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The p by q matrix of squared distances between X and Z (individuals and stimuli) is: 
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This can be written in matrix algebra as: 
 
 D = diag(XX’)Jq

’ – 2XZ’ + Jpdiag(ZZ’)’ =  

 

'
q
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Note that the rank of D, ρ(D), must be less than or equal to s+2; i.e., ρ(D) ≤ s + 2 
 
The equivalent expression for the symmetric matrix of squared distances between the 

stimuli is: 
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’ – 2ZZ’ + Jqdiag(ZZ’)’ =  

 

'
q

q

       J       
Z'[diag(ZZ') | -2Z | J ]

diag(ZZ')'

 
 
 
 
  

 

 
 

The Double-Centered Matrix -- D 
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Let the mean of the ith row of D be 
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 The matrix D is Double-Centered as follows:  from each element subtract the 

column mean, subtract the row mean, add the matrix mean, and divide by –2; that is,  
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In matrix notation, this produces the p by q matrix Y which is equal to the product of a p 

by s matrix X* and a q by s matrix Z*; namely 
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Note the reason why this is called a double centered matrix.  The xi‘s are in a coordinate 

system centered at their mean -- x  -- and the zj ‘s are in an entirely different coordinate 

system – one centered at their mean -- z . 

 
The Double-Centered Matrix -- Dz  
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 The matrix Dz is Double-Centered as follows:  from each element subtract the 

column mean, subtract the row mean, add the matrix mean, and divide by –2; that is,  
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In matrix notation, this produces the q by q matrix Y which is equal to the cross-product 

matrix of the q by s matrix Z* times itself; namely 
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Note that this problem is easily solved because, without loss of generality, we can 

assume that the coordinates have zero means, that is, z =0, and we can use simple 

eigenvector/eigenvalue decomposition to solve for Z. 

 

Example From Old Homework 

Below is a matrix of squared distances between 7 points in two dimensions. One of 

the points is at the origin and the other 6 are arranged symmetrically around it. 

Double Center the matrix and solve for the coordinates. Show all your computations. 

 
                           1   2   3   4   5   6   7 
                         --------------------------- 
                       1 | 0   2   1   2   2   1   2 
                         |             
                       2 | 2   0   1   4   8   5   4 
                         |             
                       3 | 1   1   0   1   5   4   5 
                         |                        
                       4 | 2   4   1   0   4   5   8 
                         | 
                       5 | 2   8   5   4   0   1   4 
                         | 
                       6 | 1   5   4   5   1   0   1 
                         | 
                       7 | 2   4   5   8   4   1   0 
                         --------------------------- 

  
Find the row, column, and matrix means: 
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Row & Column 1 = (0+2+1+2+2+1+2)/7 = 10/7 = 1.43 
Row & Column 2 = (2+0+1+4+8+5+4)/7 = 24/7 = 3.43 
Row & Column 3 = (1+1+0+1+5+4+5)/7 = 17/7 = 2.43 
Row & Column 4 = (2+4+1+0+4+5+8)/7 = 24/7 = 3.43 
Row & Column 5 = (2+8+5+4+0+1+4)/7 = 24/7 = 3.43 
Row & Column 6 = (1+5+4+5+1+0+1)/7 = 17/7 = 2.43 
Row & Column 7 = (2+4+5+8+4+1+0)/7 = 24/7 = 3.43 
 
 
Matrix Mean = 
(0+2+1+2+2+1+2+2+0+1+4+8+5+4+1+1+0+1+5+4+5+2+4+1+0+4+5+8+2+
8+5+4+0+1+4+1+5+4+5+1+0+1+2+4+5+8+4+1+0)/49 = 140/49 = 2.86 
 
This produces the Double-Centered Matrix: 
 

                           1   2   3   4   5   6   7 
                         --------------------------- 
                       1 | 0   0   0   0   0   0   0 
                         |             
                       2 | 0   2   1   0  -2  -1   0 
                         |             
                       3 | 0   1   1   1  -1  -1  -1 
                         |                        
                       4 | 0   0   1   2   0  -1  -2 
                         | 
                       5 | 0  -2  -1   0   2   1   0 
                         | 
                       6 | 0  -1  -1  -1   1   1   1 
                         | 
                       7 | 0   0  -1  -2   0   1   2 
                         --------------------------- 

 
Answer???? 
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Remark About Rotations 

 

Any rotation of above matrix is also an answer.  For example, 
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In general:  
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0 1
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sin   cos
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θ θ  −    − θ θ  − −
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− 
 − 

 

 

Note that:  
0

  cos  sin cos -sin 1 0
sin   cos sin   cos 1

θ θ θ θ     
=     - θ θ θ θ     

 

 

In three dimensions rotation matrices look like this: 

 

Γx = 
1 0 0
0
0

x x

x x

cos sin
sin   cos

 
 θ − θ 
 θ θ 

, a rotation around the x-axis; 

Γy = 

0

0 1 0
0

y y

y y

  cos sin

sin cos

θ θ 
 
 
 − θ θ 

, a rotation around the y-axis; 

Γz = 
0
0

0 0

z z

z z

cos sin
sin   cos

1

θ − θ 
 θ θ 
  

, a rotation around the z-axis. 

Note that 

Γx Γx’ = I3  

Γy Γy’ = I3 

Γz Γz’ = I3 

Where I3 is a 3 by 3 Identity matrix.  
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You can get any general rotation by simply multiplying the above matrices; for 

example: 

Γx Γy Γz 

Γx Γz 

Γx Γz Γy 

 Etc 
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