The Basic Space Model

Let x;j be the ith individual’s (i=1, ..., n) reported position on the jth issue
(=1, ..., m)and let X, be the n by m matrix of observed data where the “0” subscript
indicates that elements are missing from the matrix -- not all individuals report their
positions on all issues. Let ik be the ith individual’s position on the kth (k =1, ..., s)

basic dimension. The model estimated is:

Xo=[¥W' + IncJo + Eo (1A)
where ¥ is the n by s matrix of coordinates of the individuals on the basic dimensions, W
is an m by s matrix of weights, ¢ is a vector of constants of length m, J, is an n length
vector of ones, and Eg is a n by m matrix of error terms. W and ¢ map the individuals
from the basic space onto the issue dimensions.

Equation (1A) can be written as the product of partitioned matrices

X, =[‘P|Jn{ﬂ +E, (18)

where [‘P | Jn] is a n by s+1 matrix and [W|g] isam by s+1 matrix. If n>m and there is

no error or missing data, then the rank of X is s and the rank of X — J,c’ is less than or
equal to s.
No Missing Data

To solve (1) when there is no missing data, set ¢ equal to the column means of X;

that is




and perform a singular value decomposition of X — J.¢’:

X=Jnc' = UAV' = PW'
where U is an n by m matrix, A isa m by m matrix, and V is a m by m matrix.

A simple solution for ¥ and W is

1
Y= UA?
2)

1
W = VA2

1
where the diagonal elements of A? are the square roots of A. Let I, be the m by m

identity matrix. Equation (2) implies that ¥'¥ = W'W. That is:
1 1 1 1

Y'Y= A2UUA? = A?IhZA2 = A

and
1 1 1 1

W'W = A2V'VAZ = A2 A2 =A
In addition, by construction, J,'[X - J.¢'] = 0, so that J,'U = J,’¥ = 0', where 0 isam
length vector of zeros.

When an s < m is preferred, the Eckart-Young Theorem may be used in (2) to
arrive at solutions for ¥ and W. That is, the s + 1 to m singular values are set equal to
zero so that W and W from (2) are n by s and m by s matrices respectively.

Missing Data

Because of the presence of missing data, SVD and the Eckart-Young Theorem

cannot be used directly. Instead, | work with the loss function

§=iz{[zs;\|likwjk]+cj - Xjj ? (3)

i=1 j=1 k=



The notation m; means that the total of the summation over j may vary froms +1tom
depending on how many entries there are in the i" row of Xo. That is, each individual
must report at least s + 1 issue positions in order to be identified. Furthermore, the
number of missing entries in the columns of X, must also be restricted. In most practical
applications n will be much larger than m. Consequently, | will adopt the convention that
there must be at least 2m entries in each column of X,.
In line with the discussion above, the following two restrictions are applied to the
loss function:
Y'Y =WW and J,/¥=0
These restrictions produce the Lagrangean multiplier problem
u=E&+2y[ ¥'J,] + tr[®(¥'¥ - WW)] 4)
where v is an s length vector of Lagrangean multipliers and ® is a symmetric s by s
matrix of Langrangean multipliers.
Given that the Lagrangean multipliers are all zero, the partial derivatives of ¥, W,

and ¢ from equations (3) and (4) are identical. In particular:

o 22 (ijﬁwi/]_'_cj = Xij Wik GA)
oy =1 L\= -

) (zwj/“’i/]-i_cj — X (Wi (5B)
oW i=1 [\/=t -

on =ZZ] (ZWJ’N’M]"-CJ = Xjj 0
oc; i=1 =1

where n; means that the total of the summation over i may vary from 2m to n depending

upon how many entries there are in the ith column of Xg .



Setting (5A) to zero and collecting the s partial derivatives of the ith row of ¥

into a vector and dividing by 2 produces
[W*'W*]y; - W*[Xoi - Co] =0

where W* is an m; by s matrix with the appropriate rows corresponding to missing
entries in X, removed, v; is the ith row of W, X,; is the ith row of X, and is of length m; ,
Co IS the m; length vector of constants corresponding to the elements of X, , and Q isan s
length vector of zeroes.

If W*"W* is nonsingular, then

ﬁi = (W*'W*) "W [x4 - o] (6)

and the rows of ¥ can be estimated through ordinary least squares.
The s partial derivatives of the jth row of W from equation (5B) and the partial

derivative for ¢; from (5C) can be collected into the vector

[e: e Wilogx =0
i Yl X 7Y

C;

where W* = [Wo|Jo] is an nj by s + 1 matrix (the matrix ¥ with the appropriate rows
corresponding to missing data removed and then bordered by ones), w; is the s length
vector of the jth row elements of W, ¢; is the jth element of ¢, X.; is the jth column of X,
and is of length n;, and Q is an s+1 length vector of zeroes.

If ¥;*"¥;* is nonsingular, then

W et e
{g’} = (") ] %, (7)

i

and the rows of W and the elements of ¢ can be estimated through ordinary least squares.



The easiest way to estimate W and W is to select some suitable starting estimate
of either matrix and then iterate between (6) and (7) until convergence is achieved. The
constraints on W and ¥ can be met at any stage of the iteration by simply setting the
column means of ¥ equal to zero, forming the matrix product W', and performing the
singular value decomposition:

PW' = UAV'
where A is an s by s diagonal matrix containing the s singular values in descending order,

and U and V are n by s and s by s matrices respectively such that U'U = V'V = I,. Setting

1 1

¥ = UA? and W = VA? asiin (2) satisfies the constraints.
A simple way to proceed with the estimation is to exploit the orthogonality of ¥
and estimate one column of ¥ and W at a time. This is motivated by the fact that if the n;

are close to n, ¥;*"¥;* in (7) will be very close to a diagonal matrix.



1)

2)

3)

4)

5)

6)

7)

8)

Table 1

Summary of the Estimation Procedure

Obtain starting estimates of ¢, denoted by ¢, using the column means of
Xo. Obtain starting estimates of W, , denoted by @1(” , by finding the vector

of plus and minus ones that maximizes the number of positive elements in the

covariance matrix [Xo, — Jn € ']'[Xo — InC '] (see Appendix B).

Use ¢ and W, in equation (8) to obtain a starting estimate of . denoted
by gl(l) , and set the mean of gl(l’ equal to zero.

Use gl(l) in equation (7) to obtain a second estimate of ¢ and W,-- ¢® and
W,® respectively.

Use ¢® and W, in equation (6) to obtain a second estimate of v, gl(z’ .

Set the mean of gl(z’ equal to zero and set the sum of squares of gl(z) equal
l A 2 n A 2
to the sum of squares of y ; thatis D ¢ =D ¥y .
- i=1 i=1
Repeat steps (3) and (4) until convergence.

(o0 24

Compute Ey, = X, -y W', -J,

Obtain starting estimates of Ww,, w,”, by finding the vector of plus and

minus ones that maximizes the number of positive elements in the covariance
matrix EqEg; .

Use W,® in equation (10) to obtain starting estimates of v, gz‘” .



9) Use gz(”in equation (11) to obtain W, .
10) Use W,® in equation (12) to obtain gz‘z). Set the mean of gz(z) equal to

zero and set the sum of squares of \f/z(z) equal to the sum of squares of g 2(1)

as in step (4) above.

11) Repeat steps (9) and (10) until convergence.

12) Compute Eg, = X, -y W', -J,C' -y W', =E, -y W', .

13) Repeat steps (7) - (12) to estimate remaining dimensions; that is: W, and i,
W, and v , .., and W, and y .

14) Use the full n by s matrix ¥ in equation (7) to obtain the full m by s matrix
W and the m length vector of constants ¢ .

15) Use W and ¢ in equation (6) to obtain a new estimate of ¥

16) Repeat steps (14) and (15) until convergence.



