

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \cdot & \cdot & \cdot & \mathbf{x}_{1s} \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \cdot & \cdot & \cdot & \mathbf{x}_{2s} \\ \cdot & \cdot & \cdot & & & \cdot \\ \cdot & \cdot & \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot & \cdot & \cdot \\ \mathbf{x}_{p1} & \mathbf{x}_{p2} & \cdot & \cdot & \cdot & \mathbf{x}_{ps} \end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} & \cdot & \cdot & \cdot & \mathbf{z}_{1s} \\ \mathbf{z}_{21} & \mathbf{z}_{22} & \cdot & \cdot & \cdot & \mathbf{z}_{2s} \\ \cdot & \cdot & \cdot & & & \cdot \\ \cdot & \cdot & \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot & \cdot & \cdot \\ \mathbf{z}_{q1} & \mathbf{z}_{q2} & \cdot & \cdot & \cdot & \mathbf{z}_{qs} \end{bmatrix}$$

$$\mathbf{J}_p = \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \vdots \\ \mathbf{1} \end{bmatrix} \quad \text{diag}(\mathbf{XX}') = \begin{bmatrix} \sum_{k=1}^s \mathbf{x}_{1k}^2 \\ \sum_{k=1}^s \mathbf{x}_{2k}^2 \\ \sum_{k=1}^s \mathbf{x}_{3k}^2 \\ \vdots \\ \sum_{k=1}^s \mathbf{x}_{pk}^2 \end{bmatrix} \quad \text{diag}(\mathbf{ZZ}') = \begin{bmatrix} \sum_{k=1}^s \mathbf{z}_{1k}^2 \\ \sum_{k=1}^s \mathbf{z}_{2k}^2 \\ \sum_{k=1}^s \mathbf{z}_{3k}^2 \\ \vdots \\ \sum_{k=1}^s \mathbf{z}_{qk}^2 \end{bmatrix}$$

The p by q matrix of squared distances between \mathbf{X} and \mathbf{Z} (individuals and stimuli) is:

$$\mathbf{D} = \begin{bmatrix} \sum_{k=1}^s (x_{1k} - z_{1k})^2 & \sum_{k=1}^s (x_{1k} - z_{2k})^2 & \dots & \dots & \sum_{k=1}^s (x_{1k} - z_{qk})^2 \\ \sum_{k=1}^s (x_{2k} - z_{1k})^2 & \sum_{k=1}^s (x_{2k} - z_{2k})^2 & \dots & \dots & \sum_{k=1}^s (x_{2k} - z_{qk})^2 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \sum_{k=1}^s (x_{pk} - z_{1k})^2 & \sum_{k=1}^s (x_{pk} - z_{2k})^2 & \dots & \dots & \sum_{k=1}^s (x_{pk} - z_{qk})^2 \end{bmatrix}$$

This can be written in matrix algebra as:

$$\mathbf{D} = \mathbf{diag}(\mathbf{XX}') \mathbf{J}_q' - 2\mathbf{XZ}' + \mathbf{J}_p \mathbf{diag}(\mathbf{ZZ}')' =$$

$$[\mathbf{diag}(\mathbf{XX}') \mid -2\mathbf{X} \mid \mathbf{J}_p] \begin{bmatrix} \mathbf{J}_q' \\ \hline \mathbf{Z}' \\ \hline \mathbf{diag}(\mathbf{ZZ}')' \end{bmatrix}$$

Note that the rank of \mathbf{D} , $\rho(\mathbf{D})$, must be less than or equal to $s+2$; i.e., $\rho(\mathbf{D}) \leq s + 2$

The equivalent expression for the symmetric matrix of squared distances between the stimuli is:

$$\mathbf{D}_z = \mathbf{diag}(\mathbf{ZZ}') \mathbf{J}_q' - 2\mathbf{ZZ}' + \mathbf{J}_q \mathbf{diag}(\mathbf{ZZ}')' =$$

$$[\mathbf{diag}(\mathbf{ZZ}') \mid -2\mathbf{Z} \mid \mathbf{J}_q] \begin{bmatrix} \mathbf{J}_q' \\ \hline \mathbf{Z}' \\ \hline \mathbf{diag}(\mathbf{ZZ}')' \end{bmatrix}$$

The Double-Centered Matrix -- \mathbf{D}

$$\text{Let the mean of the } j\text{th column of } \mathbf{D} \text{ be } \bar{\mathbf{d}}_j^2 = \frac{\sum_{i=1}^p d_{ij}^2}{p} =$$

$$\frac{1}{p} \sum_{i=1}^p \sum_{k=1}^s x_{ik}^2 - \frac{2}{p} \sum_{i=1}^p \sum_{k=1}^s x_{ik} z_{jk} + \sum_{k=1}^s z_{jk}^2$$

$$\sum_{j=1}^q d_{ij}^2$$

Let the mean of the i th row of \mathbf{D} be $d_{i.}^2 = \frac{\sum_{j=1}^q d_{ij}^2}{q} =$

$$\frac{1}{q} \sum_{j=1}^q \sum_{k=1}^s x_{ik} z_{jk} + \frac{1}{q} \sum_{j=1}^q \sum_{k=1}^s z_{jk}^2$$

$$\sum_{i=1}^p \sum_{j=1}^q d_{ij}^2$$

Let the mean of the matrix \mathbf{D} be $d_{..}^2 = \frac{\sum_{i=1}^p \sum_{j=1}^q d_{ij}^2}{pq} =$

$$\frac{1}{pq} \sum_{i=1}^p \sum_{k=1}^s x_{ik}^2 - \frac{2}{pq} \sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^s x_{ik} z_{jk} + \frac{1}{q} \sum_{j=1}^q \sum_{k=1}^s z_{jk}^2$$

The matrix \mathbf{D} is **Double-Centered** as follows: from each element subtract the column mean, subtract the row mean, add the matrix mean, and divide by -2 ; that is,

$$\begin{aligned}
 y_{ij} &= \frac{(d_{ij}^2 - d_{.j}^2 - d_{i.}^2 + d_{..}^2)}{-2} = \sum_{k=1}^s [(x_{ik} - \bar{x}_k)(z_{jk} - \bar{z}_k)] = \\
 &= \left\{ \left(\sum_{k=1}^s x_{ik}^2 - 2 \sum_{k=1}^s x_{ik} z_{jk} + \sum_{k=1}^s z_{jk}^2 \right) - \left(\frac{1}{p} \sum_{i=1}^p \sum_{k=1}^s x_{ik}^2 - \frac{2}{p} \sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^s x_{ik} z_{jk} + \sum_{k=1}^s z_{jk}^2 \right) - \right. \\
 &\quad \left. \frac{1}{-2} \left(\sum_{k=1}^s x_{ik}^2 - \frac{2}{q} \sum_{j=1}^q \sum_{k=1}^s x_{ik} z_{jk} + \frac{1}{q} \sum_{j=1}^q \sum_{k=1}^s z_{jk}^2 \right) + \right. \\
 &\quad \left. \left(\frac{1}{p} \sum_{i=1}^p \sum_{k=1}^s x_{ik}^2 - \frac{2}{pq} \sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^s x_{ik} z_{jk} + \frac{1}{q} \sum_{j=1}^q \sum_{k=1}^s z_{jk}^2 \right) \right\} = \\
 &= \left\{ \sum_{k=1}^s x_{ik} z_{jk} - \frac{1}{p} \sum_{i=1}^p \sum_{k=1}^s x_{ik} z_{jk} - \frac{1}{q} \sum_{j=1}^q \sum_{k=1}^s x_{ik} z_{jk} + \frac{1}{pq} \sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^s x_{ik} z_{jk} \right\} = \\
 &= \left\{ \sum_{k=1}^s x_{ik} z_{jk} - \sum_{k=1}^s \left(z_{jk} \frac{1}{p} \sum_{i=1}^p x_{ik} \right) - \sum_{k=1}^s \left(x_{ik} \frac{1}{q} \sum_{j=1}^q z_{jk} \right) + \sum_{k=1}^s \left(z_{jk} \frac{1}{p} \sum_{i=1}^p x_{ik} \right) \left(x_{ik} \frac{1}{q} \sum_{j=1}^q z_{jk} \right) \right\} = \\
 &= \left\{ \sum_{k=1}^s x_{ik} z_{jk} - \sum_{k=1}^s z_{jk} \bar{x}_k - \sum_{k=1}^s x_{ik} \bar{z}_k + \sum_{k=1}^s \bar{z}_k \bar{x}_k \right\} = \\
 &= \left\{ \sum_{k=1}^s [z_{jk} (x_{ik} - \bar{x}_k)] - \sum_{k=1}^s [\bar{z} (x_{ik} - \bar{x}_k)] \right\} = \sum_{k=1}^s [(x_{ik} - \bar{x}_k)(z_{jk} - \bar{z}_k)]
 \end{aligned}$$

In matrix notation, this produces the p by q matrix \mathbf{Y} which is equal to the product of a p by s matrix \mathbf{X}^* and a q by s matrix \mathbf{Z}^* ; namely

$$\mathbf{Y} = \mathbf{X}^* \mathbf{Z}^* = \begin{bmatrix} \mathbf{x}_{11} - \bar{\mathbf{x}}_1 & \mathbf{x}_{12} - \bar{\mathbf{x}}_2 & \dots & \dots & \mathbf{x}_{1s} - \bar{\mathbf{x}}_s \\ \mathbf{x}_{21} - \bar{\mathbf{x}}_1 & \mathbf{x}_{22} - \bar{\mathbf{x}}_2 & \dots & \dots & \mathbf{x}_{2s} - \bar{\mathbf{x}}_s \\ \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{x}_{p1} - \bar{\mathbf{x}}_1 & \mathbf{x}_{p2} - \bar{\mathbf{x}}_2 & \dots & \dots & \mathbf{x}_{ps} - \bar{\mathbf{x}}_s \end{bmatrix} \begin{bmatrix} \mathbf{z}_{11} - \bar{\mathbf{z}}_1 & \mathbf{z}_{12} - \bar{\mathbf{z}}_2 & \dots & \dots & \mathbf{z}_{1s} - \bar{\mathbf{z}}_s \\ \mathbf{z}_{21} - \bar{\mathbf{z}}_1 & \mathbf{z}_{22} - \bar{\mathbf{z}}_2 & \dots & \dots & \mathbf{z}_{2s} - \bar{\mathbf{z}}_s \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{z}_{q1} - \bar{\mathbf{z}}_1 & \mathbf{z}_{q2} - \bar{\mathbf{z}}_2 & \dots & \dots & \mathbf{z}_{qs} - \bar{\mathbf{z}}_s \end{bmatrix}'$$

Note the reason why this is called a *double* centered matrix. The \mathbf{x}_i 's are in a coordinate system *centered at their mean* -- $\bar{\mathbf{x}}$ -- and the \mathbf{z}_j 's are in *an entirely different coordinate system* – one *centered at their mean* -- $\bar{\mathbf{z}}$.

The Double-Centered Matrix -- \mathbf{D}_z

Let the mean of the j th column of \mathbf{D}_z be $\mathbf{d}_{\cdot j}^2 = \frac{\sum_{m=1}^q d_{mj}^2}{q}$

Let the mean of the m th row of \mathbf{D}_z be $\mathbf{d}_{m\cdot}^2 = \frac{\sum_{j=1}^q d_{mj}^2}{q}$

Let the mean of the matrix \mathbf{D}_z be $\mathbf{d}_{\cdot \cdot}^2 = \frac{\sum_{m=1}^q \sum_{j=1}^q d_{mj}^2}{q^2}$

The matrix \mathbf{D}_z is **Double-Centered** as follows: from each element subtract the column mean, subtract the row mean, add the matrix mean, and divide by -2 ; that is,

$$y_{mj} = \frac{(\mathbf{d}_{mj}^2 - \mathbf{d}_{\cdot j}^2 - \mathbf{d}_{m\cdot}^2 + \mathbf{d}_{\cdot \cdot}^2)}{-2} = \sum_{k=1}^s (\mathbf{z}_{mk} - \bar{\mathbf{z}}_k)(\mathbf{z}_{jk} - \bar{\mathbf{z}}_k)$$

In matrix notation, this produces the q by q matrix \mathbf{Y} which is equal to the cross-product matrix of the q by s matrix \mathbf{Z}^* times itself; namely

$$\mathbf{Y} = \mathbf{Z}^* \mathbf{Z}^{*\top} = \begin{bmatrix} \mathbf{z}_{11} - \bar{\mathbf{z}}_1 & \mathbf{z}_{12} - \bar{\mathbf{z}}_2 & \dots & \mathbf{z}_{1s} - \bar{\mathbf{z}}_s \\ \mathbf{z}_{21} - \bar{\mathbf{z}}_1 & \mathbf{z}_{22} - \bar{\mathbf{z}}_2 & \dots & \mathbf{z}_{2s} - \bar{\mathbf{z}}_s \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{z}_{q1} - \bar{\mathbf{z}}_1 & \mathbf{z}_{q2} - \bar{\mathbf{z}}_2 & \dots & \mathbf{z}_{qs} - \bar{\mathbf{z}}_s \end{bmatrix} \begin{bmatrix} \mathbf{z}_{11} - \bar{\mathbf{z}}_1 & \mathbf{z}_{12} - \bar{\mathbf{z}}_2 & \dots & \mathbf{z}_{1s} - \bar{\mathbf{z}}_s \\ \mathbf{z}_{21} - \bar{\mathbf{z}}_1 & \mathbf{z}_{22} - \bar{\mathbf{z}}_2 & \dots & \mathbf{z}_{2s} - \bar{\mathbf{z}}_s \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{z}_{q1} - \bar{\mathbf{z}}_1 & \mathbf{z}_{q2} - \bar{\mathbf{z}}_2 & \dots & \mathbf{z}_{qs} - \bar{\mathbf{z}}_s \end{bmatrix}^t$$

Note that this problem is easily solved because, without loss of generality, we can assume that the coordinates have zero means, that is, $\bar{\mathbf{z}} = \mathbf{0}$, and we can use simple eigenvector/eigenvalue decomposition to solve for \mathbf{Z} .

Example From Old Homework

Below is a matrix of squared distances between 7 points in two dimensions. One of the points is at the origin and the other 6 are arranged symmetrically around it.

Double Center the matrix and solve for the coordinates. Show all your computations.

	1	2	3	4	5	6	7
1	0	2	1	2	2	1	2
2	2	0	1	4	8	5	4
3	1	1	0	1	5	4	5
4	2	4	1	0	4	5	8
5	2	8	5	4	0	1	4
6	1	5	4	5	1	0	1
7	2	4	5	8	4	1	0

Find the row, column, and matrix means:

Row & Column 1 = $(0+2+1+2+2+1+2)/7 = 10/7 = 1.43$
 Row & Column 2 = $(2+0+1+4+8+5+4)/7 = 24/7 = 3.43$
 Row & Column 3 = $(1+1+0+1+5+4+5)/7 = 17/7 = 2.43$
 Row & Column 4 = $(2+4+1+0+4+5+8)/7 = 24/7 = 3.43$
 Row & Column 5 = $(2+8+5+4+0+1+4)/7 = 24/7 = 3.43$
 Row & Column 6 = $(1+5+4+5+1+0+1)/7 = 17/7 = 2.43$
 Row & Column 7 = $(2+4+5+8+4+1+0)/7 = 24/7 = 3.43$

Matrix Mean =
 $(0+2+1+2+2+1+2+2+0+1+4+8+5+4+1+1+0+1+5+4+5+2+4+1+0+4+5+8+2+8+5+4+0+1+4+1+5+4+5+1+0+1+2+4+5+8+4+1+0)/49 = 140/49 = 2.86$

This produces the Double-Centered Matrix:

	1	2	3	4	5	6	7
1	0	0	0	0	0	0	0
2	0	2	1	0	-2	-1	0
3	0	1	1	1	-1	-1	-1
4	0	0	1	2	0	-1	-2
5	0	-2	-1	0	2	1	0
6	0	-1	-1	-1	1	1	1
7	0	0	-1	-2	0	1	2

Answer????

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ -1 & 1 \\ -1 & -1 \\ 0 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & -2 & -1 & 0 \\ 0 & 1 & 1 & 1 & -1 & -1 & -1 \\ 0 & 0 & 1 & 2 & 0 & -1 & -2 \\ 0 & -2 & -1 & 0 & 2 & 1 & 0 \\ 0 & -1 & -1 & -1 & 1 & 1 & 1 \\ 0 & 0 & -1 & -2 & 0 & 1 & 2 \end{bmatrix}$$

So that $\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ -1 & 1 \\ -1 & -1 \\ 0 & -1 \\ 1 & -1 \end{bmatrix}$ is an answer.

Remark About Rotations

Any *rotation* of above matrix is also an answer. For example,

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ -1 & 1 \\ -1 & -1 \\ 0 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} .8 & -.6 \\ .6 & .8 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1.4 & .2 \\ .6 & .8 \\ -.2 & 1.4 \\ -1.4 & -.2 \\ -.6 & -.8 \\ .2 & -1.4 \end{bmatrix}$$

In general:

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ -1 & 1 \\ -1 & -1 \\ 0 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Note that: $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

In three dimensions rotation matrices look like this:

$$\Gamma_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_x & -\sin \theta_x \\ 0 & \sin \theta_x & \cos \theta_x \end{bmatrix}, \text{ a rotation around the x-axis;}$$

$$\Gamma_y = \begin{bmatrix} \cos \theta_y & 0 & \sin \theta_y \\ 0 & 1 & 0 \\ -\sin \theta_y & 0 & \cos \theta_y \end{bmatrix}, \text{ a rotation around the y-axis;}$$

$$\Gamma_z = \begin{bmatrix} \cos \theta_z & -\sin \theta_z & 0 \\ \sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ a rotation around the z-axis.}$$

Note that

$$\Gamma_x \Gamma_x' = \mathbf{I}_3$$

$$\Gamma_y \Gamma_y' = \mathbf{I}_3$$

$$\Gamma_z \Gamma_z' = \mathbf{I}_3$$

Where \mathbf{I}_3 is a 3 by 3 Identity matrix.

You can get any general rotation by simply multiplying the above matrices; for example:

$$\Gamma_x \Gamma_y \Gamma_z$$

$$\Gamma_x \Gamma_z$$

$$\Gamma_x \Gamma_z \Gamma_y$$

Etc