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Notes:  Undervote Example From Simon Jackman 

8 October 2009 

 

UNDERVOTE.ODC 

 1. Model → Specification →  
 2.                              double-click "model" 
                                 in Document Window 
 3.                                                   → Check Model 
 4.                              double-click "list" 
                                 under "data' in 
                                 Document Window       
 5.                                                   → Load Data 
 6.                                                   → Compile 
 7.        (if loading inits)    double-click "list" 
           (if loading inits)    under "inits" in 
           (if loading inits)    Document Window 
 8.        (if loading inits)                         → Load Inits 
8A.                                                   → Gen Inits 
 9. Inference → Samples → type "delta" → set 
10. Inference → Samples → type "good" → set 
11. Model → Update → type number in box → update 
12. [Bring "Sample Monitoring Tool" to front]→ select "delta"→ stats 
17.                                        select "good" → stats 
 
Undervoting for President, by Race: difference in two binomial proportions. 
 
In exit polls for the 1992 election, the Voter News Service asked black and white voters if they did not 
vote for president (a phenomenon known as "intentional undervoting").  Of 6,537 black voters, 26 said 
they did not vote for president; of 44,531 white voters, 91 said they did not vote for president.   
In the American National Election Studies (1964-2000), of 1,101 black voters, 10 report not voting for 
president, while 57 of 9,827 white voters report not voting for president.  Substantive interest centers on 
whether this rate of intentional undervoting differs by race.   
 
These data appear in Tomz and Van Houweling (2003), "How Does Voting Equipment Affect the Racial 
Gap in Voided Ballots?", American Journal of Political Science.    
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model{ 
 for (i in 1:4){ 
  r[i] ~ dbin(p[i],n[i]) 
 } 
  
 delta[1] <- p[2] - p[1]    ## difference 
 good[1] <- step(delta[1])  ## sign of the difference 
 
 delta[2] <- p[4] - p[3]    ## difference 
 good[2] <- step(delta[2])  ## sign of the difference  
 
 ## priors 
 for(i in 1:4){ 
  p[i] ~ dunif(0,1) 
 } 
} 
 
Data: 
list(r=c(26,91,10,57),n=c(6537,44531,1101,9827)) 
 
Since the data set is tiny and the computation trivial, we can generate a large number of samples from 
the posterior densities: 
 
Results: 
  node  mean  sd  MC error 2.5% median 97.5% start sample 
 delta[1] -0.002063 8.219E-4 8.192E-7 -0.003805 -0.002016 -5.876E-4 3000001 1000000 
 delta[2] -0.004073 0.00309 3.09E-6 -0.01088 -0.0038 0.001177 3000001 1000000 
 good[1] 0.001802 0.04241 4.217E-5 0.0 0.0 0.0 3000001 1000000 
 good[2] 0.07692 0.2665 2.722E-4 0.0 0.0 1.0 3000001 1000000 
 
The Bayesian p-values in the vector good can be contrasted with those arising from a classical analysis 
(e.g., using the functions in the ctest library in R); the differences between the classical analysis and the 
Bayesian simulation-based analysis are more pronounced for proportions in the smaller NES data set. 
 
     VNS  NES 
Classical two-sample test, 
one-sided, without continuity  
correction:     .0011  .0929 
 
Classical two-sample test, 
one-sided, with continuity 
correction:     .0018  .1315 
 
Fisher's exact test,  
one-sided:             .0033    .1330 
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  node  mean   sd  MC error  2.5% median 97.5% start sample 
 delta[1] -0.0026  8.221E-4 2.493E-6  -0.0038 -0.0020 -5.853E-4 1 100000 
 delta[2] -0.0041  0.003091 9.931E-6  -0.0108 -0.0038 0.001154 1 100000 
 good[1] 0.00187  0.0432 1.259E-4  0.0 0.0 0.0 1 100000 
 good[2] 0.07705  0.2667 8.325E-4  0.0 0.0 1.0 1 100000 
 


