

NOTES ON NON-METRIC MULTI-DIMENSIONAL SCALING

Suppose we have a matrix of *dissimilarities* (distances) for 5 stimuli. That is

	z_1	z_2	z_3	z_4	z_5
z_1	0				
z_2	5	0			
z_3	6	2	0		
z_4	1	7	10	0	
z_5	4	9	3	8	0

Where z_1 and z_4 are the most similar, $\delta_{41} = \delta_{14} = 1$, and z_4 and z_3 are the most dissimilar, $\delta_{43} = \delta_{34} = 10$.

What we wish to do is find 5 \mathbf{z} points in a space of a given dimensionality such that their interpoint distances reproduce the rank ordering of the dissimilarity matrix. That is,

let

$$d_{jm} = \left[\sum_{k=1}^s (z_{jk} - z_{mk})^2 \right]^{1/2} \quad (1)$$

be the distance between z_j and z_m . In the best of all possible worlds we would like to see the following:

$$\text{if } \delta_{jm} < \delta_{hg} \text{ then } d_{jm} < d_{hg} \quad (2)$$

where, h, g, j, m all index the stimuli.

If we found 5 \mathbf{z} points such that the rank ordering of the δ 's was exactly reproduced, then we would have a "perfect" solution.

What we want to do is clear enough, but how do we find the \mathbf{z} 's? We can't just pick a configuration of \mathbf{z} 's randomly and check

to see if it reproduces the rank orderings. This would be impractical. What we need is a *systematic* method of moving the \mathbf{z} 's around so that we get closer and closer to reproducing the rank ordering of the \mathbf{d} 's. Kruskal invented just such a systematic way of doing this.

Assume that the observed dissimilarities are unknown transformations of \mathbf{d}_{jm} . That is:

$$\delta_{jm} = f(d_{jm}) \quad (3)$$

where the function $f()$ could be any function as long as it is *weakly monotone*. That is:

$$\text{if } \delta_{jm} < \delta_{hg} \text{ then } \mathbf{d}_{jm} \leq \mathbf{d}_{hg} . \quad (4)$$

The task of non-metric multidimensional scaling (MDS) is to recover the \mathbf{z} 's and the unknown transformation $f()$.

Kruskal's ingenious solution consists of two parts. First, he created a loss function he dubbed *STRESS* that contains the rank ordering condition; and second, he came up with an algorithm that was part ordinary gradient minimization and part what he dubbed *monotone regression* that minimized STRESS (more on this below).

To start the process, suppose we pick an arbitrary configuration for the \mathbf{z} 's and compute the \mathbf{d}_{jm} . We then construct the following table:

j, m	δ_{jm}	$\mathbf{d}_{jm}^{(\text{start})}$	$\hat{\mathbf{d}}_{jm}^{(1)}$	$\mathbf{d}_{jm}^{(1)}$	$\hat{\mathbf{d}}_{jm}^{(2)}$
4, 1	1	.1	.1	.101	.101
3, 2	2	.15	.135	.14	.14
5, 3	3	.12	.135	.14	.14
5, 1	4	.8	.8	.8	.8
2, 1	5	1.0	1.0	1.005	1.0
3, 1	6	1.0	1.0	.995	1.0
4, 2	7	1.3	1.2	1.16	1.16
5, 4	8	1.2	1.2	1.17	1.165
5, 2	9	1.1	1.2	1.16	1.165
4, 3	10	2.0	2.0	2.0	2.0

The violations of rank order are shown by bold-italic (see the third column--our starting values). Clearly our arbitrary configuration is close to what we want because the violations are not serious.

How do we proceed from here? We have to move the \mathbf{z} 's around to reduce the violations of rank order. Kruskal's solution for this problem was to produce distances, $\hat{\mathbf{d}}$'s in his terminology, that are in the proper rank order vis a vis the δ 's, and then try to reproduce them.

To see how he did this, recall that the simple squared-error loss function for the metric dissimilarities problem is:

$$\mu = \sum_{j=1}^q \sum_{m=1}^q \left(\hat{\mathbf{d}}_{jm} - \mathbf{d}_{jm} \right)^2 \quad (5)$$

Now, suppose we minimize μ subject to the constraint:

$$\text{if } \delta_{jm} < \delta_{hg} \text{ then } \hat{\mathbf{d}}_{jm} \leq \hat{\mathbf{d}}_{hg}$$

μ is continuous and differentiable everywhere except when $\mathbf{d}_{jm} = 0$, so standard methods of steepest descent (gradient methods) can be used to find \mathbf{z} 's that minimize μ . For example, from the solution to the metric similarities problem the update formula for the \mathbf{z} 's is:

$$\mathbf{z}_{jk}^{(h)} = \frac{1}{q} \sum_{m=1}^q \left[\mathbf{z}_{mk}^{(h-1)} + \frac{\hat{\mathbf{d}}_{jm}^{(h-1)}}{\mathbf{d}_{jm}^{(h-1)}} \left(\mathbf{z}_{jk}^{(h-1)} - \mathbf{z}_{mk}^{(h-1)} \right) \right] \quad (6)$$

Where h is the iteration number. The closer the \mathbf{d}_{jm} are to the $\hat{\mathbf{d}}_{jm}$, the closer they are to reproducing the rank ordering of the δ 's.

The $\hat{\mathbf{d}}$'s are produced from the \mathbf{d} 's by a method Kruskal dubbed monotone regression. The way this is done is quite simple. Referring back to the Table, Kruskal simply takes the \mathbf{d} 's (in bold-italic in the Table) that are out of order, adds them up and divides by their number to produce the corresponding $\hat{\mathbf{d}}$'s. Those \mathbf{d} 's that are in the proper order become $\hat{\mathbf{d}}$'s without any alteration (the $\hat{\mathbf{d}}^{(1)}$'s in the Table). The rationale for this is straightforward. The \mathbf{d} 's are exact. We want to alter them as little as possible in order to get the $\hat{\mathbf{d}}$'s which are in the correct rank order. If we don't alter the \mathbf{d} 's very much, we won't have to move the \mathbf{z} 's around very much.

For example, the sum of squared error, μ , between the starting \mathbf{d} 's and the $\hat{\mathbf{d}}$'s computed from them is

$$\mu^{(1)} = \sum_{j=1}^q \sum_{m=1}^q \left(\hat{\mathbf{d}}_{jm}^{(1)} - \mathbf{d}_{jm}^{(\text{start})} \right)^2 = (.015)^2 + (-.015)^2 + (.1)^2 + (-.1)^2$$

We now find \mathbf{z} 's that minimize $\mu^{(1)}$. This gives us $\hat{\mathbf{d}}_{jm}^{(1)}$. Again, recall that the $\mathbf{d}^{(1)}$'s are *exact*--that is they are computed from a known configuration of \mathbf{z} 's. We form $\hat{\mathbf{d}}^{(2)}$'s from the $\hat{\mathbf{d}}^{(1)}$'s and our squared error is now:

$$\mu^{(2)} = \sum_{j=1}^q \sum_{m=1}^q \left(\hat{d}_{jm}^{(2)} - \hat{d}_{jm}^{(1)} \right)^2 = (.005)^2 + (-.005)^2 + (.005)^2 + (-.005)^2$$

Notice that $\mu^{(1)} > \mu^{(2)}$. To see this, first note that it must be the case that

$$\mu^{(1)} = \sum_{j=1}^q \sum_{m=1}^q \left(\hat{d}_{jm}^{(1)} - \mathbf{d}_{jm}^{(\text{start})} \right)^2 \geq \sum_{j=1}^q \sum_{m=1}^q \left(\hat{d}_{jm}^{(1)} - \hat{d}_{jm}^{(1)} \right)^2$$

because we could always use $\mathbf{z}^{(\text{start})}$ for $\mathbf{z}^{(1)}$ so that $\mathbf{d}^{(1)} = \mathbf{d}^{(\text{start})}$. By the principle of least squares it must be the case that:

$$\sum_{j=1}^q \sum_{m=1}^q \left(\hat{d}_{jm}^{(1)} - \mathbf{d}_{jm}^{(1)} \right)^2 \geq \sum_{j=1}^q \sum_{m=1}^q \left(\hat{d}_{jm}^{(2)} - \hat{d}_{jm}^{(1)} \right)^2 = \mu^{(2)}$$

This will be true because both $\hat{\mathbf{d}}^{(1)}$ and $\hat{\mathbf{d}}^{(2)}$ by construction are a weakly monotone ordering of the δ 's. However, $\hat{\mathbf{d}}^{(2)}$ is constructed from $\hat{\mathbf{d}}^{(1)}$ so that $\hat{\mathbf{d}}^{(1)}$ by definition is "closer" to $\hat{\mathbf{d}}^{(2)}$ than to $\hat{\mathbf{d}}^{(1)}$ which was constructed from $\mathbf{d}^{(\text{start})}$.

This ingenious algorithm of Kruskal's can be run until no further improvement is possible. That is, the algorithm is guaranteed to converge to a configuration of \mathbf{z} 's such that the \mathbf{d} 's they produce in turn produce $\hat{\mathbf{d}}$'s which in turn reproduce the original \mathbf{z} 's.

Note that the method has a serious weakness. Because we are only imposing the *weak monotone* constraint, that is:

$$\text{if } \delta_{jm} < \delta_{hg} \text{ then } \hat{d}_{jm} \leq \hat{d}_{hg}$$

then setting all the coordinates equal to zero, that is, $\mathbf{z} = \mathbf{0}$, is a solution because all the $d_{jm} = 0$! In other words, using the metric similarities loss function in equation (5) works great for a few iterations! That is, given $\hat{d}_{jm} \neq 0$ then the update formula in (6) will work fine. But in the next iteration the \hat{d}_{jm} 's are created from the d_{jm} 's. Because there is no constraint on the points they can very quickly collapse in on the origin because that is a solution.

Kruskal's solution for this was to normalize the squared error loss function by dividing it by the sum of the squared distances. He called this loss function STRESS:

$$S = \sqrt{\frac{S^*}{T^*}} = \sqrt{\frac{\sum_{j=1}^q \sum_{m=1}^q (\hat{d}_{jm} - d_{jm})^2}{\sum_{j=1}^q \sum_{m=1}^q d_{jm}^2}} \quad (7)$$

Where S^* is the squared error loss function given in equation (5).

The problem with STRESS is that the first derivatives that form the gradient vector are not simple! In particular:

$$\frac{\partial S}{\partial z_{jk}} = \frac{1}{2} \sqrt{\frac{T^*}{S^*}} \frac{\left(T^* \frac{\partial S^*}{\partial z_{jk}} - S^* \frac{\partial T^*}{\partial z_{jk}} \right)}{(T^*)^2} = \frac{1}{2} S \left(\frac{1}{S^*} \frac{\partial S^*}{\partial z_{jk}} - \frac{1}{T^*} \frac{\partial T^*}{\partial z_{jk}} \right) =$$

$$\frac{1}{2} \mathbf{S} \left\{ \frac{1}{\mathbf{S}^*} \left[-2 \sum_{m=1}^q \left\{ \left(\frac{\hat{\mathbf{d}}_{jm}}{\mathbf{d}_{jm}} - 1 \right) (\mathbf{z}_{jk} - \mathbf{z}_{mk}) \right\} \right] - \frac{1}{\mathbf{T}^*} 2 \sum_{m=1}^q \left\{ \mathbf{d}_{jm} \left(\frac{1}{2} \right) \left[\sum_{k=1}^s (\mathbf{z}_{jk} - \mathbf{z}_{mk})^2 \right]^{-\frac{1}{2}} (2[\mathbf{z}_{jk} - \mathbf{z}_{mk}]) \right\} \right\} = \mathbf{S} \left\{ -\frac{1}{\mathbf{S}^*} \sum_{m=1}^q \left[\left(\frac{\hat{\mathbf{d}}_{jm}}{\mathbf{d}_{jm}} - 1 \right) (\mathbf{z}_{jk} - \mathbf{z}_{mk}) \right] - \frac{1}{\mathbf{T}^*} \sum_{m=1}^q (\mathbf{z}_{jk} - \mathbf{z}_{mk}) \right\}$$

Unfortunately, these derivatives do not have a nice simple interpretation like those for the metric similarities problem.