
 KRUSKAL_2007.DOC

NOTES ON NON-METRIC MULTI-DIMENSIONAL SCALING

Suppose we have a matrix of dissimilarities (distances) for 5

stimuli. That is

 z1 z2 z3 z4 z5
z1 0
z2 5 0
z3 6 2 0
z4 1 7 10 0
z5 4 9 3 8 0

Where and are the most similar, 1z 4z 11441 =δ=δ , and and are

the most dissimilar,

4z 3z

103443 =δ=δ .

What we wish to do is find 5 z points in a space of a given

dimensionality such that their interpoint distances reproduce the

rank ordering of the dissimilarity matrix. That is,

let

 (1) ()
1/2

2
mkjk

s

1kjm zzΣd ⎥
⎦

⎤
⎢
⎣

⎡
−=

=

be the distance between and . In the best of all possible

worlds we would like to see the following:

jz mz

 if jm δ < δhg then jmd dhg< (2)

where, h, g, j, m all index the stimuli.

If we found 5 z points such that the rank ordering of the δ's
was exactly reproduced, then we would have a "perfect" solution.

What we want to do is clear enough, but how do we find the

z's? We can't just pick a configuration of z's randomly and check

 1

to see if it reproduces the rank orderings. This would be

impractical. What we need is a systematic method of moving the

z's around so that we get closer and closer to reproducing the

rank ordering of the d's. Kruskal invented just such a systematic

way of doing this.

Assume that the observed dissimilarities are unknown

transformations of . That is: jmd

)d(f jmjm =δ (3)

where the function f() could be any function as long as it is

weakly monotone. That is:

if jm δ < δhg then jmd dhg≤ . (4)

The task of non-metric multidimensional scaling (MDS) is to

recover the z's and the unknown transformation f().

Kruskal’s ingenious solution consists of two parts. First,

he created a loss function he dubbed STRESS that contains the rank

ordering condition; and second, he came up with an algorithm that

was part ordinary gradient minimization and part what he dubbed

monotone regression that minimized STRESS (more on this below).

To start the process, suppose we pick an arbitrary

configuration for the z's and compute the jmd . We then construct

the following table:

 2

j,m jmδ (start)
jmd

1()

jmd
∧

1()

jmd
2()

jmd
∧

4,1

1

 .1

 .1

 .101

 .101

3,2 2 .15 .135 .14 .14

5,3 3 .12 .135 .14 .14

5,1 4 .8 .8 .8 .8

2,1 5 1.0 1.0 1.005 1.0

3,1 6 1.0 1.0 .995 1.0

4,2 7 1.3 1.2 1.16 1.16

5,4 8 1.2 1.2 1.17 1.165

5,2 9 1.1 1.2 1.16 1.165

4,3 10 2.0 2.0 2.0 2.0

The violations of rank order are shown by bold-italic (see

the third column--our starting values). Clearly our arbitrary

configuration is close to what we want because the violations are

not serious.

How do we proceed from here? We have to move the z's around

to reduce the violations of rank order. Kruskal's solution for

this problem was to produce distances,d
∧

’s in his terminology, that

are in the proper rank order vis a vis the δ's, and then try to
reproduce them.

To see how he did this, recall that the simple squared-error

loss function for the metric dissimilarities problem is:

2

1 1

q q

jm jm
j m

d d
∧

= =

⎛µ = −⎜
⎝

∑∑ ⎞
⎟
⎠
 (5)

Now, suppose we minimize µ subject to the constraint:

 if jm hg δ < δ then jm hd d
∧ ∧

≤ g

 3

µ is continuous and differentiable everywhere except when 0jmd = ,

so standard methods of steepest descent (gradient methods) can be

used to find z's that minimize µ. For example, from the solution

to the metric similarities problem the update formula for the z’s

is:

(
1

1 1
1

1

1 (h)q
jjmm(h) (h) (h) (h-1)

jk mk jk mk(h)
m jm

d
z z z - z

q d

−
− −

−
=

⎡ ⎤
= +⎢

⎢⎣ ⎦
∑)⎥

⎥
 (6)

Where h is the iteration number. The closer the jmd are to the

jmd
∧

, the closer they are to reproducing the rank ordering of the

's. δ

The 's are produced from the d's by a method Kruskal dubbed

monotone regression. The way this is done is quite simple.

Referring back to the Table, Kruskal simply takes the d's (in

bold-italic in the Table) that are out of order, adds them up and

divides by their number to produce the corresponding 's. Those

d's that are in the proper order become

d
∧

d
∧

d
∧

's without any alteration

(the 's in the Table). The rationale for this is

straightforward. The d's are exact. We want to alter them as

little as possible in order to get the

1()

d
∧

d
∧

's which are in the

correct rank order. If we don't alter the d's very much, we won't

have to move the z's around very much.

For example, the sum of squared error,µ , between the starting

d's and the d's computed from them is
∧

21
1 2 2

1 1
015 015 1 1

() (start)q q
()

jm jm
j m

d d (.) (.) (.) (.)
∧

= =

⎛ ⎞
µ = − = + − + + −⎜ ⎟

⎝ ⎠
∑∑ 2 2

 4

We now find z's that minimize 1()µ . This gives us 1()
jmd . Again,

recall that the ’s are exact--that is they are computed from a

known configuration of z's. We form 's from the 's and our

squared error is now:

1()d
2()

d
∧

1()d

2(2) (1)q q
(2) 2 2 2 2

jm jm
j 1 m 1

d d (.005) (.005) (.005) (.005)
∧

= =

⎛ ⎞
µ = − = + − + + −⎜ ⎟

⎝ ⎠
∑∑

Notice that . To see this, first note that it must be the

case that

(1) (2) µ > µ

2 2(1) (start) (1) (1)q q q q
(1)

jm jm jm jm
j 1 m 1 j 1 m 1

d d d - d
∧ ∧

= = = =

⎛ ⎞ ⎛
µ = − ≥⎜ ⎟ ⎜

⎝ ⎠ ⎝
∑∑ ∑∑

⎞
⎟
⎠

= µ

because we could always use for so that = . By the

principle of least squares it must be the case that:

(start)z 1()z 1()d (start)d

2 2(1) (1) (2) (1)q q q q

(2)
jm jm jm jm

j 1 m 1 j 1 m 1
d - d d d
∧ ∧

= = = =

⎛ ⎞ ⎛ ⎞
≥ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑∑ ∑∑

This will be true because both and by construction are a

weakly monotone ordering of the

1()

d
∧ 2()

d
∧

δ's. However, is constructed

from so that by definition is "closer" to than to

which was constructed from

2()

d
∧

1()d 1()d
2()

d
∧ 1()

d
∧

)start(d .

This ingenious algorithm of Kruskal's can be run until no

further improvement is possible. That is, the algorithm is

guaranteed to converge to a configuration of z's such that the d's

they produce in turn produce d
∧

's which in turn reproduce the

original z's.

 5

Note that the method has a serious weakness. Because we are

only imposing the weak monotone constraint, that is:

 if jm hg δ < δ then jm hd d
∧ ∧

≤ g

0

then setting all the coordinates equal to zero, that is, z = 0, is

a solution because all the djm = 0! In other words, using the

metric similarities loss function in equation (5) works great for

a few iterations! That is, given jmd
∧

≠ then the update formula in

(6) will work fine. But in the next iteration the jmd
∧

’s are

created from the djm‘s. Because there is no constraint on the

points they can very quickly collapse in on the origin because

that is a solution.

Kruskal’s solution for this was to normalize the squared

error loss function by dividing it by the sum of the squared

distances. He called this loss function STRESS:

2

1 1

2

1 1

q q

jm jm
j m

q q

jm
j m

d d
S*S
T* d

∧

= =

= =

⎛ ⎞−⎜ ⎟
⎝

= =
∑∑

∑∑
⎠
 (7)

Where S* is the squared error loss function given in equation (5).

The problem with STRESS is that the first derivatives that

form the gradient vector are not simple! In particular:

()2

1 1 1
2 2

jk jk

jk jk jk

S* T*T* S*
z zS T* S* TS

z S* S* z T* zT*

⎛ ⎞∂ ∂
−⎜ ⎟⎜ ⎟∂ ∂ ⎛ ⎞∂ ∂⎝ ⎠= = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

1 *∂
−

∂
=

 6

()

()

1

2

1 1

1
2

1 2 1
1
2 1 12 2

2

q
jm

jk mk
m jm

q s

jm jk mk jk mk
m k

d
z - z

S* d
S

 d (z - z) z - z
T*

=

= =

−

⎧ ⎫⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎪⎢ ⎥− − −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎢ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦⎪ ⎪
⎨ ⎬⎧ ⎫⎪ ⎪⎡ ⎤⎪ ⎪⎛ ⎞ ⎡ ⎤⎨ ⎬⎪ ⎪⎜ ⎟ ⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

∑

∑ ∑
=

() ()
1 1

1 11
q q

jm
jk mk jk mk

m mjm

d
S z - z z

S* d T*= =

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪− − −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∑ ∑ - z

Unfortunately, these derivatives do not have a nice simple

interpretation like those for the metric similarities problem.

 7

