Solving the Thermometer Problem
Let T be the p by q matrix of thermometer scores where i=1,...,p is the number of
respondents and j=1,...,q is the number of political/social stimuli receiving ratings. T
can be regarded as a matrix of inverse distances between the respondents and the stimuli.

Specifically, apply the linear transformation:
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Where the observed data are now noisy distances that range from zero to two, that is,
0< dJ < 2, which are assumed to be equal to some true distance plus a random error term

-- d;; +¢;. This transformation is convenient because it tends to confine the estimated

respondent and stimuli points to a unit hypersphere.

Recall that our p by s matrix of individual (respondent) coordinates is:
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and our q by s matrix of stimuli coordinates is:
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The p by q matrix of squared distances between X and Z (individuals [respondents] and
stimuli) is:

S S

Z(Xlk - Zlk)2 Z(Xlk -Z2k)2 s Z(Xlk 'qu)2

Z(XZk =Zy )’ Z(XZk = Zy )’
2

S

Z(ka -Zlk)2 Z(ka -ZZK)2 . .. Z(ka -zqk)2

This can be written in matrix algebra as:

D = diag(XX*)J’ — 2XZ’ + J,diag(ZZ’)’ =
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q
. VA
diag(XX") | 22X | J_ ]| —F—
[diag(XX") | -2X|J, ]| St
Note that the rank of D, p(D), must be less than or equal to s+2; i.e., p(D) < s + 2.

If there was no error then equation (2) can be solved using the method of

Schonemann (1970). Part of Schonemann’s solution is to work with the double-centered

matrix. Recall:
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Y is a p by g matrix which is equal to the product of a p by s matrix X* anda g by s
matrix Z*. It is double-centered because X is defined with respect to the coordinate
system centered at the origin X and Z is defined with respect to the coordinate system
centered at the origin z.

Where the double-centered matrix comes into play in the Thermometer problem is
that we can use singular value decomposition to get starting coordinates for either X or Z

to use in a gradient-style solution. Specifically, consider the standard squared error loss

function:
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Where, from above,
dij = (X;, Zy )2
k=1
SMACOF Solution

SMACOF is an iterative technique that constructs a quadratic function that always lies

above the loss function, (4). To see the logic, expand (4):
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Now, let X® and Z® be the coordinates at the h'" iteration and let X®*D and Z®*D pe

: . : . 5 2
the coordinates at the h+1™ iteration. The firstterm, )° " d;" is always a constant, at
i=1 j=1

. . R 2 .
iteration h+1 the second term is E ngj"”’ . Because the first and second terms are
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trivial, bounding the loss function boils down to finding a bound such that d; > A, for all

I,j where A is easily constructed. De Leeuw’s solution is:
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The numerator comes from the Cauchy-Schwarz inequality which in this case is:
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This implies that: A{™ <d "

Note that when X® =X@+D and Z® =Z®*D then Al =d ™ =d{". Hence:
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This gives us the bounding function we seek:
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Taking derivatives of the right hand side:
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We have s(p+q) equations with s(p+q) unknowns so we can solve for the minimum of the

bounding function. Note that:
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Hence, if we assume that ZM? is centered at the origin, " =" =...=7"" =0,
then we have a solution for all the x""™. Given the x{"*" we can compute the X" and

then the z{;"™ .

Another solution would be:
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The first derivatives are:
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Setting (5) equal to zero and solving for z:



Rearranging:

Therefore:
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Continuing, setting (6) equal to zero and solving for xik:
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Rearranging:
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Note that the solution [equations (7) and (8)] is in the form:
z=f(x,z) and x=g(x,z)
That is, the solutions for z and x are values such that when they are plugged into f(x,z)
and g(x,z) they reproduce themselves!

Define:
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So that equations (7) and (8) can be re-written as:
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Using equation (9), note that the point zj m is:
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Where z, = and x, = are points and — is a scalar.
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Equations (13) and (14) are basic equations of a line that passes through z; and
xi! The general formula for a line equation is:
Y(t)=A+t(B-A) (15)
Where A and B are points and t is a scalar. Note that if 0<t<1 then equation (15) defines
a line that runs between points A and B.

Once specific values are plugged into equations (11) or (12) then the solution for

the point
_iﬂ_ _ﬁn_
Z, X,
z,= " | is simply the centroid of the p z;; points and %, = " | is simply the centroid
_ijs _ _xis _

of the g x;; points!

Finally, note that the squared distance between the points z; and zj m is:
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So that the squared error is represented directly on the s-dimensional hyperplane (see

below).
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Parametric equation of a straight line

Similarly, the squared distance between the points x; and x;; is:
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Another interesting property are the following identities:
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Intuitively, the observed distances, the d,J are the lengths of the vectors attached

to the x; that produce the z;; points (see figure above). Similarly, the dJ are the lengths of

the vectors attached to the z; that produce the xi; points.
It is a relatively simple process to iterate back and forth between equations (7) and
(8) [equivalently, equations (11) and (12)] until the x’s and z ’s reproduce each other.

Note that this process is strictly descending; that is:
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where h is the iteration number. The third and fourth terms of the inequality are true

because z{;*”, by equation (11), is the centroid of the z{]. The second and third terms of
the inequality are true because the z{,;"” are computed using z{,* as shown in equations
(11) and (13). Thatis, the point z{}” , by construction, lies on the line that passes
through x; and z{"* hence it must be closer to z{"** than the point z{}" because z! lies
on the straight line through x; and Z.(ih)' Furthermore, by the identities shown above, the
distance from x;to z{} is d;; and the distance from xito z{;" is d;;. Hence, by the
triangle inequality the distance from z{"*to z{}" must be less than the distance from
z" to 231

Finally, the problem of a zero distance is easily handled in this framework.
Suppose at some point that di;” = 0. Then the corresponding vector of length d;; could

not be “aimed” at a point because x; = z; so that no z{?’ [or x{)] could be computed. In
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this instance any z{}[or x{"'] point with distance d; from x; [or z; | will still satisfy the
inequality above.
Although this algorithm works very well and converges quickly the fly in the

ointment is that the statistical properties of the g, are not clear. For example, suppose

g; ~ N(0,0°) then d;, ~ N(d,;,c°). But this will not work because d;; > 0.

The Cahoon-Hinich Solution
Cahoon and Hinich assume that the observed data are noisy squared distances and
transform the data by picking one of the stimuli to be the origin and subtracting the
column corresponding to that stimulus from the other columns in the data matrix. (I will
denote that matrix as A.) Let D* be the noisy matrix of squared distances. Cahoon and
Hinich assume:
D*=D+E (19)
where D is the p by g matrix of true squared distances given in equation (2) and E isa p

by g matrix of error. When one of the columns is subtracted from the others this has the

effect of canceling out the ZXizk terms from the other columns in D.
k=1

To simplify notation assume that there are g+1 stimuli and we subtract column
g+1 from the first g columns of D. Let the transformed matrix be denoted as D. The

entries in D become:
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Z,1) 0
Zq+1,2 0
Now setting stimulus g+1 to the origin, that is, z,, = " |=| |, theentriesin D
_Zq+l,s _ _0_

simplify to —22 Xy Zy + sz?k . When error is taken into account the Cahoon-Hinich
k=1 k=1

model becomes:
Ay = _22 XaZp ¥ Z ka +&;—¢ .., (20)
k=1 k=1
Now consider the column means of the p by g matrix A:

S S
A = 2
A, ——22 X, Zj, + E z,
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The sum of the error terms across the respondents can be assumed to be zero.

Subtracting the column means from each entry in the corresponding column cancels the

Yz}, terms; that s,
k=l
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Using equation (20) and the regularity assumptions on the errors, the g by g covariance
matrix of the A, —J A, is:
@=4Z'S Z+¥+02,J.J, (22)
Where Z_ is the s by s variance-covariance matrix for X, ¥ is a q by g diagonal matrix
of the variances for the stimuli, namely, o} = E(g}), and o_,, is the corresponding
variance for stimulus g+1, o7, = E(el,,,)
Let
A* = A*—JPS* (23)
where A* is the p by g matrix from equation (21) and &* is the vector of the means of
the g columns of A*. The g by q sample covariance matrix is:

s=—(A"4") (24)

Cahoon and Hinich then recover estimates of the parameters of the model by analyzing S

with maximum likelihood factor analysis and the vector of means & * with OLS and
bootstrapping (errors in variables problems).
The statistical properties of the method are not completely clear as no parametric

assumptions are made about the error.
Transforming the Thermometer Scores into Roll Call Votes

In 1968 respondents were asked to give feeling thermometer ratings to 12 political

figures: George Wallace, Hubert Humphrey, Richard Nixon, Eugene McCarthy, Ronald
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Reagan, Nelson Rockefeller, Lyndon Johnson, George Romney, Robert Kennedy,
Edmund Muskie, Spiro Agnew, and Curtis LeMay. The NES survey was conducted after
Robert Kennedy’s assassination in June, 1968. This obviously affects the ratings
Kennedy received.

Suppose a respondent gave ratings of 30, 80, and 55 to Wallace (W), Humphrey
(H), and Nixon (N) respectively. With respect to these three candidates, the rank order is
H >N >W. Now suppose a second respondent gave ratings of 45, 65, and 95,
respectively, for a rank order of N > H > W. These rank orders can be converted to
binary choice data by treating each pair of candidates as a roll call vote. For example,
consider the pair of Wallace and Humphrey. If a respondent rates Wallace higher than
Humphrey make that Yea, and if Humphrey is rated higher than Wallace, make that Nay.
Doing this consistently across respondents creates a roll call vote where the outcomes are
Wallace and Humphrey, respectively.

With the actual 1968 data, | used the order of the 12 political figures listed above
(which is their actual order in the NES data set) to create the roll calls. That is, given a
pair of politicians, the one earlier in the NES ordering was treated as a Yea and the later
one a Nay. So if the pair was Ronald Reagan and Curtis LeMay, then if a respondent
rated Reagan higher than LeMay that is a Yea vote. If a respondent gave a pair of
politicians the same rating, for example, 55 and 55, then | treated it as missing data (that
is, as if the respondent abstained on the roll call).

Example:
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50 97 85 60 40 40 75 30 80 60 40 30

WALLACE HUMPHREY 6
WALLACE NIXON 6
WALLACE MCCARTHY 6
WALLACE REAGAN 1
WALLACE ROCKEFELLER 1
WALLACE LBJ 6
WALLACE ROMNEY 1
WALLACE R.KENNEDY 6
WALLACE MUSKIE 6
WALLACE AGNEW 1
WALLACE LEMAY 1
HUMPHREY NIXON 1
HUMPHREY MCCARTHY 1
HUMPHREY REAGAN 1
HUMPHREY ROCKEFELLER 1
HUMPHREY LBJ 1
HUMPHREY ROMNEY 1
HUMPHREY R.KENNEDY 1
HUMPHREY MUSKIE 1
HUMPHREY AGNEW 1
HUMPHREY LEMAY 1
NIXON MCCARTHY 1
NIXON REAGAN 1
NIXON ROCKEFELLER 1
NIXON LBJ 1
NIXON ROMNEY 1
NIXON R.KENNEDY 1
NIXON MUSKIE 1
NIXON AGNEW 1
NIXON LEMAY 1
MCCARTHY REAGAN 1
MCCARTHY ROCKEFELLER 1
MCCARTHY LBJ 6
MCCARTHY ROMNEY 1
MCCARTHY R.KENNEDY 6
MCCARTHY MUSKIE 0
MCCARTHY AGNEW 1
MCCARTHY LEMAY 1
REAGAN ROCKEFELLER O
REAGAN LBJ 6
REAGAN ROMNEY 1
REAGAN R.KENNEDY 6
REAGAN MUSKIE 6
REAGAN AGNEW 0
REAGAN LEMAY 1
ROCKEFELLER LBJ 6
ROCKEFELLER ROMNEY 1
ROCKEFELLER R.KENNEDY 6
ROCKEFELLER MUSKIE 6
ROCKEFELLER AGNEW 0
ROCKEFELLER LEMAY 1
LBJ ROMNEY 1
LBJ R.KENNEDY 6
LBJ MUSKIE 1
LBJ AGNEW 1
LBJ LEMAY 1
ROMNEY R.KENNEDY 6
ROMNEY MUSKIE 6
ROMNEY AGNEW 6
ROMNEY LEMAY 0
R.KENNEDY MUSKIE 1
R.KENNEDY AGNEW 1
R.KENNEDY LEMAY 1
MUSKIE AGNEW 1
MUSKIE LEMAY 1
AGNEW LEMAY 1



Figure 9C. 1968 Humphrey Voters
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Figure 9D. 1968 Nixon Voters

Humphrey
ws Nixon

05

Wallace
Vs
Nixon

05

05 1

16



Figure 9E. 1968 Wallace Voters
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