x is not supplied when startvals is a list, then start values are generated using the default
eiegn method described above, and start values for the rollcall/item parameters are regenerated
using the probit method, ignoring any user-supplied values in startvals$b. That is, user-supplied
values in startvals$b are only used when accompanied by a valid set of start values for the ideal
points in startvals$x.

Implementation via Data Augmentation. The MCMC algorithm for this problem consists of a
Gibbs sampler for the ideal points (latent traits) and item parameters, conditional on latent data y*,
generated via a data augmentation (DA) step. That is, following Albert (1992) and Albert and Chib
(1993), if y;; = 1 we sample from the truncated normal density

yi; ~ N(xiB8; — aj, 1)I(y;; > 0)

and for y;; = 0 we sample /
yi; ~ N(z38; — a;, 1)I(y;; < 0)



36

ideal

where Z is an indicator function evaluating to one if its argument is true and zero otherwise. Given
the latent y*, the conditional distributions for = and (3, ) are extremely simple to sample from;
see the references for details.

This data-augmented Gibbs sampling strategy is easily implemented, but can sometimes require
many thousands of samples in order to generate tolerable explorations of the posterior densities of
the latent traits, particularly for legislators with short and/or extreme voting histories (the equivalent
in the educational testing setting is a test-taker who gets almost every item right or wrong).

Value

a list of class ideal with named components

beta

xbar

betabar

args
call

Author(s)

numeric, integer, number of legislators in the analysis, after any subseting via
processing the dropList.

numeric, integer, number of rollcalls in roll call matrix, after any subseting via
processing the dropList.

numeric, integer, number of dimensions fitted.

a three-dimensional array containing the MCMC output with respect to the the
ideal point of each legislator in each dimension. The three-dimensional array
is in iteration-legislator-dimension order. The iterations run from burnin to
maxiter, at an interval of thin.

a three-dimensional array containing the MCMC output for the item parame-
ters. The three-dimensional array is in iteration-rollcall-parameter order. The
iterations run from burnin to maxiter, at an interval of thin. Each rollcall
has d+1 parameters, with the item-discrimination parameters stored first, in the
first d components of the 3rd dimension of the beta array; the item-difficulty
parameter follows in the final d+1 component of the 3rd dimension of the beta
array.

a n by d matrix containing the means of the MCMC samples for the ideal point
of each legislator in each dimension, using iterations burnin to maxiter, at an
interval of thin.

amby d+1 matrix containing the means of the MCMC samples for the item-
specific parameters, using iterations burnin to maxiter, at an interval of thin.

calling arguments, evaluated in the frame calling ideal.

an object of class call, containing the arguments passed to ideal as unevalu-
ated expressions or values (for functions arguments that evaluate to scalar integer
or logical such as maxiter, burnin, etc).

Simon Jackman <jackman@stanford.edu>, with help from Christina Maimone and Alex Tahk.

References

Albert, James.

1992. Bayesian Estimation of normal ogive item response curves using Gibbs

sampling. Journal of Educational Statistics. 17:251-269.



ideal 37

Albert, James H. and Siddhartha Chib. 1993. Bayesian Analysis of Binary and Polychotomous
Response Data. Journal of the American Statistical Association. 88:669-679.

Clinton, Joshua, Simon Jackman and Douglas Rivers. 2004. The Statistical Analysis of Roll Call
Data. American Political Science Review. 98:335-370.

Jackman, Simon. 2009. Bayesian Analysis for the Social Sciences. Wiley: Hoboken, New Jersey.

Patz, Richard J. and Brian W. Junker. 1999. A Straightforward Approach to Markov Chain Monte
Carlo Methods for Item Response Models. Journal of Education and Behavioral Statistics. 24:146-
178.

Rivers, Douglas. 2003. “Identification of Multidimensional Item-Response Models.” Typescript.
Department of Political Science, Stanford University.

van Dyk, David A and Xiao-Li Meng. 2001. The art of data augmentation (with discussion).
Journal of Computational and Graphical Statistics. 10(1):1-111.

See Also

rollcall, summary.ideal, plot.ideal, predict.ideal. tracex for graphical display of MCMC
iterative history.

idealToMCMC converts the MCMC iterates in an ideal object to a form that can be used by the
coda library.

constrain.items and constrain.legis for implementing identifying restrictions.
postProcess for imposing identifying restrictions ex post.

MCMCirt1d and MCMCirtKd in the MCMCpack package provide similar functionality to ideal.

Examples

## Not run:

## long run, many iterations
data(s109)

n <- dim(s109%legis.data)[1]

X0 <- rep(@,n)
x0[s109%legis.datasparty=="D"] <- -1
x0[s109%legis.data$party=="R"] <- 1

id1 <- ideal(s109,
d=1,
startvals=list(x=x0),
normalize=TRUE,
store.item=TRUE,
maxiter=260E3,
burnin=10E3,
thin=100)

## End(Not run)



38 idealToMCMC

idealToMCMC convert an object of class ideal to a coda MCMC object

Description

Converts the x element of an ideal object to an MCMC object, as used in the coda package.

Usage

idealToMCMC(object, burnin=NULL)

Arguments
object an object of class ideal.
burnin of the recorded MCMC samples, how many to discard as burnin? Default is
NULL, in which case the value of burnin in the ideal object is used.
Value

A mcmc object as used by the coda package, starting at iteration start, drawn from the x component
of the ideal object.

Note

When specifying a value of burnin different from that used in fitting the ideal object, note a
distinction between the iteration numbers of the stored iterations, and the number of stored itera-
tions. That is, the n-th iteration stored in an ideal object will not be iteration n if the user spec-
ified thin>1 in the call to ideal. Here, iterations are tagged with their iteration number. Thus,
if the user called ideal with thin=10 and burnin=100 then the stored iterations are numbered
100, 110, 120, .... Any future subsetting via a burnin refers to this iteration number.

See Also

ideal, mcmec

Examples

data(s109)

f = system.file("extdata"”,package="pscl"”,"”id1.rda")
load(f)

idlcoda <- idealToMCMC(id1)

summary (id1coda)



igamma 39

igamma inverse-Gamma distribution

Description

Density, distribution function, quantile function, and highest density region calculation for the
inverse-Gamma distribution with parameters alpha and beta.

Usage

densigamma(x,alpha,beta)
pigamma(q,alpha,beta)

gigamma(p,alpha,beta)

rigamma(n,alpha,beta)

igammaHDR(alpha,beta,content=.95,debug=FALSE)

Arguments

X,q vector of quantiles

p vector of probabilities

n number of random samples in rigamma

alpha,beta rate and shape parameters of the inverse-Gamma density, both positive

content scalar, 0 < content < 1, volume of highest density region

debug logical; if TRUE, debugging information from the search for the HDR is printed
Details

The inverse-Gamma density arises frequently in Bayesian analysis of normal data, as the (marginal)
conjugate prior for the unknown variance parameter. The inverse-Gamma density for x > 0 with
parameters « > Q0 and § > 0 is

B
I'(a)

fz) = x~ L exp(—p/x)

where T'(x) is the gamma function

I'(a) = /000 t* L exp(—t)dt

and so ensures f(x) integrates to one. The inverse-Gamma density has a mean at 3/(« — 1) for
a > 1 and has variance 3%/((a — 1)?(a — 2)) for > 2. The inverse-Gamma density has a unique
mode at 5/(a + 1).

The evaluation of the density, cumulative distribution function and quantiles is done by calls to the
dgamma, pgamma and igamma functions, with the arguments appropriately transformed. That is, note
thatif x ~ IG(a, ) then 1/x ~ G(a, f5).



40

igamma

Highest Density Regions. In general, suppose z has a density f(z), where z € ©. Then a highest
density region (HDR) for  with content p € (0, 1] is a region (or set of regions) Q@ C O such that:

/Q f(@)de = p

fl@)> f(a")Vee Q,z*& Q.

For a continuous, unimodal density defined with respect to a single parameter (like the inverse-
Gamma case considered here with parameters 0 < a < oo, 0 < § < o0), a HDR region Q of
content p (with 0 < p < 1) is a unique, closed interval on the real half-line.

and

This function uses numerical methods to solve for the boundaries of a HDR with content p for the
inverse-Gamma density, via repeated calls the functions densigamma, pigamma and gigamma. In
particular, the function uniroot is used to find points v and w such that

subject to the constraint

Value

densigamma gives the density, pigamma the distribution function, qigamma the quantile function,
rigamma generates random samples, and igammaHDR gives the lower and upper limits of the HDR,
as defined above (NAs if the optimization is not successful).

Note

The densigamma is named so as not to conflict with the digamma function in the R base package
(the derivative of the gamma function).

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

gamma, dgamma, pgamma, ggamma, uniroot

Examples
alpha <- 4
beta <- 30

summary (rigamma(n=1000,alpha,beta))

xseq <- seq(.1,30,by=.1)
fx <- densigamma(xseq,alpha,beta)
plot(xseq, fx,type="n",

xlab="x",

ylab="f(x)",



iraqVote

ylim=c(@,1.01*max(fx)),
yaxs="1i",
axes=FALSE)
axis(1)
title(substitute(list(alpha==a,beta==b),list(a=alpha,b=beta)))
g <- igammaHDR(alpha,beta,debug=TRUE)
xlo <- which.min(abs(q[1]-xseq))
xup <- which.min(abs(q[2]-xseq))
plotZero <- par()$usr[3]
polygon(x=xseq[c(xlo,xlo:xup,xup:xlo)],
y=c(plotZero,
fx[xlo:xup],
rep(plotZero,length(xlo:xup))),
border=FALSE,
col=gray(.45))
lines(xseq, fx,lwd=1.25)

## Not run:
alpha <- beta <- .1
xseq <- exp(seq(-7,30,length=1001))
fx <- densigamma(xseq,alpha,beta)
plot(xseq,fx,
log="xy",
type="1",
ylim=c(min(fx),1.01*max(fx)),
yaxs="1i",
xlab="x, log scale”,
ylab="f(x), log scale”,
axes=FALSE)
axis(1)

title(substitute(list(alpha==a,beta==b),list(a=alpha,b=beta)))
g <- igammaHDR(alpha,beta,debug=TRUE)
xlo <- which.min(abs(q[1]-xseq))
xup <- which.min(abs(q[2]-xseq))
plotZero <- min(fx)
polygon(x=xseq[c(xlo,xlo:xup,xup:xlo)],
y=c(plotZero,
fx[xlo:xup],
rep(plotZero,length(xlo:xup))),
border=FALSE,
col=gray(.45))
lines(xseq, fx,1lwd=1.25)

## End(Not run)

41

iraqVote U.S. Senate vote on the use of force against Iraq, 2002.




42 iraqVote

Description

On October 11, 2002, the United States Senate voted 77-23 to authorize the use of military force
against Iraq. This data set lists the “Ayes” and “Nays” for each Senator and some covariates.

Usage

data(iragVote)

Format

A data frame with 100 observations on the following 6 variables.

y anumeric vector, the recorded vote (1 if Aye, O if Nay)
state.abb two letter abbreviation for each state

name senator name, party and state, e.g., AKAKA (D HI)
rep logical, TRUE for Republican senators

state.name name of state

gorevote numeric, the vote share recorded by Al Gore in the corresponding state in the 2000
Presidential election

Details

The only Republican to vote against the resolution was Lincoln Chafee (Rhode Island); Democrats
split 29-22 in favor of the resolution.

Source

Keith Poole, 107th Senate Roll Call Data. ftp://voteview.com/sen1@7kh.ord The Iraq vote is
vote number 617.

David Leip’s Atlas of U.S. Presidential Elections. http://uselectionatlas.org

References

Jackman, Simon. 2009. Bayesian Analysis for the Social Sciences. Wiley: Chichester. Example
8.3.

Examples

data(iragVote)

## probit model

glml <- glm(y ~ gorevote + rep,
data=iraqgVote,
family=binomial (link=probit))


ftp://voteview.com/sen107kh.ord
http://uselectionatlas.org

njo7 43

njo7 rollcall object, National Journal key votes of 2007

Description

A rollcall object containing 99 rollcalls from the 2nd session of the 110th U.S. Senate, designated
by National Journal as the "key votes" of 2007. These data were used to by National Journal to
rate (then Senator) Barack Obama was the "most liberal senator" in 2007.

Usage
data(njo7)

Format

A rollcall object containing the recorded votes, plus information identifying the legislators and
the rollcalls.

Details
Note the coding scheme used by Poole and Rosenthal; Yea (1,2,3), Nay (4,5,6) etc.

Source

Keith Poole’s web site: http://voteview.com/senatel110.htm
Originally scraped from the Senate’s web site by Jeff Lewis.

Josh Clinton compiled the list of National Journal key votes.

References

Clinton, Joshua and Simon Jackman. 2009. To Simulate or NOMINATE? Legislative Studies Quar-
terly. V34(4):593-621.

Jackman, Simon. 2009. Bayesian Analysis for the Social Sciences. Wiley: Hoboken, New Jersey.
Example 9.2.

Examples

require(pscl)

data(nje7)

is(njo7,"rollcall”) ## TRUE

njo7 ## print method for class rollcall
names(njo7)

names(nj@73%vote.data)

table(nj@7$vote.data$policyArea)

summary (njo7) ## summary method
summary(njo7,verbose=TRUE)


http://voteview.com/senate110.htm

44

ntable

ntable nicely formatted tables

Description

Nicely formatted tables, with row or column marginals etc.

Usage

ntable(x,y=NULL,
percent=1,digits=2,
row=FALSE, col=FALSE)

Arguments
X vector or factor
y vector of factor
percent integer, 1 for row percentages (default), 2 for column percentages
digits integer, digits to print after decimal place (default is 2)
row logical, if TRUE, print row marginals
col logical, if TRUE, print column marginals
Details

A wrapper function to prop. table that produces prettier looking results.

Value

nothing returned; the function prints the table and exits silently.

Author(s)

Jim Fearon <jfearon@stanford.edu>

See Also

prop.table, table

Examples

data(bioChemists)

attach(bioChemists)

ntable(fem)

ntable(fem,mar, row=TRUE)
ntable(fem,mar,per=2,col=TRUE)
ntable(fem,mar,per=2,row=TRUE, col=TRUE)



odTest 45

odTest likelihood ratio test for over-dispersion in count data

Description
Compares the log-likelihoods of a negative binomial regression model and a Poisson regression
model.

Usage

odTest(glmobj, alpha=.05, digits = max(3, getOption("digits"”) - 3))

Arguments
glmobj an object of class negbin produced by glm.nb
alpha significance level of over-dispersion test
digits number of digits in printed output

Details

The negative binomial model relaxes the assumption in the Poisson model that the (conditional)
variance equals the (conditional) mean, by estimating one extra parameter. A likelihood ratio (LR)
test can be used to test the null hypothesis that the restriction implicit in the Poisson model is true.
The LR test-statistic has a non-standard distribution, even asymptotically, since the negative bino-
mial over-dispersion parameter (called theta in glm.nb) is restricted to be positive. The asymptotic
distribution of the LR (likelihood ratio) test-statistic has probability mass of one half at zero, and a
half x? distribution above zero. This means that if testing at the o = .05 level, one should not reject
the null unless the LR test statistic exceeds the critical value associated with the 2 = .10 level; this
LR test involves just one parameter restriction, so the critical value of the test statistic at the p =
.05 level is 2.7, instead of the usual 3.8 (i.e., the .90 quantile of the x? distribution, versus the .95
quantile).

A Poisson model is run using glm with family set to link{poisson}, using the formula in the
negbin model object passed as input. The loglLik functions are used to extract the log-likelihood
for each model.

Value

None; prints results and returns silently

Author(s)

Simon Jackman <jackman@stanford.edu>. John Fox noted an error in an earlier version.



46 partycodes

References

A. Colin Cameron and Pravin K. Trivedi (1998) Regression analysis of count data. New York:
Cambridge University Press.

Lawless, J. F. (1987) Negative Binomial and Mixed Poisson Regressions. The Canadian Journal of
Statistics. 15:209-225.

See Also
glm.nb, loglLik

Examples

data(bioChemists)

modelnb <- MASS::glm.nb(art ~ .,
data=bioChemists,
trace=TRUE)

odTest(modelnb)

partycodes political parties appearing in the U.S. Congress

Description
Numeric codes and names of 85 political parties appearing in Poole and Rosenthal’s collection of
U.S. Congressional roll calls.

Usage

data(partycodes)

Format

* codeinteger, numeric code for legislatorappearing in Poole and Rosenthal rollcall data files

* partycharacter, name of party

Details

The function readKH converts the integer codes into strings, via a table lookup in this data frame.

Source

Keith Poole’s website: http://voteview.com/PARTY3.HTM

See Also

readkKH


http://voteview.com/PARTY3.HTM

plot.ideal

47

plot.ideal

plots an ideal object

Description

Plot of the results of an ideal point estimation contained in an object of class ideal.

Usage

## S3 method for class 'ideal'
plot(x, conf.int=0.95, burnin=NULL, ...)

plotid(x, d=1,

conf.int=0.95, burnin=NULL,

showAllNames = FALSE, ...)

plot2d(x, d1=1, d2=2, burnin=NULL,

overlayCuttingPlanes=FALSE, ...)
Arguments

X an object of class ideal

conf.int for "ideal" objects with 1 dimension estimated, the level of the confidence inter-
val to plot around the posterior mean for each legislator. If 2 or more dimensions
were estimated, conf . int is ignored.

d integer, which dimension to display in a 1d plot, if the object is a multidimen-
sional ideal object.

burnin of the recorded MCMC samples, how many to discard as burnin? Default is
NULL, in which case the value of burnin in the ideal object is used.

showAllNames logical, if TRUE, the vertical axis will the names of all legislators. Default is
FALSE to reduce clutter on typical-sized graph.

di integer, the number of the first dimension to plot when plotting multi-dimensional
ideal objects. This dimension will appear on the horizontal (x) axis.

d2 integer, the number of the second dimension to plot when plotting multi-dimensional
ideal objects. This dimension will appear on the vertical (y) axis.

overlayCuttingPlanes
logical, if TRUE, overlay the estimated bill-specific cutting planes
other parameters to be passed through to plotting functions.

Details

If the ideal object comes from fitting a d=1 dimensional model, then plot.ideal plots the mean
of the posterior density over each legislator’s ideal point, accompanied by a conf.int confidence
interval. In this case, plot.ideal is simply a wrapper function to plot1id.

If the ideal object has d=2 dimensions, then plot2d is called, which plots the (estimated) mean
of the posterior density of each legislator’s ideal point (i.e., the ideal point/latent trait is a point in



48 plot.ideal

2-dimensional Euclidean space, and the posterior density for each ideal point is a bivariate density).
Single dimension summaries of the estimated ideal points (latent traits) can be obtained for multi-
dimensional ideal objects by passing the ideal object directly to plot1d with d set appropriately.

If the ideal object has d>2 dimensions, a scatterplot matrix is produced via pairs, with the poste-
rior means of the ideal points (latent traits) plotted against one another, dimension by dimension.

For unidimensional and two-dimensional models, if party information is available in the rollcall
object contained in the ideal object, legislators from different parties are plotted in different colors.
If the ideal object has more than 2 dimensions, plot.ideal () produces a matrix of plots of the
mean ideal points of each dimension against the posterior mean ideal points of the other dimensions.

Note

When specifying a value of burnin different from that used in fitting the ideal object, note a
distinction between the iteration numbers of the stored iterations, and the number of stored itera-
tions. That is, the n-th iteration stored in an ideal object will not be iteration n if the user spec-
ified thin>1 in the call to ideal. Here, iterations are tagged with their iteration number. Thus,
if the user called ideal with thin=1@ and burnin=100 then the stored iterations are numbered

100, 110, 120, .... Any future subsetting via a burnin refers to this iteration number.
See Also
ideal; tracex for trace plots, a graphical aid useful in diagnosing convergence of the MCMC
algorithms.
Examples
## Not run:
data(s109)
id1 <- ideal(s109,
d=1,
normalize=TRUE,
store.item=TRUE,
maxiter=500, ## short run for examples
burnin=100,
thin=10)
plot(id1)

id2 <- ideal(s109,
d=2,
store.item=TRUE,
maxiter=11e2,
burnin=1e2,
verbose=TRUE,
thin=25)

plot(id2,overlayCuttingPlanes=TRUE)

id2pp <- postProcess(id2,
constraints=1ist(BOXER=c(-1,0),



plot.predict.ideal 49

INHOFE=c(1,0),
CHAFEE=c (@, . 25)))

plot(id2pp,overlayCuttingPlanes=TRUE)

## End(Not run)

plot.predict.ideal plot methods for predictions from ideal objects

Description

Plot classification success rates by legislators, or by roll calls, using predictions from ideal.

Usage

## S3 method for class 'predict.ideal’
plot(x, type = c("legis"”, "votes"),...)

Arguments
X an object of class predict.ideal.
type string; one of legis or votes.
further arguments passed to or from other methods.
Details

type="1legis" produces a plot of the “percent correctly predicted” for each legislator/subject (using
the classification threshold set in predict. ideal) against the estimated ideal point of each legisla-
tor/subject (the estimated mean of the posterior density of the ideal point), dimension at a time. If
the legislators’ party affiliations are availble in the rollcall object that was passed to ideal, then
legislators from the same party are plotted with a unique color.

type="votes" produces a plot of classification rates for each roll call, by the percentage of legisla-
tors voting for the losing side. The x-ordinate is jittered for clarity.

Value

After drawing plots on the current device, exits silently returning invisible (NULL).

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

predict.ideal ideal



50

plot.seats Votes

Examples

data(s109)

f = system.file("extdata"”,"id1.rda",package="pscl")
load(f)

phat <- predict(id1)

plot(phat,type="legis")

plot(phat, type="votes")

plot.seatsVotes plot seats-votes curves

Description

Plot seats-votes curves produced by seatsVotes

Usage

## S3 method for class 'seatsVotes'
plot(x, type = c("seatsVotes"”, "density"),

legend = "bottomright”, transform=FALSE, ...)
Arguments
X an object of class seatsVotes
type character, partially matching the options above; see details
legend where to put the legend when plotting with type="seatsVotes”
transform logical, whether to transform the vote shares for type="density"; see Details
arguments passed to or from other functions (e.g., options for the density func-
tion, when type="density")
Details

A seats-votes curve (with various annotations) is produced with option type="seatsVotes".

A density plot of the vote shares is produced with type="density"”. A bimodal density corresponds
to an electoral system with a proliferation of safe seats for both parties, and a seats-votes curve that
is relatively flat (or “unresponsive”) in the neighborhood of average district-level vote shares of
50 percent. The density is fitted using the defaults in the density function, but with the density
constrained to fall to zero at the extremes of the data, via the from and to options to density. A rug
is added to the density plot.

If transform=TRUE, the vote shares are transformed prior to plotting, so as to reduce the extent to
which extreme vote shares close to zero or 1 determine the shape of the density (i.e., this option
is available only for plots of type="density"). The transformation is a sinusoidal function, a
scaled “log-odds/inverse-log-odds” function mapping from (0,1) to (0,1): i.e., f(z) = g(k - h(x))
where h(z) is the log-odds transformation h(x) = log(z/(1 — x)), k is a scaling parameter set to
V/3, and g(x) is the inverse-log-odds transformation g(z) = exp(x)/(1 + exp(z)). Note that this
transformation is cosmetic, with the effect of assigning more of the graphing region to be devoted
to marginal seats.



politicallnformation 51

Value

The function performs the requested plots and exits silently with invisible{NULL}.

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

density, rug

Examples

data(ca2006)
X <- ca2006$D/(ca2006%$D+ca2006%$R)
sv <- seatsVotes(x,
desc="Democratic Vote Shares, California 2006 congressional elections”)

plot(sv)
plot(sv,type="density")
plot(sv,type="density", transform=TRUE)

politicalInformation Interviewer ratings of respondent levels of political information

Description

Interviewers administering the 2000 American National Election Studies assigned an ordinal rating
to each respondent’s "general level of information" about politics and public affairs.

Usage

data(politicalInformation)

Format
A data frame with 1807 observations on the following 8 variables.

y interviewer rating, a factor with levels Very Low Fairly Low Average Fairly High Very High
collegeDegree a factor with levels No Yes

female a factor with levels No Yes

age anumeric vector, respondent age in years

homeOwn a factor with levels No Yes

govt a factor with levels No Yes

length anumeric vector, length of ANES pre-election interview in minutes

id a factor, unique identifier for each interviewer



52 postProcess

Details

Seven respondents have missing data on the ordinal interviewer rating. The covariates age and
length also have some missing data.

Source

The National Election Studies (www.electionstudies.org). THE 2000 NATIONAL ELECTION
STUDY [dataset]. Ann Arbor, MI: University of Michigan, Center for Political Studies [producer
and distributor].

References

Jackman, Simon. 2009. Bayesian Analysis for the Social Sciences. Wiley: Hoboken, New Jersey.

Examples

data(politicalInformation)
table(politicalInformation$y,exclude=NULL)

op <- MASS::polr(y ~ collegeDegree + female + log(age) + homeOwn + govt + log(length),
data=politicalInformation,
Hess=TRUE,
method="probit")

postProcess remap MCMC output via affine transformations

Description

Remap the MCMC iterates in an ideal object via an affine transformation, imposing identifying
restrictions ex post (aka post-processing).

Usage

postProcess(object, constraints="normalize", debug = FALSE)

Arguments
object an object of class ideal
constraints list of length d+1, each component providing a set of d restrictions, where d

is the dimension of the fitted ideal model; or the character string normalize
(default). If a list, the name of each component should uniquely match a legis-
lator/subject’s name. See Details.

debug logical flag for verbose output, used for debugging



postProcess 53

Details

Item-response models are unidentified without restrictions on the underlying parameters. Consider
the d=1 dimensional case. The model is

P(yij =1) = F(zif; — a;)
Any linear transformation of the latent traits, say,
¥ =mx+c

can be exactly offset by applying the appropriate linear transformations to the item/bill parameters,
meaning that there is no unique set of values for the model parameters that will maximize the
likelihood function. In higher dimensions, the latent traits can also be transformed via any arbitrary
rotation, dilation and translation, with offsetting transformations applied to the item/bill parameters.

One strategy in MCMC is to ignore the lack of identification at run time, but apply identifying re-
strictions ex post, “post-processing” the MCMC output, iteration-by-iteration. In a d-dimensional
IRT model, a sufficient condition for global identification is to fix d+1 latent traits, provided the
constrained latent traits span the d dimensional latent space. This function implements this strat-
egy. The user supplies a set of constrained ideal points in the constraints list. The function
then processes the MCMC output in the ideal object, finding the transformation that maps the
current iteration’s sampled values for x (latent traits/ideal points) into the sub-space of identified
parameters defined by the fixed points in constraints; i.e., what is the affine transformation that
maps the unconstrained ideal points into the constraints? Aside from miniscule numerical inaccura-
cies resulting from matrix inversion etc, this transformation is exact: after post-processing, the d+1
constrained points do not vary over the MCMC iterations. The remaining n-d-1 ideal points are
subject to (posterior) uncertainty; the “random tour” of the joint parameter space of these parame-
ters produced by the MCMC algorithm has been mapped into a subspace in which the parameters
are globally identified.

If the ideal object was produced with store.item set to TRUE, then the item parameters are also
post-processed, applying the inverse transformation. Specifically, recall that the IRT model is

P(yi; = 1) = F(2}8;)

where in this formulation x; is a vector of length d+1, including a -1 to put a constant term into the
model (i.e., the intercept or difficulty parameter is part of 3;). Let A denote the non-singular, d+1-
by-d+1 matrix that maps the z into the space of identified parameters. Recall that this transformation
is computed iteration by iteration. Then each z; is transformed to x; = Ax; and 3; is transformed
to 37 :A_lﬁj,i: 1L,....n55=1,...,m.

Local identification can be obtained for a one-dimensional model by simply imposing a normalizing
restriction on the ideal points: this normalization (mean zero, standard deviation one) is the default
behavior, but (a) is only sufficient for local identification when the rollcall object was fit with
d=1; (b) is not sufficient for even local identification when d>1, with further restrictions required so
as to rule out other forms of invariance (e.g., translation, or "dimension-switching", a phenomenon
akin to label-switching in mixture modeling).

The default is to impose dimension-by-dimension normalization with respect to the means of the
marginal posterior densities of the ideal points, such that the these means (the usual Bayes estimates
of the ideal points) have mean zero and standard deviation one across legislators. An offsetting
transformation is applied to the items parameters as well, if they are saved in the ideal object.



54 postProcess

Specifically, in one-dimension, the two-parameter IRT model is

If we normalize the x; to xx; = (a; — ¢)/m then the offsetting transformations for the item/bill
parameters are 37 = S;m and o = a; — ¢f3;.

Value

An object of class ideal, with components suitably transformed and recomputed (i.e., x is trans-
formed and xbar recomputed, and if the ideal object was fit with store.item=TRUE, beta is
transformed and betabar is recomputed).

Note

Applying transformations to obtain identification can sometimes lead to surprising results. Each
data point makes the same likelihood contributions with either the identified or unidentified pa-
rameters. But, in general, predictions generated with the parameters set to their posterior means
will differ depending on whether one uses the identified subset of parameters or the unidentified
parameters. For this reason, caution should be used when using a function such as predict after
post-processing output from ideal. A better strategy is to compute the estimand of interest at each
iteration and then take averages over iterations.

When specifying a value of burnin different from that used in fitting the ideal object, note a
distinction between the iteration numbers of the stored iterations, and the number of stored itera-
tions. That is, the n-th iteration stored in an ideal object will not be iteration n if the user spec-
ified thin>1 in the call to ideal. Here, iterations are tagged with their iteration number. Thus,
if the user called ideal with thin=10 and burnin=100 then the stored iterations are numbered
100, 110, 120, .... Any future subsetting via a burnin refers to this iteration number.

Author(s)

Simon Jackman <jackman@stanford.edu>

References
Hoff, Peter, Adrian E. Raftery and Mark S. Handcock. 2002. Latent Space Approaches to Social
Network Analysis. Journal of the American Statistical Association 97:1090-1098.

Edwards, Yancy D. and Greg M. Allenby. 2003. Multivariate Analysis of Mulitple Response Data.
Journal of Marketing Research 40:321-334.

Rivers, Douglas. 2003. “Identification of Multidimensional Item-Response Models.” Typescript.
Department of Political Science, Stanford University.

Examples
data(s109)
f = system.file("extdata”,package="pscl”,"id1.rda")
load(f)
id1Local <- postProcess(id1) ## default is to normalize

summary (id1Local)



PR2 55

id1pp <- postProcess(id1,
constraints=1ist(BOXER=-1,INHOFE=1))
summary (id1pp)

## two-dimensional fit
f = system.file("extdata”,package="pscl”,"”id2.rda")
load(f)

id2pp <- postProcess(id2,
constraints=1ist(BOXER=c(-1,0),
INHOFE=c(1,90),
CHAFEE=c(9, .25)))

tracex(id2pp,d=1:2,
legis=c("BOXER", "INHOFE","COLLINS","FEINGOLD","COLEMAN",
"CHAFEE", "MCCAIN", "KYL"))

pR2 compute various pseudo-R2 measures

Description

compute various pseudo-R2 measures for various GLMs

Usage
pR2(object, ...)
Arguments
object a fitted model object, for now of class glm, polr, or mulitnom
additional arguments to be passed to or from functions
Details

Numerous pseudo r-squared measures have been proposed for generalized linear models, involving
a comparison of the log-likelihood for the fitted model against the log-likelihood of a null/restricted
model with no predictors, normalized to run from zero to one as the fitted model provides a better
fit to the data (providing a rough analogue to the computation of r-squared in a linear regression).

Value

A vector of length 6 containing

11h The log-likelihood from the fitted model
11hNull The log-likelihood from the intercept-only restricted model

G2 Minus two times the difference in the log-likelihoods



56 predict.hurdle

McFadden McFadden’s pseudo r-squared

r2ML Maximum likelihood pseudo r-squared

r2cu Cragg and Uhler’s pseudo r-squared
Author(s)

Simon Jackman <jackman@stanford.edu>

References
Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Sage.
pp104-106.

See Also

extractAIC, loglLik

Examples

data(admit)
## ordered probit model
opl <- MASS::polr(score ~ gre.quant + gre.verbal + ap + pt + female,

Hess=TRUE,
data=admit,
method="probit")
pR2(op1)
predict.hurdle Methods for hurdle Objects
Description

Methods for extracting information from fitted hurdle regression model objects of class "hurdle”.

Usage

## S3 method for class 'hurdle'
predict(object, newdata,

type = c("response”, "prob"”, "count”, "zero"), na.action = na.pass,
at = NULL, ...)

## S3 method for class 'hurdle'

residuals(object, type = c("pearson”, "response"), ...)

## S3 method for class 'hurdle'
coef(object, model = c("full”, "count”, "zero"), ...)
## S3 method for class 'hurdle'
vcov(object, model = c("full”, "count”, "zero"), ...)



predict.hurdle 57

## S3 method for class 'hurdle'

terms(x, model = c("count”, "zero"), ...)
## S3 method for class 'hurdle’
model.matrix(object, model = c("count”, "zero"), ...)
Arguments
object, x an object of class "hurdle” as returned by hurdle.
newdata optionally, a data frame in which to look for variables with which to predict. If

omitted, the original observations are used.

type character specifying the type of predictions or residuals, respectively. For details
see below.

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

at optionally, if type = "prob”, a numeric vector at which the probabilities are
evaluated. By default @:max(y) is used where y is the original observed re-
sponse.

model character specifying for which component of the model the terms or model ma-

trix should be extracted.

currently not used.

Details

A set of standard extractor functions for fitted model objects is available for objects of class "hurdle”,
including methods to the generic functions print and summary which print the estimated coeffi-
cients along with some further information. The summary in particular supplies partial Wald tests
based on the coefficients and the covariance matrix (estimated from the Hessian in the numeri-
cal optimization of the log-likelihood). As usual, the summary method returns an object of class
"summary.hurdle"” containing the relevant summary statistics which can subsequently be printed
using the associated print method.

The methods for coef and vcov by default return a single vector of coefficients and their associ-
ated covariance matrix, respectively, i.e., all coefficients are concatenated. By setting the model
argument, the estimates for the corresponding model component can be extracted.

Both the fitted and predict methods can compute fitted responses. The latter additionally pro-
vides the predicted density (i.e., probabilities for the observed counts), the predicted mean from
the count component (without zero hurdle) and the predicted ratio of probabilities for observing a
non-zero count. The latter is the ratio of probabilities for a non-zero implied by the zero hurdle
component and a non-zero count in the non-truncated count distribution. See also Appendix C in
Zeileis et al. (2008).

The residuals method can compute raw residuals (observed - fitted) and Pearson residuals (raw
residuals scaled by square root of variance function).

The terms and model.matrix extractors can be used to extract the relevant information for either
component of the model.

A logl ik method is provided, hence AIC can be called to compute information criteria.



58 predict.ideal

Author(s)

Achim Zeileis <Achim.Zeileis @R-project.org>

References

Zeileis, Achim, Christian Kleiber and Simon Jackman 2008. “Regression Models for Count Data
in R.” Journal of Statistical Software, 27(8). URL http://www. jstatsoft.org/v27/108/.

See Also

hurdle

Examples

data(”"bioChemists”, package = "pscl”)
fm <- hurdle(art ~ ., data = bioChemists)

plot(residuals(fm) ~ fitted(fm))

coef (fm)
coef (fm, model = "zero")

summary (fm)
logLik(fm)

predict.ideal predicted probabilities from an ideal object

Description

Compute predicted probabilities from an ideal object. This predict method uses the posterior mean
values of z and § to make predictions.

Usage
## S3 method for class 'ideal'
predict(object,
cutoff=.5,
burnin=NULL,
L)

## S3 method for class 'predict.ideal’
print(x,digits=2,...)


http://www.jstatsoft.org/v27/i08/

predict.ideal 59

Arguments
object an object of class ideal (produced by ideal) with item parameters (beta) stored;
i.e., store.item=TRUE was set when the ideal object was fitted
cutoff numeric, a value between 0 and 1, the threshold to be used for classifying pre-
dicted probabilities of a Yea votes as predicted Yea and Nay votes.
burnin of the recorded MCMC samples, how many to discard as burnin? Default is
NULL, in which case the value of burnin in the ideal object is used.
X object of class predict.ideal
digits number of digits in printed object
further arguments passed to or from other methods.
Details

Predicted probabilities are computed using the mean of the posterior density of of x (ideal points,
or latent ability) and 3 (bill or item parameters). The percentage correctly predicted are determined
by counting the percentages of votes with predicted probabilities of a Yea vote greater than or equal
to the cutoff as the threshold.

Value

An object of class predict.ideal, containing:

pred.probs the calculated predicted probability for each legislator for each vote.
prediction the calculated prediction (0 or 1) for each legislator for each vote.
correct for each legislator for each vote, whether the prediction was correct.

legis.percent for each legislator, the percent of votes correctly predicted.
vote.percent for each vote, the percent correctly predicted.
yea.percent the percent of yea votes correctly predicted.

nay.percent the percent of nay votes correctly predicted.

party.percent the average value of the percent correctly predicted by legislator, separated by
party, if party information exists in the rollcall object used for ideal. If no
party information is available, party.percent = NULL.

overall.percent
the total percent of votes correctly predicted.

ideal the name of the ideal object, which can be later evaluated
desc string, the descriptive text from the rollcall object passed to ideal
Note

When specifying a value of burnin different from that used in fitting the ideal object, note a
distinction between the iteration numbers of the stored iterations, and the number of stored itera-
tions. That is, the n-th iteration stored in an ideal object will not be iteration n if the user spec-
ified thin>1 in the call to ideal. Here, iterations are tagged with their iteration number. Thus,
if the user called ideal with thin=10 and burnin=100 then the stored iterations are numbered
100, 110, 120, .... Any future subsetting via a burnin refers to this iteration number.



60 predict.zeroinfl

See Also

ideal, summary.ideal, plot.predict.ideal

Examples

data(s109)

f <- system.file("extdata”,"id1.rda",package="pscl")

load(f)
phat <- predict(id1)
phat ## print method
predict.zeroinfl Methods for zeroinfl Objects
Description

Methods for extracting information from fitted zero-inflated regression model objects of class "zeroinfl”.

Usage

## S3 method for class 'zeroinfl'
predict(object, newdata,

type = c("response”, "prob”, "count”, "zero"), na.action = na.pass,
at = NULL, ...)

## S3 method for class 'zeroinfl'

residuals(object, type = c("pearson”, "response"), ...)

## S3 method for class 'zeroinfl'

coef(object, model = c("full”, "count”, "zero"), ...)
## S3 method for class 'zeroinfl'
vcov(object, model = c("full”, "count”, "zero"), ...)

## S3 method for class 'zeroinfl'

terms(x, model = c("count”, "zero"), ...)

## S3 method for class 'zeroinfl'

model.matrix(object, model = c("count”, "zero"), ...)

Arguments

object, x an object of class "zeroinfl"” as returned by zeroinfl.

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

type character specifying the type of predictions or residuals, respectively. For details
see below.

na.action function determining what should be done with missing values in newdata. The

default is to predict NA.



predict.zeroinfl 61

at optionally, if type = "prob”, a numeric vector at which the probabilities are
evaluated. By default @:max(y) is used where y is the original observed re-
sponse.

model character specifying for which component of the model the terms or model ma-

trix should be extracted.

currently not used.

Details

A set of standard extractor functions for fitted model objects is available for objects of class "zeroinfl”,
including methods to the generic functions print and summary which print the estimated coeffi-
cients along with some further information. The summary in particular supplies partial Wald tests
based on the coefficients and the covariance matrix (estimated from the Hessian in the numer-
ical optimization of the log-likelihood). As usual, the summary method returns an object of class
"summary.zeroinfl" containing the relevant summary statistics which can subsequently be printed
using the associated print method.

The methods for coef and vcov by default return a single vector of coefficients and their associ-
ated covariance matrix, respectively, i.e., all coefficients are concatenated. By setting the model
argument, the estimates for the corresponding model components can be extracted.

Both the fitted and predict methods can compute fitted responses. The latter additionally pro-
vides the predicted density (i.e., probabilities for the observed counts), the predicted mean from
the count component (without zero inflation) and the predicted probability for the zero component.
The residuals method can compute raw residuals (observed - fitted) and Pearson residuals (raw
residuals scaled by square root of variance function).

The terms and model .matrix extractors can be used to extract the relevant information for either
component of the model.

A logl ik method is provided, hence AIC can be called to compute information criteria.

Author(s)

Achim Zeileis <Achim.Zeileis @R-project.org>

See Also

zeroinfl
Examples
data(”"bioChemists”, package = "pscl”)

fm_zip <- zeroinfl(art ~ ., data = bioChemists)
plot(residuals(fm_zip) ~ fitted(fm_zip))

coef(fm_zip)
coef(fm_zip, model = "count”)

summary (fm_zip)
loglLik(fm_zip)



62 predprob

predprob compute predicted probabilities from fitted models

Description

Compute predicted probabilities from fitted models, optionally at new covariate values.

Usage
predprob(obj, ...)

Arguments
obj fitted model object
other arguments
Details

See documentation for specific methods.

Value

A matrix of predicted probabilities, each row a vector of predicted probabilities over the range of
responses seen in the data (i.e., min(y) :max(y)), conditional on the values of covariates.

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

predprob.glm, predprob.zeroinfl

Examples

data("bioChemists")
zip <- zeroinfl(art ~ . | ., data = bioChemists, EM = TRUE)
phat <- predprob(zip)

newdata <- expand.grid(list(fem="Men",mar="Married",
kid5=1,phd=3.103,
ment=0:77))

phat <- predprob(zip, newdata = newdata)



predprob.glm 63

predprob.glm Predicted Probabilties for GLM Fits

Description

Obtains predicted probabilities from a fitted generalized linear model object.

Usage
## S3 method for class 'glm'
predprob(obj, newdata = NULL, at = NULL, ...)
Arguments
obj a fitted object of class inheriting from "glm”
newdata optionally, a data frame in which to look for variables with which to predict. If

omitted, the fitted linear predictors are used.

at an optional numeric vector at which the probabilities are evaluated. By default
0:max(y) where y is the original observed response.

arguments passed to or from other methods

Details

This method is only defined for glm objects with family=binomial or family=poisson, or nega-
tive binomial count models fit with the glm.nb function in library(MASS).

Value

A matrix of predicted probabilities. Each row in the matrix is a vector of probabilities, assigning
predicted probabilities over the range of responses actually observed in the data. For instance, for
models with family=binomial, the matrix has two columns for the "zero" (or failure) and "one"
(success) outcomes, respectively, and trivially, each row in the matrix sums to 1.0. For counts fit
with family=poisson or via glm.nb, the matrix has length(@:max(y)) columns. Each observa-
tion used in fitting the model generates a row to the returned matrix; alternatively, if newdata is
supplied, the returned matrix will have as many rows as in newdata.

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

predict.glm



64 predprob.ideal

Examples

data(bioChemists)
glml <- glm(art ~ .,
data=bioChemists,
family=poisson,
trace=TRUE) ## poisson GLM
phat <- predprob(glml)

apply(phat, 1, sum) ## almost all 1.0
predprob.ideal predicted probabilities from fitting ideal to rollcall data
Description

Computes predicted probabilities of a “Yea” vote conditional on the posterior means of the legisla-
tors’ ideal points and vote-specific parameters.

Usage

## S3 method for class 'ideal'
predprob(obj, ...)

Arguments
obj An object of class ideal
Arguments to be passed to other functions
Details

This is a wrapper function to predict. ideal, extracting just the predicted probabilities component
of the object returned by that function. Predicted probabilities can and are generated for each voting
decision, irrespective of whether the legislator actually voted on any particular roll call.

Value

A matrix of dimension n (number of legislators) by m (number of roll call votes).

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

ideal, predprob, predict.ideal



presidentialElections 65

Examples

f <- system.file("extdata”,"id1.rda",package="pscl")
load(f)

phat <- predprob(id1)

dim(phat)

presidentialElections elections for U.S. President, 1932-2012, by state

Description

Democratic share of the presidential vote, 1932-2012, in each state and the District of Columbia.

Usage

data(presidentialElections)

Format

 statecharacter, name of state
* demVotenumeric, percent of the vote for president won by the Democratic candidate
* yearnumeric, integer

* southlogical, TRUE if state is one of the 11 states of the former Confederacy

Note

1,047 observations, unbalanced panel data in long format. Hawaii and Alaska contribute data from
1960 onwards the District of Columbia contributes data from 1964 onward; Alabama has missing
data for 1948 and 1964.

Source

David Leip’s Atlas of U.S. Presidential Elections http://uselectionsatlas.org

Examples

data(presidentialElections)

lattice::xyplot(demVote ~ year | state,
panel=panel.lines,
ylab="Democratic Vote for President (percent)",
xlab="Year",
data=presidentialElections,
scales=list(y=list(cex=.6),x=1list(cex=.35)),
strip=strip.custom(par.strip.text=list(cex=.6)))

## Obama vs Kerry, except DC
y08 <- presidentialElections$year==2008
y04 <- presidentialElections$year==2004


http://uselectionsatlas.org

66 prussian

tmpData <- merge(y=presidentialElections[y08,],
x=presidentialElections[y04,1],
by="state")
tmpData <- tmpData[tmpData$state!="DC",]
xlim <- range(tmpData$demVote.x, tmpData$demVote.y)
col <- rep("black”,dim(tmpData)[11)
col[tmpData$south.x] <- "red"

plot(demVote.y ~ demVote.x,
xlab="Kerry Vote Share, 2004 (percent)”,
ylab="0bama Vote Share, 2008 (percent)”,
xlim=x1im,
ylim=x1lim,
type="n",
las=1,
data=tmpData)
abline(@,1,1wd=2,col=gray(.65))
ols <- 1m(demVote.y ~ demVote.x,
data=tmpData)
abline(ols, 1wd=2)

text(tmpData$demVote.x,
tmpData$demVote.y,
tmpData$state,
col=col,
cex=.65)
legend(x="topleft",
bty="n",
lwd=c(2,2),
col=c(gray(.65),"black"),
legend=c("No Change from 2004","Regression"))
legend(x="bottomright"”,
bty="n",
text.col=c("red", "black"),
legend=c("South”, "Non-South"))

prussian Prussian army horse kick data

Description

Deaths by year, by corp, from horse kicks.

Usage

data(prussian)



readKH 67

Format
A data frame with 280 observations on the following 3 variables.
y a numeric vector, count of deaths

year anumeric vector, 18XX, year of observation

corp a factor, corp of Prussian Army generating observation

Source

von Bortkiewicz, L. 1898. Das Gesetz der Kleinen Zahlen. Leipzig: Teubner.

Examples

data(prussian)
corpP <- glm(y ~ corp, family=poisson,data=prussian)
summary (corpP)

readkH read roll call data in Poole-Rosenthal KH format

Description

Creates a rollcall object from the flat file format for roll call data used by Keith Poole and Howard
Rosenthal.

Usage

readkKH(file,
dt1=NULL,
yea=c(1,2,3),
nay=c(4,5,6),
missing=c(7,8,9),
notInLegis=0,
desc=NULL,
debug=FALSE)

Arguments
file string, name of a file or URL holding KH data
dtl string, name of a file or URL holding KH dt1 file (information about votes);
default is NULL, indicating no dt1 file
yea numeric, possibly a vector, code(s) for a Yea vote in the rollcall context (or a

correct answer in the educational testing context). Default is ¢(1,2,3), which
corresponds to Yea, Paired Yea, and Announced Yea in Poole/Rosenthal data
files.



68 readKH

nay numeric, possibly a vector, code(s) for a Nay vote in the rollcall context (or an
incorrect answer in the educational testing context). Default is c(4,5,6), which
corresponds to Announced Nay, Paired Nay, and Nay in Poole/Rosenthal data
files.

missing numeric and/or NA, possible a vector, code(s) for missing data. Defaultis c(9,7,8,9,NA);
the first four codes correspond to Not Yet a Member, Present (some Congresses),
Present (some Congresses), and Not Voting.

notInLegis numeric or NA, possibly a vector, code(s) for the legislator not being in the legis-
lature when a particular roll call was recorded (e.g., deceased, retired, yet to be
elected). Default is @ for Poole/Rosenthal data files.

desc string, describing the data, e.g., 82nd U.S. House of Representatives;
default is NULL
debug logical, print debugging information for net connection
Details

Keith Poole and Howard Rosenthal have gathered an impressive collection of roll call data, spanning
every roll call cast in the United States Congress. This effort continues now as a real-time exercise,
via a collaboration with Jeff Lewis (109th Congress onwards). Nolan McCarty collaborated on the
compilation of roll call data for the 102nd through 108th Congress.

This function relies on some hard-coded features of Poole-Rosenthal flat files, and assumes that the
file being supplied has the following structure (variable, start-end columns):

ICPSR legislator unique ID 4-8

ICPSR state ID 9-10

Congressional District 11-12

state name 13-20

party code 21-23

legislator name 26-36

roll-call voting record 37 to end-of-record

This function reads data files in that format, and creates a rollcall, for which there are useful
methods such as summary.rollcall. The legis.data component of the rollcall object is a
data.frame which contains:

state a 2-character string abbreviation of each legislator’ state

icpsrState a 2-digit numeric code for each legislator’s state, as used by the Inter-university Con-
sortium for Political and Social Research (ICPSR)

cd numeric, the number of each legislator’s congressional district within each state; this is always
0 for members of the Senate

icpsrLegis aunique numeric identifer for each legislator assigned by the ICPSR, as corrected by
Poole and Rosenthal.

partyName character string, the name of each legislator’s political party

party numeric, code for each legislator’s political party; see http://voteview.com/PARTY3.HTM


http://voteview.com/PARTY3.HTM

readKH 69

The rownames attribute of this data frame is a concatenation of the legislators’ names, party ab-
breviations (for Democrats and Republicans) and state, and (where appropriate), a district number;
e.g., Bonner (R AL-1). This tag is also provided in the legis.name component of the returned
rollcall object.

Poole and Rosenthal also make dt1 files available for Congresses 1 through 106. These files contain
information about the votes themselves, in a multiple-line per vote ascii format, and reside in the
dtl director of Poole’s web site, e.g., ftp://pooleandrosenthal.com/dt1/102s.dtl is the dtl
file for the 102nd Senate. The default is to presume that no such file exists. When a dtl file is
available, and is read, the votes.data attribute of the resulting rollcall object is a data.frame
with one record per vote, with the following variables:

date vector of class Date, date of the rollcall, if available; otherwise NULL

description vector of mode character, descriptive text

The dtl files are presumed to have the date of the rollcall in the first line of text for each roll call,
and lines 3 onwards contain descriptive text.

Finally, note also that the Poole/Rosenthal data sets often include the U.S. President as a pseudo-
legislator, adding the announced positions of a president or the administration to the roll call matrix.
This adds an extra “legislator” to the data set and can sometimes produce suprising results (e.g., a
U.S. Senate of 101 senators), and a “legislator” with a surprisingly low party loyalty score (since the
President/administration only announces positions on a relatively small fraction of all Congressional
roll calls).

Value

an object of class rollcall, with components created using the identifying information in the
Poole/Rosenthal files. If the function can not read the file (e.g., the user specified a URL and the
machine is not connected to the Internet), the function fails with an error message (set debug=TRUE
to help resolve these issues).

Author(s)

Simon Jackman <jackman@stanford.edu>

References
Poole, Keith and Howard Rosenthal. 1997. Congress: A Political-Economic History of Roll Call
Voting. New York: Oxford University Press.
Poole, Keith. http://votevieW.COM

Rosenthal, Howard L. and Keith T. Poole. United States Congressional Roll Call Voting Records,
1789-1990: Reformatted Data [computer file]. 2nd ICPSR release. Pittsburgh, PA: Howard L.
Rosenthal and Keith T. Poole, Carnegie Mellon University, Graduate School of Industrial Admin-
istration [producers], 1991. Ann Arbor, MI: Inter-university Consortium for Political and Social
Research [distributor], 2000. http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/09822

See Also
rollcall


ftp://pooleandrosenthal.com/dtl/102s.dtl
http://votevieW.COM
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/09822

70 RockThe Vote

Examples

## Not run:
h107 <- readKH("ftp://voteview.com/houl@7kh.ord",
desc="107th U.S. House of Representatives”)

s107 <- readKH("ftp://voteview.com/sen107kh.ord"”,
desc="107th U.S. Senate"”)

## End(Not run)

RockTheVote Voter turnout experiment, using Rock The Vote ads

Description

Voter turnout data spanning 85 cable TV systems, randomly allocated to a voter mobilization ex-
periment targetting 18-19 year olds with "Rock the Vote" television advertisments

Usage

data(RockTheVote)

Format
A data frame with 85 observations on the following 6 variables.

strata numeric, experimental strata

treated numeric, 1 if a treated cable system, O otherwise
r numeric, number of 18 and 19 year olds turning out

n numeric, number of 19 and 19 year olds registered

p numeric, proportion of 18 and 19 year olds turning out

treatedIndex numeric, a counter indexing the 42 treated units

Details

Green and Vavreck (2008) implemented a cluster-randomized experimental design in assessing the
effects of a voter mobilization treatment in the 2004 U.S. Presidential election. The clusters in this
design are geographic areas served by a single cable television system. So as to facilitate analysis,
the researchers restricted their attention to small cable systems whose reach is limited to a single
zip code. Further, since the experiment was fielded during the last week of the presidential elec-
tion, the researchers restricted their search to cable systems that were not in the 16 hotly-contested
“battleground” states (as designated by the Los Angeles Times).

Eighty-five cable systems were available for randomization and were assigned to treatment after
stratification on previous turnout levels in presidential elections (as determined from analysis of
the corresponding states’ voter registration files). Each cable system was matched with one or
sometimes two other cable systems in the same state, yielding 40 strata. Then within each strata,



RockThe Vote 71

cable systems were randomly assigned to treatment and control conditions. Strata 3, 8 and 25 have
two control cable systems and 1 treated system each, while strata 6 and 20 have two treated cable
systems and one control system. The remaining 35 strata have 1 treated cable system and 1 control
system. In this way there are 38 + 4 = 42 treated systems, spanning 40 experiment strata.

The treatment involved researchers purchasing prime-time advertising spots on four channels in
the respective cable system in which the researchers aired voter mobilization ads. The ads were
produced by Rock the Vote, targeted at younger voters, and aired four times per night, per channel,
over the last eight days of the election campaign. After the election, public records were consulted
to assemble data on turnout levels in the treated and control cable systems. In the analysis reported
in Green and Vavreck (2008), the researchers focused on turnout among registered voters aged 18
and 19 years old.

References

Green, Donald P. and Lynn Vavreck. 2008. Analysis of Cluster-Randomized Experiments: A
Comparison of Alternative Estimation Approaches. Political Analysis 16:138-152.

Jackman, Simon, 2009. Bayesian Analysis for the Social Sciences. Wiley: Hoboken, New Jersey.
Example 7.9.

Examples

data(RockTheVote)
## estimate MLEs of treatment effects
deltaFunction <- function(data){
model <- glm(cbind(r,n-r)~treated,
data=data,
family=binomial)
c(coef(model)[2],
confint(model)[2,1)

tmp <- by(RockTheVote,
as.factor(RockTheVote$strata),
deltaFunction)

tmp <- matrix(unlist(tmp),ncol=3,byrow=TRUE)
indx <- order(tmp[,1])

plot(y=1:40,
x=tmp[indx, 1],
pch=16,cex=1.25,
xlim=range(tmp),
ylab="",
axes=FALSE,
xlab="Estimated Treatment Effect (MLEs, Logit Scale)")
text(y=1:40,
x=par()$usr[1],
pos=4,
as.character((1:40)[indx]),



72

cex=.5)
segments(x@=tmp[i
x1=tmp[i
y0=1:40,
y1=1:40)
axis(1)
axis(3)
abline(v=0)

rollcall

ndx, 2],
ndx, 3],

rollcall

create an object of class rollcall

Description

Create arollcall

object, used for the analysis of legislative voting or, equivalently, item-response

modeling of binary data produced by standardized tests, etc.

Usage

rollcall(data,
yea=1,

nay=0, missing=NA, notInLegis=9,

legis.names=NULL, vote.names=NULL,
legis.data=NULL, vote.data=NULL,
desc=NULL, source=NULL)

Arguments

data

yea

nay

missing

notInLegis

legis.names

vote.names

voting decisions (for roll calls), or test results (for IRT). Can be in one of two
forms. First, data may be a matrix, with rows corresponding to legislators
(subjects) and columns to roll calls (test items). data can also be a 1ist with an
element named votes containing the matrix described above.

numeric, possibly a vector, code(s) for a Yea vote in the rollcall context, or a
correct answer in the educational testing context. Default is 1.

numeric, possibly a vector, code(s) for a Nay vote in the rollcall context, or an
incorrect answer in the educational testing context. Default is O.

numeric or NA, possibly a vector, code(s) for missing data. Default is NA.

numeric or NA, possibly a vector, code(s) for the legislator not being in the legis-
lature when a particular roll call was recorded (e.g., deceased, retired, yet to be
elected).

a vector of names of the legislators or individuals. If dataisa list ordata.frame
and has a component named legis.names, then this will be used. Names will
be generated if not supplied, or if there are fewer unique names supplied than
legislators/subjects (rows of the roll call matrix).

a vector of names or labels for the votes or items. If dataisalist ordata.frame
and has a component named vote.names, then this will be used. Names will

be generated if not supplied, or if there are fewer unique names supplied than

votes/test-items (columns of the roll call matrix).



rollcall

legis.data

vote.data

desc

source

Details

73

amatrix or data.frame containing covariates specific to each legislator/test-
taker; e.g., party affiliation, district-level covariates. If this object does not have
the same number of rows as data, an error is returned.

amatrix or data.frame containing covariates specific to each roll call vote or
test item; e.g., a timestamp, the bill sponsor, descriptive text indicating the type
of vote. If this object does not have the same number of row as the number of
columns in data, an error is returned.

character, a string providing an (optional) description of the data being used. If
data is a list and contains an element named desc, then this will be used.

character, a string providing an (optional) description of where the roll call data
originated (e.g., a URL or a short-form reference). Used in print and summary
methods.

See below for methods that operate on objects of class rollcall.

Value

An object of class rollcall, a list with the following components:

votes

codes

n
m
legis.data
vote.data

desc

source

See Also

a matrix containing voting decisions, with rows corresponding to legislators
(test subjects) and columns to roll call votes (test items). Legislators (test sub-
jects) and items (or votes) have been labeled in the dimnames attribute of this
matrix, using the legis.names and/or vote.names arguments, respectively.

a list with named components yea, nay, notInlLegis and missing, each com-
ponent a numeric vector (possibly of length 1 and possibly NA), indicating how
entries in the votes component of the rollcall object should be considered.
This list simply gathers up the values in the yea, nay, notInLegis and missing
arguments passed to the function.

numeric, number of legislators, equal to dim(votes)[1]
numeric, number of votes, equal to dim(votes)[2]
user-supplied data on legislators/test-subjects.
user-supplied data on rollcall votes/test-items.

any user-supplied description. If no description was provided, defaults desc
defaults to NULL.

any user-supplied source information (e.g., a url or a short-form reference). If
no description is provided, source defaults to NULL.

readKH for creating objects from files (possibly over the web), in the format used for data from the
United States Congress used by Keith Poole and Howard Rosenthal (and others).

summary.rollcall, ideal for model fitting.



74 5109

Examples

## generate some fake roll call data
set.seed(314159265)
fakeData <- matrix(sample(x=c(@,1),size=5000,replace=TRUE),

50,100)
rc <- rollcall(fakeData)
is(rc,"rollcall”) ## TRUE
rc ## print the rollcall object on screen
data(sc9497) ## Supreme Court example data

rc <- rollcall(data=sc9497%votes,
legis.names=sc9497$legis.names,
desc=sc9497%desc)

summary (rc,verbose=TRUE)

## Not run:
## s107
## could use readkKH for this
dat <- readLines("sen1@7kh.ord")
dat <- substring(dat,37)
mat <- matrix(NA,ncol=nchar(dat[1]),nrow=length(dat))
for(i in 1:103){
mat[i,] <- as.numeric(unlist(strsplit(dat[i],
split=character(0))))

3

s107 <- rollcall(mat,
yea=c(1,2,3),
nay=c(4,5,6),

missing=c(7,8,9),

notInLegis=0,

desc="107th U.S. Senate”,

source="http://voteview.ucsd.edu")
summary(s107)

## End(Not run)

s109 rollcall object, 109th U.S. Senate (2005-06).

Description
A sample rollcall object, generated using a collection of the rollcalls of the 109th U.S. Senate
(2005-2006).

Usage

data(s109)



5¢9497 75

Format

A rollcall object containing the recorded votes of the 109th U.S. Senate, plus information iden-
tifying the legislators and the rollcalls.

Details

Note the coding scheme used by Poole and Rosenthal; Yea (1), Nay (6) etc.

Source

Keith Poole’s web site: http://voteview.com/senatel109.htm
Originally scraped from the Senate’s web site by Jeff Lewis (UCLA).

Information identifying the votes is available at ftp://voteview.com/dtaord/s109desc_final.
csv

Examples

require(pscl)

data(s109)

is(s109, "rollcall”) ## TRUE

s109 ## print method for class rollcall

summary (s109) ## summary method

summary (s109, verbose=TRUE)

## Not run:

## how s109 was created

require(pscl)

s109 <- readKH("ftp://voteview.com/dtaord/sen109kh.ord",
desc="109th U.S. Senate”,
debug=TRUE)

url <- "ftp://voteview.com/dtaord/s109desc_final.csv"

s109%vote.data <- data.frame(read.csv(file=url,header=TRUE))
s109%vote.datasdate <- as.Date(s109%vote.datas$date,
format="
dimnames(s109%votes)[[2]] <- paste(s109%vote.data$session,
s109%vote.data$number, sep="-")

## End(Not run)

sc9497 votes from the United States Supreme Court, from 1994-1997

Description

This data set provides information on the United States Supreme Court from 1994-1997. Votes
included are non-unanimous.


http://voteview.com/senate109.htm
ftp://voteview.com/dtaord/s109desc_final.csv
ftp://voteview.com/dtaord/s109desc_final.csv

76 seats Votes

Usage

data(sc9497)

Format

A list containing the elements:

votes a matrix of the votes, 0=Nay, 1=Yea, NA=Abstained or missing data. The matrix columns are
labeled with vote.names and the rows are labeled with legis.names.

legis.names a vector of the names of the nine Justices sitting on the court at this time.

party NULL,; exists for consistency with House and Senate data sets.

state NULL; exists for consistency with House and Senate data sets.

district NULL; exists for consistency with House data sets.

id NULL,; exists for consistency with House and Senate data sets.

vote.names a vector of strings numbering the cases simply to distinguish them from one another.

desc a description of the data set.

Source

Harold J. Spaeth (1999). United States Supreme Court Judicial Database, 1953-1997 Terms. Ninth
edition. Inter-university Consortium for Political and Social Research. Ann Arbor, Michigan.
http://www.icpsr.umich.edu/

seatsVotes A class for creating seats-votes curves

Description

Convert a vector of vote shares into a seats-vote curve object, providing estimates of partisan bias.

Usage
seatsVotes(x, desc = NULL, method = "uniformSwing")
Arguments
X a vector of vote shares for a specific party (either proportions or percentages)
desc descriptive text
method how to simulate a seats-vote curve; the only supported method at this stage is

uniformSwing.


http://www.icpsr.umich.edu/

seats Votes 77

Details

Simulation methods are required to induce a seats-votes curve given a vector of vote shares from
one election. The uniform swing method simply slides the empirical distribution function of the
vote shares “up” and “down”, computing the proportion of the vote shares that lie above .5 (by
construction, the winning percentage in a two-party election) for each new location of the vector of
vote shares. That is, as the empirical CDF of the observed vote shares slides up or down, more or
less seats cross the .5 threshold. A seats-votes curve is formed by plotting the seat share above .5 as
a function of the average district-level vote share (a weakly monotone function, since the empirical
CDF constitutes a set of sufficient statistics for this problem). The simulation is run so as to ensure
that average district-level vote shares range between 0 and 1.

The extent to which the seats-votes curve departs from symmetry is known as bias. More specif-
ically, the vertical displacement of the seats-votes curve from .5 when average district-level vote
share is .5 is conventionally reported as an estimate of the bias of the electoral system.

Different methods produce different estimates of seats-votes curves and summary estimands such as
bias. The uniform swing method is completely deterministic and does not produce any uncertainty
assessment (e.g., confidence intervals etc).

Value

An object of class seatsVotes, with components

s Estimated seat shares over the range of simulated average, district-level vote
shares
v Simulated average district-level vote shares
X observed seat shares, with missing data removed
desc user-supplied descriptive character string
call a list of class call, the call to the function
Note

Additional methods to come later.

Author(s)

Simon Jackman <jackman@stanford.edu>

References

Tufte, Edward R. 1973. The Relationship Between Seats and Votes in Two-Party Systems. Ameri-
can Political Science Review. 67(2):540-554.

Gelman, Andrew and Gary King. 1990. Estimating the Consequences of Electoral Redistrictring.
Journal of the American Statistical Association. 85:274-282.

Jackman, Simon. 1994. Measuring Electoral Bias: Australia, 1949-93. British Journal of Political
Science. 24(3):319-357.



78 simpi

See Also

plot.seatsVotes for plotting methods.

Examples

data(ca2006)
X <- ca2006$D/(ca2006$D+ca2006%R)
sv <- seatsVotes(x,
desc="Democratic Vote Shares, California 2006 congressional elections”)

simpi Monte Carlo estimate of pi (3.14159265...)

Description

Monte Carlo estimation of pi

Usage

simpi(n)

Arguments

n integer, number of Monte Carlo samples, defaults to 1000

Details

A crude Monte Carlo estimate of 7 can be formed as follows. Sample from the unit square many
times (i.e., each sample is formed with two independent draws from a uniform density on the unit
interval). Compute the proportion p of sampled points that lie inside a unit circle centered on the
origin; such points (x, y) have distance from the origin d = /22 + y? less than 1. Four times p is
a Monte Carlo estimate of 7. This function is a wrapper to a simple C function, bringing noticable
speed gains and memory efficiencies over implementations in native R.

Contrast this Monte Carlo method with Buffon’s needle and refinements thereof (see the discussion
in Ripley (1987, 193ff).

Value

the Monte Carlo estimate of

Author(s)

Simon Jackman <jackman@stanford.edu>

References

Ripley, Brain D. 1987 [2006]. Stochastic Simulation. Wiley: Hoboken, New Jersey.



state.info

Examples

seed <- round(pi*10000) ## hah hah hah

m<-6

z <- rep(NA,m)
lim <- rep(NA,m)
for(i in 1:m){

cat(paste(”simulation for ",i,"\n"))

set.seed(seed)

timings <- system.time(z[i] <- simpi(10*i))

print(timings)
cat("\n")

1im[i] <- gbinom(prob=pi/4,size=10%i,.975)/10*i x 4

}

## convert to squared error

z <-(z - pi)*2
lim <= (lim - pi)*2

plot(x=1:m,
y=z,
type="b",
pch=16,
log="y",
axes=FALSE,

ylim=range(z,lim),

xlab="Monte Carlo Samples”,
ylab="Log Squared Error")
lines(1:m,1im,col="blue", type="b",pch=1)

legend(x="topright",

legend=c("95% bound",

"Realized"),
pch=c(1,16),
lty=c(1,1),

col=c("blue”, "black”),

bty="n")
axis(1,at=1:m,

labels=c(expression(10+{1}),
expression(10+{2}),
expression(107{3}),
expression(10+{4}),
expression(10~{5}),
expression(10%{63})))

axis(2)

79

state.info

information about the American states needed for U.S. Congress




80 summary.ideal

Description

Numeric codes and names of 50 states and the District of Columbia, required to parse Keith Poole
and Howard Rosenthal’s collections of U.S. Congressional roll calls.

Usage

data(state.info)

Format

icpsr integer, numeric code for state used by the Inter-university Consortium for Political and
Social Research

state character, name of state or Washington D.C.

year numeric or NA, year of statehood

Details

The function readKH converts the integer ICPSR codes into strings, via a table lookup in this data
frame. Another table lookup in state.abb provides the 2-letter abbreviation commonly used in
identifying American legislators, e.g., KENNEDY, E (D-MA).

Source

Various ICPSR codebooks. http://www.icpsr.umich.edu

See Also

state

summary.ideal summary of an ideal object

Description

Provides a summary of the output from ideal point estimation contained in an object of class ideal.

Usage

## S3 method for class 'ideal'
summary (object, prob=.95,
burnin=NULL,
sort=TRUE,
include.beta=FALSE,...)


http://www.icpsr.umich.edu

summary.ideal

Arguments

object
prob

burnin

sort

include.beta

Details

81

an object of class ideal.

scalar, a proportion between 0 and 1, the content of the highest posterior density
(HPD) interval to compute for the parameters

of the recorded MCMC samples, how many to discard as burnin? Default is
NULL, in which case the value of burnin in the ideal object is used.

logical, default is TRUE, indicating that the summary of the ideal points be sorted
by the estimated posterior means (lowest to highest)

whether or not to calculate summary statistics of beta, if beta is available. If
the item parameters were not stored in the ideal object, then include.beta is
ignored.

further arguments passed to or from other functions

The test of whether a given discrimination parameter is distinguishible from zero first checks to see
if the two most extreme quantiles are symmetric around .5 (e.g., as are the default value of .025
and .975). If so, the corresponding quantiles of the MCMC samples for each discrimination parame-
ter are inspected to see if they have the same sign. If they do, then the corresponding discrimination
parameter is flagged as distinguishible from zero; otherwise not.

Value

An item of class summary.ideal with elements:

object

Xm
xsd
xHDR
bm
bsd
bHDR
bSig

party.quant

the name of the ideal object as an unevaluated expression, produced by
match.call()$object

n by d matrix of posterior means for the ideal points

n by d matrix of posterior means for the ideal points

n by 2 by d array of HDRs for the ideal points

m by d+1 matrix of posterior means for the item parameters

m by d+1 matrix of posterior standard deviation for the item parameters
m by 2 by d+1 array of HDRs for the item parameters

alist of length d, each component a vector of length m, of mode logical, equal
to TRUE if the corresponding discrimination parameter is distinguishible from
zero; see Details. If store.item was set to FALSE when ideal was invoked,
then bSig is a list of length zero.

if party information is available through the rollcall object that was used
to run ideal, then party.quant gives the posterior mean of the legislators’
ideal points by party, by dimension. If no party information is available, then
party.quant=NULL.



82 summary.rollcall

Note

When specifying a value of burnin different from that used in fitting the ideal object, note a
distinction between the iteration numbers of the stored iterations, and the number of stored itera-
tions. That is, the n-th iteration stored in an ideal object will not be iteration n if the user spec-
ified thin>1 in the call to ideal. Here, iterations are tagged with their iteration number. Thus,
if the user called ideal with thin=10 and burnin=100 then the stored iterations are numbered
100, 110, 120, .... Any future subsetting via a burnin refers to this iteration number.

Author(s)

Simon Jackman <jackman@stanford.edu>

See Also

ideal

Examples

f <- system.file("extdata”,"idl.rda"”,package="pscl")
load(f)
summary (id1)

## Not run:
data(s109)
cl2 <- constrain.legis(s109,
x=1ist ("KENNEDY (D MA)"=c(-1,0),
"ENZI (R WY)"=c(1,0),
"CHAFEE (R RI)"=c(0,-.5)),

d=2)
id2Constrained <- ideal(s1@9,
d=2,
priors=cl2, ## priors (w constraints)
startvals=cl2, ## start value (w constraints)

store.item=TRUE,
maxiter=5000,
burnin=500,
thin=25)

summary (id2Constrained,
include.items=TRUE)

## End(Not run)

summary.rollcall summarize a rollcall object

Description

Provides a summary of the information about votes, legislators, etc in a rollcall object.



summary.rollcall 83

Usage

## S3 method for class 'rollcall'’
summary (object,
dropList=NULL,
verbose=FALSE, debug=FALSE, ...)

## S3 method for class 'summary.rollcall'

print(x, digits=1, ...)
Arguments

object an rollcall object.

dropList a list or alist, listing voting decisions, legislators and/or votes to be dropped
from the summary; see dropRollCall for details.

verbose logical, if TRUE, compute legislator-specific and vote-specific Yea/Nay/NA sum-
maries

debug logical, if TRUE, print messages to console during processing of the rollcall
object

X an object of class summary.rollcall

digits number of decimal places in printed display

further arguments passed to or from other methods.

Value

An object of class summary.rollcall with the following elements (depending on the logical flag

verbose):

n number of legislators in the rollcall object, after processing the dropList

m number of roll call votes in the rollcall object, after processing the dropList

codes a list that describes how the voting decisions in the rol1lcall matrix (object$votes)
map into “Yea” and “Nay” etc, after processing the dropList; see rollcall for
more details

allvVotes a matrix containing a tabular breakdown of all votes in the rollcall matrix
(object$votes), after processing the dropList

partyTab a tabular breakdown of the legislators’ party affiliations, after processing the
dropList, and only if party affiliations are supplied asobject$legis.data$party;
see rollcall for details

lopSided a tabular summary of the frequency of lop-sided roll call votes in the rollcall
object, again, after processing the dropList

legisTab a tabular summary of each legislators’ voting history

partylLoyalty the proportion of times that each legislator votes the way that a majority of his
or her fellow partisans did, provided party affiliations are available

voteTab a tabular summary of each rollcall’s votes

call the matched call used to invoke summary.rollcall



84 tracex

See Also
rollcall

Examples

set.seed(314159265)

fakeData <- matrix(sample(x=c(@,1),size=1000,replace=TRUE),
10,100)

rc <- rollcall(fakeData)

rc

data(sc9497)
rc <- rollcall(sc9497)
summary(rc)

data(s109)
summary (s109)
summary(s109, verbose=TRUE)

tracex trace plot of MCMC iterates, posterior density of legislators’ ideal
points

Description

Produces a trace plot of the MCMC samples from the posterior density of legislators’ ideal points.

Usage

tracex(object, legis=NULL, d=1, conf.int=0.95,
multi = FALSE, burnin=NULL, span=.25,
legendLoc="topright")

Arguments

object an object of class ideal.

legis a vector of either the names of legislators (or partial matches of the names as
given in the dimnames of object$x.

d numeric, either a scalar or a vector of length two, the dimension(s) to be traced.

conf.int numeric, the level of the confidence interval on the posterior mean to be plotted.

multi logical, multiple plotting panels, one per legislators? If FALSE (default) and
length(d)==2, display traces for all selected legislators’ ideal points on the one
plot.

burnin of the recorded MCMC samples, how many to discard as burnin? Default is

NULL, in which case the value of burnin in the ideal object is used.



tracex 85

span numeric, a proportion, the span to be used when calling loess to generate a
moving average for trace plots when d=1

legendLoc numeric or character, and possibly a vector, specifying where to place the legend
when d=1; setting legendLoc=NULL will suppress the legend for all requested
trace plots

Details

Produces a trace plot showing the history of the MCMC iterations for the ideal point of each of the
legislators (partially) named in legis. For d=1, each trace plot includes a trace over iterations, the
cumulative mean, a moving average, the MCMC-based estimate of the mean of the posterior, and a
confidence interval (specified by conf.int) around the mean of the posterior (using the estimated
quantiles) of the respective MCMC iterates). All of these values are calculated discarding the
initial burnin iterations.

When d is a vector of length two, a 2-dimensional trace plot is displayed, with the d[1] dimension
on the horizontal axis, and the d[2] dimension on the vertical axis.

When d=1, a legend will be placed on the plot; the option legendLoc controls the placing of the
legend. legendLoc may be a vector, specifying a unique legend location for each requested trace
plots. If legendLoc is of length 1, it will be replicated to have length equal to the number of
requested trace plots.

See Also

ideal; pmatch for matching legislators’ names. See legend for valid options to legendLoc.

Examples

data(s109)

f <- system.file("extdata”,"idl.rda",package="pscl")
load(f)

tracex(id1l,legis="KENN")

## n.b., no such legislator named Thomas Bayes
tracex(id1,legis=c("KENN","BOX","KYL","Thomas Bayes"))

f <- system.file("extdata”,"id2.rda",package="pscl")
load(f)

tracex(id2,d=1,legis=c("KENNEDY", "BOXER","KYL","Thomas Bayes"))
tracex(id2,d=2,legis=c("KENNEDY", "BOXER","KYL","Thomas Bayes"))
tracex(id2,d=1:2,

legis=c("KENNEDY", "BOXER","KYL","Thomas Bayes"))

## partial matching
tracex(id2,d=1:2,
legis=c("KENN","BOX","BID","SNO","SPEC","MCCA", "KYL",
"Thomas Bayes"),
multi=TRUE)



86 UKHouseOfCommons

UKHouseOfCommons 1992 United Kingdom electoral returns

Description

Electoral returns, selected constituencies, 1992 general election for the British House of Commons

Usage

data(UKHouseOfCommons)

Format

A data frame with 521 observations on the following 12 variables.

constituency a character vector, name of the House of Commons constituency
county a character vector, county of the House of Commons constituency

y1 anumeric vector, log-odds of Conservative to LibDem vote share

y2 anumeric vector, log-odds of Labor to LibDem vote share

y1lag anumeric vector, y1 from previous election

y2lag anumeric vector, y2 from previous election

coninc anumeric vector, 1 if the incumbent is a Conservative, 0 otherwise
labinc anumeric vector, 1 if the incumbent is from the Labor Party, 0 otherwise
libinc anumeric vector, 1 if the incumbent is from the LibDems, O otherwise
v1 anumeric vector, Conservative vote share (proportion of 3 party vote)

v2 anumeric vector, Labor vote share (proportion of 3 party vote)

v3 anumeric vector, LibDem vote share (proportion of 3 party vote)

Details

These data span only 521 of the 621 seats in the House of Commons at the time of 1992 election.
Seats missing either a Conservative, Labor, or a LibDem candidate appear to have been dropped.

The original Katz and King data set does not have case labels. I used matches to an additional data
source to recover a set of constituency labels for these data; labels could not recovered for two of
the constituencies.

Source

Jonathan Katz; Gary King. 1999. "Replication data for: A Statistical Model of Multiparty Electoral
Data", http://hdl.handle.net/1902.1/QIGTWZYTLZ


http://hdl.handle.net/1902.1/QIGTWZYTLZ

unionDensity 87

References

Katz, Jonathan and Gary King. 1999. “A Statistical Model for Multiparty Electoral Data”. Ameri-
can Political Science Review. 93(1): 15-32.

Jackman, Simon. 2009. Bayesian Analysis for the Social Sciences. Wiley: Chichester. Example
6.9.

Examples

data(UKHouseOfCommons)
tmp <- UKHouseOfCommons[,c("v1","v2","v3")]
summary (apply(tmp,1,sum))

col <- rep("black”,dim(tmp)[11)
col[UKHouseOfCommons$coninc==1] <- "blue”
col[UKHouseOfCommons$labinc==1] <- "red"
col[UKHouseOfCommons$libinc==1] <- "orange"”

library(vcd)

ved: :ternaryplot(tmp,
dimnames=c("Cons”,"Lab","Lib-Dem"),
labels="outside",
col=col,
pch=1,
main="1992 UK House of Commons Election”,
cex=.75)

unionDensity cross national rates of trade union density

Description

Cross-national data on relative size of the trade unions and predictors, in 20 countries. Two of the
predictors are highly collinear, and are the source of a debate between Stephens and Wallerstein
(1991), later reviewed by Western and Jackman (1994).

Usage

data(unionDensity)

Format

* unionnumeric, percentage of the total number of wage and salary earners plus the unemployed
who are union members, measured between 1975 and 1980, with most of the data drawn from
1979

» leftnumeric, an index tapping the extent to which parties of the left have controlled govern-
ments since 1919, due to Wilensky (1981).

* sizenumeric, log of labor force size, defined as the number of wage and salary earners, plus
the unemployed



88 vectorRepresentation

* concennumeric, percentage of employment, shipments, or production accounted for by the
four largest enterprises in a particular industry, averaged over industries (with weights propor-
tional to the size of the industry) and the resulting measure is normalized such that the United
States scores a 1.0, and is due to Pryor (1973). Some of the scores on this variable are imputed
using procedures described in Stephens and Wallerstein (1991, 945).

Source

Pryor, Frederic. 1973. Property and Industrial Organization in Communist and Capitalist Coun-
tries. Bloomington: Indiana University Press.

Stephens, John and Michael Wallerstein. 1991. Industrial Concentration, Country Size and Trade
Union Membership. American Political Science Review 85:941-953.

Western, Bruce and Simon Jackman. 1994. Bayesian Inference for Comparative Research. Ameri-
can Political Science Review 88:412-423.

Wilensky, Harold L. 1981. Leftism, Catholicism, Democratic Corporatism: The Role of Political
Parties in Recemt Welfare State Development. In The Development of Welfare States in Europe and
America, ed. Peter Flora and Arnold J. Heidenheimer. New Brunswick: Transaction Books.

References

Jackman, Simon. 2009. Bayesian Analysis for the Social Sciences. Wiley: Hoboken, New Jersey.

Examples

data(unionDensity)
summary (unionDensity)
pairs(unionDensity,
labels=c("Union\nDensity",
"Left\nGovernment",
"log Size of\nLabor Force",
"Economic\nConcentration”),
lower.panel=function(x,y,digits=2){
r <- cor(x,y)
par(usr=c(0,1,0,1))

text(.5,.5,
format(c(r,0.123456789),digits=digits)[1],
cex=1.5)
}
)

ols <- 1Im(union ~ left + size + concen,
data=unionDensity)
summary (ols)

vectorRepresentation convert roll call matrix to series of vectors




vectorRepresentation 89

Description
Extract the information in a roll call matrix as a series of vectors with voting decision, a unique
identifier for the legislator and a unique identifier for the roll call.

Usage

vectorRepresentation(object, dropList = list(codes = c("missing"”, "notInLegis")))

Arguments
object an object of class rollcall
dropList adroplList; see dropRollCall
Details

It is often the case that roll call matrices are sparse, say, when the roll call matrix has an “overlapping
generations” structure; e.g., consider forming data by pooling across a long temporal sequence of
legislatures such that relatively few of the legislators in the data set actually vote on any given roll
call. In such a case, representing the data as a roll call matrix is not particularly helpful nor efficient,
either for data summaries or modeling.

Value

A matrix with z rows, where z is the number of non-missing entries in object$votes, with ‘miss-
ingness’ defined by the codes component of the dropList. The matrix has 3 columns:

vote the voting decision, either a 1 if the corresponding element of the roll call
matrix object$votes is in the yea component of object$codes, or a @ if
the corresponding element of the roll call matrix is in the nay component of
object$codes. Non-missing entries of the roll call matrix are not stored.

i the row of the roll call matrix object$votes that supplied the voting decision;
i.e., a unique identifier for the legislator generating this vote

j the column of the roll call matrix object$votes that supplied the vote;i.e., a
unique identifier for the vote.
Author(s)

Simon Jackman <jackman@stanford.edu>

See Also
rollcall

Examples

data(s109)
y <- vectorRepresentation(s109)
apply(y,2,table,exclude=NULL)



90 vote92

vote92 Reports of voting in the 1992 U.S. Presidential election.

Description

Survey data containing self-reports of vote choice in the 1992 U.S. Presidential election, with nu-
merous covariates, from the 1992 American National Election Studies.

Usage

data(vote92)

Format
A data frame with 909 observations on the following 10 variables.

vote a factor with levels Perot Clinton Bush

dem a numeric vector, 1 if the respondent reports identifying with the Democratic party, O other-
wise.

rep anumeric vector, 1 if the respondent reports identifying with the Republican party, O otherwise
female anumeric vector, 1 if the respondent is female, O otherwise

persfinance a numeric vector, -1 if the respondent reports that their personal financial situation
has gotten worse over the last 12 months, 0 for no change, 1 if better

natlecon a numeric vector, -1 if the respondent reports that national economic conditions have
gotten worse over the last 12 months, 0 for no change, 1 if better

clintondis a numeric vector, squared difference between respondent’s self-placement on a scale
measure of political ideology and the respondent’s placement of the Democratic candidate,
Bill Clinton

bushdis a numeric vector, squared ideological distance of the respondent from the Republican
candidate, President George H.W. Bush

perotdis anumeric vector, squared ideological distance of the respondent from the Reform Party
candidate, Ross Perot

Details

These data are unweighted. Refer to the original data source for weights that purport to correct for
non-representativeness and non-response.

Source

Alvarez, R. Michael and Jonathan Nagler. 1995. Economics, issues and the Perot candidacy: Voter
choice in the 1992 Presidential election. American Journal of Political Science. 39:714-44.

Miller, Warren E., Donald R. Kinder, Steven J. Rosenstone and the National Election Studies. 1999.
National Election Studies, 1992: Pre-/Post-Election Study. Center for Political Studies, University
of Michigan: Ann Arbor, Michigan.

Inter-University Consortium for Political and Social Research. Study Number 1112. http://dx.
doi.org/10.3886/ICPSRO1112.


http://dx.doi.org/10.3886/ICPSR01112
http://dx.doi.org/10.3886/ICPSR01112

vuong 91

References

Jackman, Simon. 2009. Bayesian Analysis for the Social Sciences. Wiley: Hoboken, New Jersey.
Examples 8.7 and 8.8.

Examples

data(vote92)
summary (vote92)

vuong Vuong’s non-nested hypothesis test

Description

Compares two models fit to the same data that do not nest via Vuong’s non-nested test.

Usage

vuong(ml, m2, digits = getOption("digits”))

Arguments
m1 model 1, an object inheriting from class glm, negbin or zeroinfl
m2 model 2, as for model 1
digits significant digits in printed result

Details

The Vuong non-nested test is based on a comparison of the predicted probabilities of two models
that do not nest. Examples include comparisons of zero-inflated count models with their non-
zero-inflated analogs (e.g., zero-inflated Poisson versus ordinary Poisson, or zero-inflated negative-
binomial versus ordinary negative-binomial). A large, positive test statistic provides evidence of
the superiority of model 1 over model 2, while a large, negative test statistic is evidence of the
superiority of model 2 over model 1. Under the null that the models are indistinguishable, the test
statistic is asymptotically distributed standard normal.

Let p; = Pr(y;|M;) be the predicted probabilities from model 1, evaluated conditional on the
estimated MLEs. Let g; be the corresponding probabilities from model 2. Then the Vuong statistic
is VN /s,, where m; = log(p;) — log(q;) and s,y, is the sample standard deviation of ;.

Two finite sample corrections are often considered, based on the Akaike (AIC) and Schwarz (BIC)
penalty terms, based on the complexity of the two models. These corrections sometimes generate
conflicting conclusions.

The function will fail if the models do not contain identical values in their respective components
named y (the value of the response being modeled).



92 zeroinfl

Value

nothing returned, prints 3 test statistics and p values and exits silently.

Author(s)

Simon Jackman <jackman@stanford.edu>

References

Vuong, Q.H. 1989. Likelihood ratio tests for model selection and non-nested hypotheses. Econo-
metrica. 57:307-333.

Examples

data("bioChemists")

## compare Poisson GLM and ZIP

glml <- glm(art ~ ., data = bioChemists, family = poisson)
zip <- zeroinfl(art ~ . | ., data = bioChemists, EM = TRUE)
vuong(glml, zip)

## Not run:

## compare negbin with zero-inflated negbin

nb1l <- glm.nb(art ~ ., data=bioChemists)

zinb <- zeroinfl(art ~ . | ., data = bioChemists, dist = "negbin”, EM = TRUE)

vuong(nb1, zinb)

## End(Not run)

zeroinfl Zero-inflated Count Data Regression

Description

Fit zero-inflated regression models for count data via maximum likelihood.

Usage

zeroinfl(formula, data, subset, na.action, weights, offset,
dist = c("poisson”, "negbin"”, "geometric”),
link = c("logit”, "probit"”, "cloglog”, "cauchit”, "log"),
control = zeroinfl.control(...),
model = TRUE, y = TRUE, x = FALSE, ...)



zeroinfl 93

Arguments

formula symbolic description of the model, see details.

data, subset, na.action
arguments controlling formula processing via model. frame.

weights optional numeric vector of weights.

offset optional numeric vector with an a priori known component to be included in the
linear predictor of the count model. See below for more information on offsets.

dist character specification of count model family (a log link is always used).

link character specification of link function in the binary zero-inflation model (a bi-
nomial family is always used).

control a list of control arguments specified via zeroinfl. control.

model, y, x logicals. If TRUE the corresponding components of the fit (model frame, re-

sponse, model matrix) are returned.

arguments passed to zeroinfl.control in the default setup.

Details

Zero-inflated count models are two-component mixture models combining a point mass at zero
with a proper count distribution. Thus, there are two sources of zeros: zeros may come from both
the point mass and from the count component. Usually the count model is a Poisson or negative
binomial regression (with log link). The geometric distribution is a special case of the negative
binomial with size parameter equal to 1. For modeling the unobserved state (zero vs. count), a
binary model is used that captures the probability of zero inflation. in the simplest case only with
an intercept but potentially containing regressors. For this zero-inflation model, a binomial model
with different links can be used, typically logit or probit.

The formula can be used to specify both components of the model: If a formula of typey ~ x1 + x2
is supplied, then the same regressors are employed in both components. This is equivalent to
y ~ x1 + x2 | x1 + x2. Of course, a different set of regressors could be specified for the
count and zero-inflation component, e.g.,y ~ x1 + x2 | z1 + z2 + z3 giving the count data
model y ~ x1 + x2 conditional on (|) the zero-inflation model y ~ z1 + z2 + z3. A simple
inflation model where all zero counts have the same probability of belonging to the zero component
can by specified by the formulay ~ x1 + x2 | 1.

Offsets can be specified in both components of the model pertaining to count and zero-inflation
model: y ~ x1 + offset(x2) | z1 + z2 + offset(z3), where x2 is used as an offset (i.e., with
coefficient fixed to 1) in the count component and z3 analogously in the zero-inflation component.

By the rule stated above y ~ x1 + offset(x2) isexpandedtoy ~ x1 + offset(x2) | x1 + offset(x2).
Instead of using the of fset() wrapper within the formula, the offset argument can also be em-

ployed which sets an offset only for the count model. Thus, formula = y ~ x1 and offset = x2

is equivalent to formula = y ~ x1 + offset(x2) | x1.

All parameters are estimated by maximum likelihood using optim, with control options set in
zeroinfl.control. Starting values can be supplied, estimated by the EM (expectation maxi-
mization) algorithm, or by glm. fit (the default). Standard errors are derived numerically using the
Hessian matrix returned by optim. See zeroinfl.control for details.



94

zeroinfl

The returned fitted model object is of class "zeroinfl” and is similar to fitted "glm" objects. For
elements such as "coefficients” or "terms” a list is returned with elements for the zero and
count component, respectively. For details see below.

A set of standard extractor functions for fitted model objects is available for objects of class "zeroinfl”,

including methods to the generic functions print, summary, coef, vcov, loglLik, residuals,
predict, fitted, terms, model.matrix. See predict.zeroinfl for more details on all meth-

ods.

Value

An object of class "zeroinfl”, i.e., a list with components including

coefficients

residuals

fitted.values

optim

control
start
weights
offset

n
df.null
df.residual

terms

theta

SE.logtheta
loglik

VCoVv

dist

link
linkinv
converged
call
formula

levels

a list with elements "count” and "zero" containing the coefficients from the
respective models,

a vector of raw residuals (observed - fitted),
a vector of fitted means,

a list with the output from the optim call for minimizing the negative log-
likelihood,

the control arguments passed to the optim call,
the starting values for the parameters passed to the optim call,
the case weights used,

a list with elements "count” and "zero” containing the offset vectors (if any)
from the respective models,

number of observations (with weights > 0),
residual degrees of freedom for the null model (=n - 2),
residual degrees of freedom for fitted model,

a list with elements "count”, "zero"” and "full” containing the terms objects
for the respective models,

estimate of the additional # parameter of the negative binomial model (if a neg-
ative binomial regression is used),

standard error for log(6),
log-likelihood of the fitted model,

covariance matrix of all coefficients in the model (derived from the Hessian of
the optim output),

character string describing the count distribution used,
character string describing the link of the zero-inflation model,
the inverse link function corresponding to 1ink,

logical indicating successful convergence of optim,

the original function call,

the original formula,

levels of the categorical regressors,



zeroinfl 95

contrasts a list with elements "count” and "zero" containing the contrasts corresponding
to levels from the respective models,

model the full model frame (if model = TRUE),

y the response count vector (if y = TRUE),

X a list with elements "count” and "zero” containing the model matrices from

the respective models (if x = TRUE),

Author(s)

Achim Zeileis <Achim.Zeileis @R-project.org>

References

Cameron, A. Colin and Pravin K. Trevedi. 1998. Regression Analysis of Count Data. New York:
Cambridge University Press.

Cameron, A. Colin and Pravin K. Trivedi. 2005. Microeconometrics: Methods and Applications.
Cambridge: Cambridge University Press.

Lambert, Diane. 1992. “Zero-Inflated Poisson Regression, with an Application to Defects in Man-
ufacturing.” Technometrics. 34(1):1-14

Zeileis, Achim, Christian Kleiber and Simon Jackman 2008. “Regression Models for Count Data
in R’ Journal of Statistical Software, 27(8). URL http://www. jstatsoft.org/v27/108/.

See Also

zeroinfl.control, glm, glm.fit, glm.nb, hurdle

Examples

## data
data("bioChemists”, package = "pscl”)

## without inflation

## ("art ~ ." is "art ~ fem + mar + kid5 + phd + ment")

fm_pois <- glm(art ~ ., data = bioChemists, family = poisson)
fm_gpois <- glm(art ~ ., data = bioChemists, family = quasipoisson)
fm_nb <- glm.nb(art ~ ., data = bioChemists)

## with simple inflation (no regressors for zero component)
fm_zip <- zeroinfl(art ~ . | 1, data = bioChemists)
fm_zinb <- zeroinfl(art ~ . | 1, data = bioChemists, dist = "negbin”)

## inflation with regressors

## ("art ~ . | ." is "art ~ fem + mar + kid5 + phd + ment | fem + mar + kid5 + phd + ment")
fm_zip2 <- zeroinfl(art ~ . | ., data = bioChemists)

fm_zinb2 <- zeroinfl(art ~ . | ., data = bioChemists, dist = "negbin")


http://www.jstatsoft.org/v27/i08/

96

zeroinfl.control

zeroinfl.control

Control Parameters for Zero-inflated Count Data Regression

Description

Various parameters that control fitting of zero-inflated regression models using zeroinf1l.

Usage
zeroinfl.control(method = "BFGS"”, maxit = 10000, trace = FALSE,
EM = FALSE, start = NULL, ...)
Arguments
method characters string specifying the method argument passed to optim.

maxit

trace

EM

start

Details

integer specifying the maxit argument (maximal number of iterations) passed
to optim.

logical or integer controlling whether tracing information on the progress of the
optimization should be produced (passed to optim).

logical. Should starting values be estimated by the EM (expectation maximiza-
tion) algorithm? See details.

an optional list with elements "count” and "zero” (and potentially "theta")
containing the coefficients for the corresponding component.

arguments passed to optim.

All parameters in zeroinf1 are estimated by maximum likelihood using optim with control options
setin zeroinfl.control. Most arguments are passed on directly to optim, only trace is also used
within zeroinfl and EM/start control the choice of starting values for calling optim.

Starting values can be supplied, estimated by the EM (expectation maximization) algorithm, or by
glm.fit (the default). Standard errors are derived numerically using the Hessian matrix returned
by optim. To supply starting values, start should be a list with elements "count” and "zero" and
potentially "theta” (for negative binomial components only) containing the starting values for the
coefficients of the corresponding component of the model.

Value

A list with the arguments specified.

Author(s)

Achim Zeileis <Achim.Zeileis @R-project.org>

See Also

zeroinfl



zeroinfl.control

Examples

data("bioChemists”, package = "pscl"”)

## default start values
fml <- zeroinfl(art ~ ., data = bioChemists)

## use EM algorithm for start values
fm2 <- zeroinfl(art ~ ., data = bioChemists, EM = TRUE)

## user-supplied start values
fm3 <- zeroinfl(art ~ ., data = bioChemists,
start = list(count = c(0.7, -0.2, 0.1, -0.2, @, @), zero = -1.7))



Index

*Topic classes computeMargins, 13
idealToMCMC, 38 convertCodes, 19
predict.ideal, 58 dropRollCall, 20
summary.ideal, 80 dropUnanimous, 22
summary.rollcall, 82 rollcall, 72

+Topic datagen vectorRepresentation, 88
constrain.items, 14 *Topic methods
constrain.legis, 16 predprob.idea1,64

*Topic datasets «Topic MISC
absentee, 3 seatsVotes, 76
admit, 5 simpi, 78
AustralianElectionPolling, 6 *Topic models
AustralianElections, 8 extractRollCallObject, 24
bioChemists, 11 hitmiss, 25
ca2006, 12 ideal, 32

EfronMorris, 23 postProcess, 52
iragvote, 41 pR2, 55

njo7, 43 predprob, 62

’ predprob.glm, 63

partycodes, 46 .
predprob.ideal, 64

politicalInformation, 51

presidentialElections, 65 Yuong,9l

prussian, 66 «Topic print

readkH 6% ntable, 44

RockTheVote, 70 «Topic regression
109.74 hurdle, 26

Zc94§7 75 hurdle.control, 30

hurdletest, 31
odTest, 45
predict.hurdle, 56
predict.zeroinfl, 60

state.info, 79
UKHouseOfCommons, 86
unionDensity, 87

Y0t§92,?0 . predprob, 62
+Topic distribution predprob.glm, 63
petaHPD,9 zeroinfl, 92
}gamma,39 zeroinfl.control, 96
*Topic hplpt xTopic utilities
plot.ideal, 47 vectorRepresentation, 88
plot.predict.ideal, 49
plot.seatsVotes, 50 absentee, 3
tracex, 84 admit, 5
+Topic manip AIC, 57,61

98



INDEX

alist, 13, 15,17, 20, 21, 33,83
array, 36
AustralianElectionPolling, 6
AustralianElections, 8

base, 40
betaHPD, 9
binomial, 35, 63
bioChemists, 11

ca2006, 12

call, 36,77

coef, 28, 57,61, 94

coef.hurdle (predict.hurdle), 56
coef.zeroinfl (predict.zeroinfl), 60
computeMargins, 13
constrain.items, 14, 18, 34, 37
constrain.legis, 15, 16, 16, 17, 34, 35, 37
convertCodes, /4, 19

data.frame, 68, 69, 73
Date, 8, 69
dbeta, 10, 11
densigamma (igamma), 39
density, 50, 51
dgamma, 40
digamma, 40
dimnames, 73, 84
dropRollCall, /13-15, 17,20, 23, 24, 33, 83,
89
dropUnanimous, 21, 22

EfronMorris, 23

environment, 2/

eval, 21, 59

expression, 20, 21, 81

extractAIC, 26, 56

extractAIC.hurdle (predict.hurdle), 56

extractAIC.zeroinfl (predict.zeroinfl),
60

extractRollCallObject, 24

factor, 44, 67

fitted, 28, 57,61, 94

fitted.hurdle (predict.hurdle), 56
fitted.zeroinfl (predict.zeroinfl), 60
formula, 45

gamma, 39, 40
glm, 29, 45,95

99

glm.fit, 27, 29, 30, 93, 95, 96
glm.nb, 29, 45, 46, 63, 95
glms, 35

hitmiss, 25
hurdle, 26, 30-32, 57, 58, 95
hurdle.control, 27-30, 30
hurdletest, 31

ideal, 15-18, 21, 23, 24, 32, 38, 4749,
52-54, 58-60, 64, 73, 81, 82, 84, 85

idealToMCMC, 37, 38

igamma, 39

igammaHDR (igamma), 39

iraqVote, 41

legend, 85

linearHypothesis, 31, 32

link, 35

list, 13,15, 17,20, 33, 36,72, 73,81, 83
1m, 21

logical, 21, 33, 34,47

loglik, 28, 45, 46, 56, 57, 61, 94
loglLik.hurdle (predict.hurdle), 56
loglLik.zeroinfl (predict.zeroinfl), 60

matrix, 19, 22, 23, 36, 64, 72, 73, 89

mcme, 38

MCMCirt1d, 37

MCMCirtKd, 37

model . frame, 27, 93

model .matrix, 28, 57, 61, 94

model.matrix.hurdle (predict.hurdle), 56

model .matrix.zeroinfl
(predict.zeroinfl), 60

nje7, 43
ntable, 44
numeric, 36

odTest, 45
optim, 27, 28, 30, 93, 96
optimize, 10

pairs, 48
partycodes, 46
pbeta, 10, 11
pgamma, 40

pigamma (igamma), 39
plot.ideal, 37,47



100

plot.predict.ideal, 49, 60

plot.seatsVotes, 50, 78

plotid, 47

plotid (plot.ideal), 47

plot2d, 47

plot2d (plot.ideal), 47

pmatch, 18, 85

poisson, 63

politicalInformation, 51

postProcess, 35, 37, 52

pR2, 26, 55

predict, 26, 28, 54, 57,61, 94

predict.glm, 63

predict.hurdle, 28, 56

predict.ideal, 14, 34, 37,49, 58, 64

predict.zeroinfl, 60, 94

predprob, 62, 64

predprob.glm, 62, 63

predprob.hurdle (predict.hurdle), 56

predprob.ideal, 64

predprob.zeroinfl, 62

predprob.zeroinfl (predict.zeroinfl), 60

presidentialElections, 65

print, 28, 57,61, 94

print.hurdle (hurdle), 26

print.predict.ideal (predict.ideal), 58

print.summary.hurdle (predict.hurdle),
56

print.summary.rollcall
(summary.rollcall), 82

print.summary.zeroinfl
(predict.zeroinfl), 60

print.zeroinfl (zeroinfl), 92

prop.table, 44

prussian, 66

gbeta, 10, 11
ggamma, 40

gigamma (igamma), 39
quantiles, 85

readKH, 46, 67, 73, 80

rep, 85

residuals, 28, 57, 61, 94

residuals.hurdle (predict.hurdle), 56

residuals.zeroinfl (predict.zeroinfl),
60

rigamma (igamma), 39

rnorm, 35

INDEX

RockTheVote, 70

rollcall, 13-20, 22-24, 33, 37,43, 49, 59,
68, 69,72,75,82-84, 89

rownames, 69

rug, 50, 51

s109, 74

sc9497, 75

seatsVotes, 50, 76

simpi, 78

state, 80

state.abb, 80

state.info, 79
summary, 28, 57, 61, 94
summary.hurdle (predict.hurdle), 56
summary.ideal, 74, 37, 60, 80
summary.rollcall, 21, 23,68, 73, 82
summary.zeroinfl (predict.zeroinfl), 60

table, 44

terms, 28, 57, 61, 94

terms.hurdle (predict.hurdle), 56
terms.zeroinfl (predict.zeroinfl), 60
tracex, 37,48, 84

UKHouseOfCommons, 86
unevaluated, 8§/
unionDensity, 87
uniroot, 11,40

veov, 28, 57,61, 94

vcov.hurdle (predict.hurdle), 56
vcov.zeroinfl (predict.zeroinfl), 60
vectorRepresentation, 88

vote92, 90

vuong, 91

zeroinfl, 29, 60, 61, 92, 96
zeroinfl.control, 93, 95, 96, 96



	absentee
	admit
	AustralianElectionPolling
	AustralianElections
	betaHPD
	bioChemists
	ca2006
	computeMargins
	constrain.items
	constrain.legis
	convertCodes
	dropRollCall
	dropUnanimous
	EfronMorris
	extractRollCallObject
	hitmiss
	hurdle
	hurdle.control
	hurdletest
	ideal
	idealToMCMC
	igamma
	iraqVote
	nj07
	ntable
	odTest
	partycodes
	plot.ideal
	plot.predict.ideal
	plot.seatsVotes
	politicalInformation
	postProcess
	pR2
	predict.hurdle
	predict.ideal
	predict.zeroinfl
	predprob
	predprob.glm
	predprob.ideal
	presidentialElections
	prussian
	readKH
	RockTheVote
	rollcall
	s109
	sc9497
	seatsVotes
	simpi
	state.info
	summary.ideal
	summary.rollcall
	tracex
	UKHouseOfCommons
	unionDensity
	vectorRepresentation
	vote92
	vuong
	zeroinfl
	zeroinfl.control
	Index

