

## The Basic Space Model

Let  $x_{ij}$  be the  $i$ th individual's ( $i=1, \dots, n$ ) reported position on the  $j$ th issue ( $j = 1, \dots, m$ ) and let  $\mathbf{X}_0$  be the  $n$  by  $m$  matrix of observed data where the “0” subscript indicates that elements are missing from the matrix -- not all individuals report their positions on all issues. Let  $\psi_{ik}$  be the  $i$ th individual's position on the  $k$ th ( $k = 1, \dots, s$ ) basic dimension. The model estimated is:

$$\mathbf{X}_0 = [\Psi \mathbf{W}' + \mathbf{J}_n \underline{\mathbf{c}}']_0 + \mathbf{E}_0 \quad (1A)$$

where  $\Psi$  is the  $n$  by  $s$  matrix of coordinates of the individuals on the basic dimensions,  $\mathbf{W}$  is an  $m$  by  $s$  matrix of weights,  $\underline{\mathbf{c}}$  is a vector of constants of length  $m$ ,  $\mathbf{J}_n$  is an  $n$  length vector of ones, and  $\mathbf{E}_0$  is a  $n$  by  $m$  matrix of error terms.  $\mathbf{W}$  and  $\underline{\mathbf{c}}$  map the individuals from the basic space onto the issue dimensions.

Equation (1A) can be written as the product of partitioned matrices

$$\mathbf{X}_0 = [\Psi \mid \mathbf{J}_n \begin{bmatrix} \mathbf{W}' \\ \underline{\mathbf{c}}' \end{bmatrix}]_0 + \mathbf{E}_0 \quad (1B)$$

where  $[\Psi \mid \mathbf{J}_n]$  is a  $n$  by  $s+1$  matrix and  $[\mathbf{W} \mid \underline{\mathbf{c}}]$  is a  $m$  by  $s+1$  matrix. If  $n > m$  and there is no error or missing data, then the rank of  $\mathbf{X}$  is  $s$  and the rank of  $\mathbf{X} - \mathbf{J}_n \underline{\mathbf{c}}'$  is less than or equal to  $s$ .

### No Missing Data

To solve (1) when there is no missing data, set  $\underline{\mathbf{c}}$  equal to the column means of  $\mathbf{X}$ ; that is

$$\underline{\mathbf{c}}_j = \frac{\sum_{i=1}^n x_{ij}}{n} = \bar{x}_j$$

and perform a singular value decomposition of  $\mathbf{X} - \mathbf{J}_n \mathbf{c}'$  :

$$\mathbf{X} - \mathbf{J}_n \mathbf{c}' = \mathbf{U} \Lambda \mathbf{V}' = \Psi \mathbf{W}'$$

where  $\mathbf{U}$  is an  $n$  by  $m$  matrix,  $\Lambda$  is a  $m$  by  $m$  matrix, and  $\mathbf{V}$  is a  $m$  by  $m$  matrix.

A simple solution for  $\Psi$  and  $\mathbf{W}$  is

$$\begin{aligned}\Psi &= \mathbf{U} \Lambda^{\frac{1}{2}} \\ \mathbf{W} &= \mathbf{V} \Lambda^{\frac{1}{2}}\end{aligned}\tag{2}$$

where the diagonal elements of  $\Lambda^{\frac{1}{2}}$  are the square roots of  $\Lambda$ . Let  $\mathbf{I}_m$  be the  $m$  by  $m$  identity matrix. Equation (2) implies that  $\Psi' \Psi = \mathbf{W}' \mathbf{W}$ . That is:

$$\Psi' \Psi = \Lambda^{\frac{1}{2}} \mathbf{U}' \mathbf{U} \Lambda^{\frac{1}{2}} = \Lambda^{\frac{1}{2}} \mathbf{I}_m \Lambda^{\frac{1}{2}} = \Lambda$$

and

$$\mathbf{W}' \mathbf{W} = \Lambda^{\frac{1}{2}} \mathbf{V}' \mathbf{V} \Lambda^{\frac{1}{2}} = \Lambda^{\frac{1}{2}} \mathbf{I}_m \Lambda^{\frac{1}{2}} = \Lambda$$

In addition, by construction,  $\mathbf{J}_n' [\mathbf{X} - \mathbf{J}_n \mathbf{c}'] = \mathbf{0}'$ , so that  $\mathbf{J}_n' \mathbf{U} = \mathbf{J}_n' \Psi = \mathbf{0}'$ , where  $\mathbf{0}$  is a  $m$  length vector of zeros.

When an  $s < m$  is preferred, the Eckart-Young Theorem may be used in (2) to arrive at solutions for  $\Psi$  and  $\mathbf{W}$ . That is, the  $s + 1$  to  $m$  singular values are set equal to zero so that  $\Psi$  and  $\mathbf{W}$  from (2) are  $n$  by  $s$  and  $m$  by  $s$  matrices respectively.

## Missing Data

Because of the presence of missing data, SVD and the Eckart-Young Theorem cannot be used directly. Instead, I work with the loss function

$$\xi = \sum_{i=1}^n \sum_{j=1}^{m_i} \left\{ \left[ \sum_{k=1}^s \Psi_{ik} \mathbf{w}_{jk} \right] + \mathbf{c}_j - \mathbf{x}_{ij} \right\}^2 \tag{3}$$

The notation  $m_i$  means that the total of the summation over  $j$  may vary from  $s + 1$  to  $m$  depending on how many entries there are in the  $i^{\text{th}}$  row of  $\mathbf{X}_0$ . That is, each individual must report at least  $s + 1$  issue positions in order to be identified. Furthermore, the number of missing entries in the columns of  $\mathbf{X}_0$  must also be restricted. In most practical applications  $n$  will be much larger than  $m$ . Consequently, I will adopt the convention that there must be at least  $2m$  entries in each column of  $\mathbf{X}_0$ .

In line with the discussion above, the following two restrictions are applied to the loss function:

$$\Psi' \Psi = \mathbf{W}' \mathbf{W} \quad \text{and} \quad \mathbf{J}_n' \Psi = \underline{0}'$$

These restrictions produce the Lagrangean multiplier problem

$$\mu = \xi + 2\gamma' [\Psi' \mathbf{J}_n] + \text{tr}[\Phi(\Psi' \Psi - \mathbf{W}' \mathbf{W})] \quad (4)$$

where  $\gamma$  is an  $s$  length vector of Lagrangean multipliers and  $\Phi$  is a symmetric  $s$  by  $s$  matrix of Langrangean multipliers.

Given that the Lagrangean multipliers are all zero, the partial derivatives of  $\Psi$ ,  $\mathbf{W}$ , and  $\mathbf{c}$  from equations (3) and (4) are identical. In particular:

$$\frac{\partial \mu}{\partial \Psi_{ik}} = 2 \sum_{j=1}^{m_i} \left[ \left( \sum_{\ell=1}^s \mathbf{w}_{j\ell} \Psi_{i\ell} \right) + \mathbf{c}_j - \mathbf{x}_{ij} \right] \mathbf{w}_{jk} \quad (5A)$$

$$\frac{\partial \mu}{\partial \mathbf{w}_{jk}} = 2 \sum_{i=1}^{n_j} \left[ \left( \sum_{\ell=1}^s \mathbf{w}_{j\ell} \Psi_{i\ell} \right) + \mathbf{c}_j - \mathbf{x}_{ij} \right] \Psi_{ik} \quad (5B)$$

$$\frac{\partial \mu}{\partial \mathbf{c}_j} = 2 \sum_{i=1}^{n_j} \left[ \left( \sum_{\ell=1}^s \mathbf{w}_{j\ell} \Psi_{i\ell} \right) + \mathbf{c}_j - \mathbf{x}_{ij} \right] \quad (5C)$$

where  $n_j$  means that the total of the summation over  $i$  may vary from  $2m$  to  $n$  depending upon how many entries there are in the  $i^{\text{th}}$  column of  $\mathbf{X}_0$ .

Setting (5A) to zero and collecting the  $s$  partial derivatives of the  $i$ th row of  $\Psi$  into a vector and dividing by 2 produces

$$[\mathbf{W}^* \mathbf{W}^*] \underline{\Psi}_i - \mathbf{W}^* [\underline{\mathbf{x}}_{oi} - \underline{\mathbf{c}}_o] = \underline{\mathbf{0}}$$

where  $\mathbf{W}^*$  is an  $m_i$  by  $s$  matrix with the appropriate rows corresponding to missing entries in  $\mathbf{X}_o$  removed,  $\underline{\Psi}_i$  is the  $i$ th row of  $\Psi$ ,  $\underline{\mathbf{x}}_{oi}$  is the  $i$ th row of  $\mathbf{X}_o$  and is of length  $m_i$ ,  $\underline{\mathbf{c}}_o$  is the  $m_i$  length vector of constants corresponding to the elements of  $\underline{\mathbf{x}}_{oi}$ , and  $\underline{\mathbf{0}}$  is an  $s$  length vector of zeroes.

If  $\mathbf{W}^* \mathbf{W}^*$  is nonsingular, then

$$\hat{\underline{\Psi}}_i = (\mathbf{W}^* \mathbf{W}^*)^{-1} \mathbf{W}^* [\underline{\mathbf{x}}_{oi} - \underline{\mathbf{c}}_o] \quad (6)$$

and the rows of  $\Psi$  can be estimated through ordinary least squares.

The  $s$  partial derivatives of the  $j$ th row of  $\mathbf{W}$  from equation (5B) and the partial derivative for  $\underline{\mathbf{c}}_j$  from (5C) can be collected into the vector

$$[\Psi_j^* \Psi_j^* \left[ \frac{\underline{\mathbf{w}}_j}{\underline{\mathbf{c}}_j} \right]] - \Psi_j^* \underline{\mathbf{x}}_{oj} = \underline{\mathbf{0}}$$

where  $\Psi_j^* = [\Psi_o | \mathbf{J}_o]$  is an  $n_j$  by  $s + 1$  matrix (the matrix  $\Psi$  with the appropriate rows corresponding to missing data removed and then bordered by ones),  $\underline{\mathbf{w}}_j$  is the  $s$  length vector of the  $j$ th row elements of  $\mathbf{W}$ ,  $c_j$  is the  $j$ th element of  $\underline{\mathbf{c}}$ ,  $\underline{\mathbf{x}}_{oj}$  is the  $j$ th column of  $\mathbf{X}_o$  and is of length  $n_j$ , and  $\underline{\mathbf{0}}$  is an  $s+1$  length vector of zeroes.

If  $\Psi_j^* \Psi_j^*$  is nonsingular, then

$$\left[ \frac{\hat{\underline{\mathbf{w}}}_j}{\hat{\underline{\mathbf{c}}}_j} \right] = (\Psi_j^* \Psi_j^*)^{-1} \Psi_j^* \underline{\mathbf{x}}_{oj} \quad (7)$$

and the rows of  $\mathbf{W}$  and the elements of  $\underline{\mathbf{c}}$  can be estimated through ordinary least squares.

The easiest way to estimate  $\mathbf{W}$  and  $\Psi$  is to select some suitable starting estimate of either matrix and then iterate between (6) and (7) until convergence is achieved. The constraints on  $\mathbf{W}$  and  $\Psi$  can be met at any stage of the iteration by simply setting the column means of  $\hat{\Psi}$  equal to zero, forming the matrix product  $\hat{\Psi}\hat{\mathbf{W}}'$ , and performing the singular value decomposition:

$$\hat{\Psi}\hat{\mathbf{W}}' = \mathbf{U}\Lambda\mathbf{V}'$$

where  $\Lambda$  is an  $s$  by  $s$  diagonal matrix containing the  $s$  singular values in descending order, and  $\mathbf{U}$  and  $\mathbf{V}$  are  $n$  by  $s$  and  $s$  by  $s$  matrices respectively such that  $\mathbf{U}'\mathbf{U} = \mathbf{V}'\mathbf{V} = \mathbf{I}_s$ . Setting  $\hat{\Psi} = \mathbf{U}\Lambda^{\frac{1}{2}}$  and  $\hat{\mathbf{W}} = \mathbf{V}\Lambda^{\frac{1}{2}}$  as in (2) satisfies the constraints.

A simple way to proceed with the estimation is to exploit the orthogonality of  $\Psi$  and estimate one column of  $\Psi$  and  $\mathbf{W}$  at a time. This is motivated by the fact that if the  $n_j$  are close to  $n$ ,  $\Psi_j^{*''}\Psi_j^*$  in (7) will be very close to a diagonal matrix.

**Table 1**

**Summary of the Estimation Procedure**

- 1) Obtain starting estimates of  $\underline{\hat{c}}$ , denoted by  $\underline{\hat{c}}^{(1)}$ , using the column means of  $\mathbf{X}_0$ . Obtain starting estimates of  $\underline{\hat{w}}_1$ , denoted by  $\underline{\hat{w}}_1^{(1)}$ , by finding the vector of plus and minus ones that maximizes the number of positive elements in the covariance matrix  $[\mathbf{X}_0 - \mathbf{J}_n \underline{\hat{c}}']' [\mathbf{X}_0 - \mathbf{J}_n \underline{\hat{c}}']$  (see Appendix B).
- 2) Use  $\underline{\hat{c}}^{(1)}$  and  $\underline{\hat{w}}_1^{(1)}$  in equation (8) to obtain a starting estimate of  $\underline{\hat{\Psi}}_1$ , denoted by  $\underline{\hat{\Psi}}_1^{(1)}$ , and set the mean of  $\underline{\hat{\Psi}}_1^{(1)}$  equal to zero.
- 3) Use  $\underline{\hat{\Psi}}_1^{(1)}$  in equation (7) to obtain a second estimate of  $\underline{\hat{c}}$  and  $\underline{\hat{w}}_1$  --  $\underline{\hat{c}}^{(2)}$  and  $\underline{\hat{w}}_1^{(2)}$  respectively.
- 4) Use  $\underline{\hat{c}}^{(2)}$  and  $\underline{\hat{w}}_1^{(2)}$  in equation (6) to obtain a second estimate of  $\underline{\hat{\Psi}}_1$ ,  $\underline{\hat{\Psi}}_1^{(2)}$ . Set the mean of  $\underline{\hat{\Psi}}_1^{(2)}$  equal to zero and set the sum of squares of  $\underline{\hat{\Psi}}_1^{(2)}$  equal to the sum of squares of  $\underline{\hat{\Psi}}_1^{(1)}$ ; that is  $\sum_{i=1}^n \hat{\Psi}_{ii}^{(2)2} = \sum_{i=1}^n \hat{\Psi}_{ii}^{(1)2}$ .
- 5) Repeat steps (3) and (4) until convergence.
- 6) Compute  $\mathbf{E}_{01} = \mathbf{X}_0 \cdot \underline{\hat{\Psi}}_1 \underline{\hat{w}}_1' \cdot \mathbf{J}_n \underline{\hat{c}}'$ .
- 7) Obtain starting estimates of  $\underline{\hat{w}}_2$ ,  $\underline{\hat{w}}_2^{(1)}$ , by finding the vector of plus and minus ones that maximizes the number of positive elements in the covariance matrix  $\mathbf{E}_{01}' \mathbf{E}_{01}$ .
- 8) Use  $\underline{\hat{w}}_2^{(1)}$  in equation (10) to obtain starting estimates of  $\underline{\hat{\Psi}}_2$ ,  $\underline{\hat{\Psi}}_2^{(1)}$ .

9) Use  $\hat{\Psi}_2^{(1)}$  in equation (11) to obtain  $\hat{\underline{w}}_2^{(2)}$ .

10) Use  $\hat{\underline{w}}_2^{(2)}$  in equation (12) to obtain  $\hat{\Psi}_2^{(2)}$ . Set the mean of  $\hat{\Psi}_2^{(2)}$  equal to zero and set the sum of squares of  $\hat{\Psi}_2^{(2)}$  equal to the sum of squares of  $\hat{\Psi}_2^{(1)}$  as in step (4) above.

11) Repeat steps (9) and (10) until convergence.

12) Compute  $\mathbf{E}_{02} = \mathbf{X}_0 \cdot \hat{\Psi}_1 \hat{\underline{w}}_1' - \mathbf{J}_n \hat{\underline{c}}' - \hat{\Psi}_2 \hat{\underline{w}}_2' = \mathbf{E}_{01} \cdot \hat{\Psi}_2 \hat{\underline{w}}_2'$ .

13) Repeat steps (7) - (12) to estimate remaining dimensions; that is:  $\hat{\underline{w}}_3$  and  $\hat{\Psi}_3$ ,  $\hat{\underline{w}}_4$  and  $\hat{\Psi}_4$ , ..., and  $\hat{\underline{w}}_s$  and  $\hat{\Psi}_s$ .

14) Use the full  $n$  by  $s$  matrix  $\hat{\Psi}$  in equation (7) to obtain the full  $m$  by  $s$  matrix  $\hat{\mathbf{W}}$  and the  $m$  length vector of constants  $\hat{\underline{c}}$ .

15) Use  $\hat{\mathbf{W}}$  and  $\hat{\underline{c}}$  in equation (6) to obtain a new estimate of  $\hat{\Psi}$ .

16) Repeat steps (14) and (15) until convergence.