KRUSKAL_2007.DOC

NOTES ON NON-METRIC MULTI-DIMENSIONAL SCALING

Suppose we have a matrix of dissimilarities (distances) for 5

stimuli. That 1is

z, 2, z3 z, Zg
z,| O
z,| 5 0
z;0 6 2 O
z,/ 1 7 10 O
z;1 4 9 3 8 O

Where z;and z,are the most similar, 9, =9,=1, and z, and z; are

the most dissimilar, 04 =054 =10.

What we wish to do is find 5 z points in a space of a given
dimensionality such that their interpoint distances reproduce the
rank ordering of the dissimilarity matrix. That is,
let

. 12
djm = |:k221(zjk - ka)z} D

be the distance between z.

j and z, . In the best of all possible

worlds we would like to see the following:
if 6,,<39, then d;, <d, (2)
where, h, g, j, m all iIndex the stimuli.
If we found 5 z points such that the rank ordering of the 0"s
was exactly reproduced, then we would have a "perfect'” solution.

What we want to do i1s clear enough, but how do we find the
z"s? We can"t just pick a configuration of z"s randomly and check

to see if it reproduces the rank orderings. This would be
impractical. What we need is a systematic method of moving the
z"s around so that we get closer and closer to reproducing the
rank ordering of the d"s. Kruskal invented just such a systematic
way of doing this.

Assume that the observed dissimilarities are unknown

transformations ofdﬁn. That is:

6jm =f(djm) 3)
where the function () could be any function as long as 1t is
weakly monotone. That is:

if 6,,<39, then d;, <d,.- 4)

The task of non-metric multidimensional scaling (MDS) is to
recover the z"s and the unknown transformation ().

Kruskal’s ingenious solution consists of two parts. First,
he created a loss function he dubbed STRESS that contains the rank
ordering condition; and second, he came up with an algorithm that
was part ordinary gradient minimization and part what he dubbed
monotone regression that minimized STRESS (more on this below).

To start the process, suppose we pick an arbitrary

configuration for the z"s and compute the d, . We then construct

the following table:

) (2)
. . (start)) m N
j.m Ojm diy dim din dim

4,1 1 1 1 101 101
3,2 2 15 135 14 14
5,3 3 .12 135 .14 .14
5,1 4 .8 8 -8 -8
2,1 5 1.0 1.0 1.005 1.0
3,1 6 1.0 1.0 -995 1.0
4,2 7 1.3 1.2 1.16 1.16
5,4 8 1.2 1.2 1.17 1.165
5,2 9 1.1 1.2 1.16 1.165
4,3 10 2.0 2.0 2.0 2.0

The violations of rank order are shown by bold-italic (see
the third column--our starting values). Clearly our arbitrary
configuration is close to what we want because the violations are
not serious.

How do we proceed from here? We have to move the z"s around

to reduce the violations of rank order. Kruskal®s solution for

A

this problem was to produce distances,d

s in his terminology, that

are in the proper rank order vis a vis the 0"s, and then try to
reproduce them.
To see how he did this, recall that the simple squared-error

loss function for the metric dissimilarities problem is:

d /A 2
1=33(dn-c,))
Now, suppose we minimize P subject to the constraint:

if 8 < Oy then &ms am

U is continuous and differentiable everywhere except when d; =0,

so standard methods of steepest descent (gradient methods) can be
used to find z"s that minimize p. For example, from the solution
to the metric similarities problem the update formula for the z’s
is:
1 d
70 = 2] 2+ oy (4 -2 ()

jm

Where h is the iteration number. The closer the d;, are to the

&m, the closer they are to reproducing the rank ordering of the
O0"s.

The a's are produced from the d"s by a method Kruskal dubbed
monotone regression. The way this is done i1s quite simple.
Referring back to the Table, Kruskal simply takes the d"s (in
bold-italic in the Table) that are out of order, adds them up and

divides by their number to produce the corresponding a's. Those

d*s that are in the proper order become d"s without any alteration

A
(the d "s in the Table). The rationale for this is

straightforward. The d"s are exact. We want to alter them as

A

little as possible in order to get the d"s which are iIn the
correct rank order. |If we don"t alter the d"s very much, we won"t
have to move the z"s around very much.

For example, the sum of squared error,pu, between the starting

>

d*s and the d*"s computed from them is

g q (A (start))?
u“:ZZLdjm—djm } =(.015)* + (=.015)* + (.1)* + (-.1)?

We now Find z"s that minimize p . This gives us d¥ . Again,

jm -
recall that the d"’s are exact--that is they are computed from a

AQ)
known configuration of z*"s. We form d “s from the d" *"s and our

squared error IS now:

a9 (A@®)
p® = 22[d jm—d ,-mJ = (.005)? + (—.005)? + (.005)* + (—.005)?

j=1 m=

=N

Notice thatp®> u®. To see this, first note that it must be the

case that

because we could always use z*" for z"so that d®= d®*" . By the

principle of least squares it must be the case that:
a a (A0 Oy a4 a2 o)
22 djm - djm 2 2 djm—djm = H(Z)

A A2)
This will be true because both d and d by construction are a

A2)
weakly monotone ordering of the 0"s. However, d 1is constructed

A2 A
from d” so that d® by definition is "closer" to d than to d
which was constructed from d®® _
This ingenious algorithm of Kruskal®s can be run until no
further improvement is possible. That is, the algorithm is
guaranteed to converge to a configuration of z"s such that the d"s

they produce in turn produce a's which in turn reproduce the

original z"s.

Note that the method has a serious weakness. Because we are

only imposing the weak monotone constraint, that is:

if 5, <85, then din< dr
then setting all the coordinates equal to zero, that i1s, z = 0, 1Is
a solution because all the d;, = 0! In other words, using the
metric similarities loss function in equation (5) works great for

a few iterations! That is, given djmn#0 then the update formula in

(6) will work fine. But iIn the next i1teration the aﬁn’s are
created from the dj,“s. Because there is no constraint on the
points they can very quickly collapse in on the origin because
that i1s a solution.

Kruskal’s solution for this was to normalize the squared
error loss function by dividing it by the sum of the squared

distances. He called this loss function STRESS:

q
S S Jj=1 m=l (7)

Where S* i1s the squared error loss function given in equation (5).
The problem with STRESS is that the first derivatives that

form the gradient vector are not simple! In particular:

* *
T#05% 0T J
1

s _1 /2(Ow) _1gf LoS* 1 aT*)
oz, 2\'s* (T*) 27\ S*oz;, T*oz,

3

e (Rl RNl p R

Unfortunately, these derivatives do not have a nice simple

interpretation like those for the metric similarities problem.

