
 1 

The Basic Space Model 
 
 
 Let xij be the ith individual’s (i=1, ..., n) reported position on the jth issue  

(j = 1, ..., m) and let X0 be the n by m matrix of observed data where the “0” subscript 

indicates that elements are missing from the matrix -- not all individuals report their 

positions on all issues.  Let ψik be the ith individual’s position on the kth (k = 1, ..., s) 

basic dimension.  The model estimated is: 

 
X0 = [ΨW' + Jnc']0 + E0    (1A) 

 
where Ψ is the n by s matrix of coordinates of the individuals on the basic dimensions, W 

is an m by s matrix of weights, c is a vector of constants of length m, Jn is an n length 

vector of ones, and E0 is a n by m matrix of error terms.  W and c map the individuals 

from the basic space onto the issue dimensions. 

 Equation (1A) can be written as the product of partitioned matrices 
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where [ ]nJ|Ψ  is a n by s+1 matrix and [ ]W c|  is a m by s+1 matrix.  If n > m and there is 

no error or missing data, then the rank of X is s and the rank of X – Jnc′ is less than or 

equal to s. 

No Missing Data 

 To solve (1) when there is no missing data, set c equal to the column means of X; 

that is 
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and perform a singular value decomposition of X – Jnc′ : 

 
    X – Jnc′ = UΛV′ = ΨW′  
 
where U is an n by m matrix, Λ is a m by m matrix, and V is a m by m matrix. 

 A simple solution for Ψ and W is 

      Ψ = U  
1
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where the diagonal elements of Λ
1
2  are the square roots of Λ.  Let Im be the m by m 

identity matrix.  Equation (2) implies that Ψ′Ψ = W′W.  That is:   
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In addition, by construction, Jn′[X – Jnc′] =  0′ , so that Jn′U = Jn′Ψ = 0′, where 0 is a m 

length vector of zeros. 

 When an s < m is preferred, the Eckart-Young Theorem may be used in (2) to 

arrive at solutions for Ψ and W.  That is, the s + 1 to m singular values are set equal to 

zero so that Ψ and W from (2) are n by s and m by s matrices respectively. 

Missing Data 

 Because of the presence of missing data, SVD and the Eckart-Young Theorem 

cannot be used directly.  Instead, I work with the loss function 
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The notation mi means that the total of the summation over j may vary from s + 1 to m 

depending on how many entries there are in the ith row of X0.  That is, each individual 

must report at least s + 1 issue positions in order to be identified.  Furthermore, the 

number of missing entries in the columns of X0 must also be restricted.  In most practical 

applications n will be much larger than m.  Consequently, I will adopt the convention that 

there must be at least 2m entries in each column of X0. 

 In line with the discussion above, the following two restrictions are applied to the 

loss function: 

Ψ′Ψ = W′W    and    Jn′Ψ = 0′ 
 
These restrictions produce the Lagrangean multiplier problem 

µ = ξ + 2γ′[ Ψ′Jn] + tr[Φ(Ψ′Ψ - W′W)]    (4) 
 
where γ is an s length vector of Lagrangean multipliers and Φ is a symmetric s by s 

matrix of Langrangean multipliers. 

 Given that the Lagrangean multipliers are all zero, the partial derivatives of Ψ, W, 

and c from equations (3) and (4) are identical.  In particular: 
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where nj means that the total of the summation over i may vary from 2m to n depending 

upon how many entries there are in the ith column of X0 . 
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 Setting (5A) to zero and collecting the s partial derivatives of the ith row of Ψ 

into a vector and dividing by 2 produces 

[W*′W*]ψi - W*′[xoi - co] = 0   

where W* is an mi by s matrix with the appropriate rows corresponding to missing 

entries in Xo removed, ψi is the ith row of Ψ, xoi is the ith row of X0 and is of length mi , 

co is the mi length vector of constants corresponding to the elements of xoi , and 0 is an s 

length vector of zeroes.   

 If W*′W* is nonsingular, then 
 

ψ
i
= (W*′W*)-1W*′[xoi - co]    (6) 

 
and the rows of Ψ can be estimated through ordinary least squares.   

 The s partial derivatives of the jth row of W from equation (5B) and the partial 

derivative for cj from (5C) can be collected into the vector 
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where Ψj* = [Ψo|Jo] is an nj by  s + 1 matrix (the matrix Ψ with the appropriate rows 

corresponding to missing data removed and then bordered by ones), wj is the s length 

vector of the jth row elements of W, cj is the jth element of c, xoj is the jth column of Xo 

and is of length nj, and 0 is an s+1 length vector of zeroes. 

 If Ψj*′Ψj* is nonsingular, then 
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and the rows of W and the elements of c can be estimated through ordinary least squares. 
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 The easiest way to estimate W and Ψ is to select some suitable starting estimate 

of either matrix and then iterate between (6) and (7) until convergence is achieved.  The 

constraints on W and Ψ can be met at any stage of the iteration by simply setting the 

column means of Ψ  equal to zero, forming the matrix product  Ψ ′W , and performing the 

singular value decomposition:  

 Ψ ′W = UΛV′ 

where Λ is an s by s diagonal matrix containing the s singular values in descending order, 

and U and V are n by s and s by s matrices respectively such that U′U = V′V = Is.  Setting 

Ψ  = U  
1
2Λ and W  = V

1
2Λ  as in (2) satisfies the constraints. 

 A simple way to proceed with the estimation is to exploit the orthogonality of Ψ 

and estimate one column of Ψ and W at a time.  This is motivated by the fact that if the nj 

are close to n, Ψj*′Ψj* in (7) will be very close to a diagonal matrix.  
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Table 1 

 
Summary of the Estimation Procedure 

 
1)  Obtain starting estimates of c , denoted by  ( )c 1 , using the column means of 

X0.  Obtain starting estimates of w1 , denoted by  ( )w1
1 ,  by finding the vector 

of plus and minus ones that maximizes the number of positive elements in the 

covariance matrix [Xo – Jn c ′]′[Xo – Jn c ′] (see Appendix B). 

2)  Use  ( )c 1  and  ( )w1
1  in equation (8) to obtain a starting estimate of ψ

1
, denoted 

by  ( )ψ
1

1 , and set the mean of  ( )ψ
1

1  equal to zero. 

3)  Use  ( )ψ
1

1 in equation (7) to obtain a second estimate of c  and w1 --   ( )c 2  and 



( )w1
2  respectively. 

4)  Use  ( )c 2  and  ( )w1
2  in equation (6) to obtain a second estimate of ψ

1
,  ( )ψ

1

2  .  

Set the mean of  ( )ψ
1

2  equal to zero and set the sum of squares of   ( )ψ
1

2  equal 

to the sum of squares of  ( )ψ
1

1 ; that is ∑∑ ψψ
n

1=i

(1)
i1

n

1=i

(2)
i1

22 ˆ = ˆ  .    

5)  Repeat steps (3) and (4) until convergence.   

6)  Compute 'ĉJ - 'ŵˆ -  X= E n11001 ψ . 

7)  Obtain starting estimates of w2 ,  ( )w2
1 ,  by finding the vector of plus and 

minus ones that maximizes the number of positive elements in the covariance 

matrix E E01 01
' . 

8)  Use  ( )w2
1  in equation (10) to obtain starting estimates of ψ

2
,  ( )ψ

2

1  . 
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9)  Use  ( )ψ
2

1 in equation (11) to obtain  ( )w2
2  . 

10) Use  ( )w2
2  in equation (12) to obtain  ( )ψ

2

2 . Set the mean of  ( )ψ
2

2  equal to 

zero and set the sum of squares of   ( )ψ
2

2  equal to the sum of squares of )1(

2
ψ̂  

as in step (4) above. 

11) Repeat steps (9) and (10) until convergence. 

12) Compute 220122n11002 'ŵˆ -E = 'ŵˆ -'ĉJ - 'ŵˆ -  X= E ψψψ  . 

13) Repeat steps (7) - (12) to estimate remaining dimensions; that is: w3  and ψ
3
, 

w4  and ψ
4
, ... , and ws  and ψ

s
. 

14) Use the full n by s matrix Ψ  in equation (7) to obtain the full m by s matrix 

W  and the m length vector of constants c  . 

15) Use W  and c  in equation (6) to obtain a new estimate of Ψ . 

16) Repeat steps (14) and (15) until convergence.  

 

 


