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Solving the Thermometer Problem 

 
 Let T be the p by q matrix of thermometer scores where i=1,…,p is the number of 

respondents and j=1,…,q is the number of political/social stimuli receiving ratings.  T 

can be regarded as a matrix of inverse distances between the respondents and the stimuli.  

Specifically, apply the linear transformation: 
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Where the observed data are now noisy distances that range from zero to two, that is, 

0 2*
ijd  , which are assumed to be equal to some true distance plus a random error term 

-- ij ijd   .  This transformation is convenient because it tends to confine the estimated 

respondent and stimuli points to a unit hypersphere.  

 Recall that our p by s matrix of individual (respondent) coordinates is: 
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and our q by s matrix of stimuli coordinates is: 
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The p by q matrix of squared distances between X and Z (individuals [respondents] and 

stimuli) is: 
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This can be written in matrix algebra as: 

 D = diag(XX’)Jq’ – 2XZ’ + Jpdiag(ZZ’)’ =  
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Note that the rank of D, (D), must be less than or equal to s+2; i.e., (D)  s + 2. 

 If there was no error then equation (2) can be solved using the method of 

Schonemann (1970).  Part of Schonemann’s solution is to work with the double-centered 

matrix.  Recall: 
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Y is a p by q matrix which is equal to the product of a p by s matrix X* and a q by s 

matrix Z*.  It is double-centered because X is defined with respect to the coordinate 

system centered at the origin x  and Z is defined with respect to the coordinate system 

centered at the origin z .   

 Where the double-centered matrix comes into play in the Thermometer problem is 

that we can use singular value decomposition to get starting coordinates for either X or Z 

to use in a gradient-style solution.  Specifically, consider the standard squared error loss 

function: 
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Where, from above, 

s
2

ij ik jk
k 1

d (x  - z )


   

SMACOF Solution 

SMACOF is an iterative technique that constructs a quadratic function that always lies 

above the loss function, (4).  To see the logic, expand (4): 
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Now, let X(h) and Z(h) be the coordinates at the hth iteration and let X(h+1) and Z(h+1) be 
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trivial, bounding the loss function boils down to finding a bound such that ij ijd   for all 

i,j where ij is easily constructed.  De Leeuw’s solution is: 

  ( 1) ( 1) ( ) ( )

( 1) 1
( )

s
h h h h

ik jk ik jk
h k

ij h
ij

x z x z

d

 

 

 
 


 

The numerator comes from the Cauchy-Schwarz inequality which in this case is:  
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This gives us the bounding function we seek: 
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 Taking derivatives of the right hand side: 
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We have s(p+q) equations with s(p+q) unknowns so we can solve for the minimum of the 

bounding function.  Note that: 
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Hence, if we assume that Z(h+1) is centered at the origin, ( 1) ( 1) ( 1)
1 2 ... 0h h h
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MLSMU6 Solution 

The first derivatives are: 
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Setting (5) equal to zero and solving for zjk:  
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Continuing, setting (6) equal to zero and solving for xik:  
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Note that the solution [equations (7) and (8)] is in the form: 

    z=f(x,z)  and x=g(x,z) 

That is, the solutions for z and x are values such that when they are plugged into f(x,z) 

and g(x,z) they reproduce themselves! 

 Define: 
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 
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 So that equations (7) and (8) can be re-written as: 
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Using equation (9), note that the point zj,m is: 
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Where 
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 are points and 
*
ij

ij

d

d
 is a scalar.   

Equations (13) and (14) are basic equations of a line that passes through zj and 

xi!  The general formula for a line equation is: 

Y(t)=A+t(B-A)                   (15) 

Where A and B are points and t is a scalar.  Note that if 0<t<1 then equation (15) defines 

a line that runs between points A and B.   

Once specific values are plugged into equations (11) or (12) then the solution for 

the point 
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 is simply the centroid 

of the q xi,j points! 

Finally, note that the squared distance between the points zj and zj,m is: 

   
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2
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z z z x z x

d 

  
          

  = 

      2
2

1 1

2 22

1
**s s

ij ijij
jk ik jk ik ij

k kij ij

d dd
z x z x

d d 

    
                

      (16) 
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So that the squared error is represented directly on the s-dimensional hyperplane (see 

below). 

 

Similarly, the squared distance between the points xi and xi,j is: 

   
1 1

2
2

*s s
ij

ik ikj ik jk ik jk
k k ij

d
x x x z x z

d 

  
          

  = 

      2
2

1 1

2 22

1
**s s

ij ijij
ik jk ik jk ij

k kij ij

d dd
x z x z

d d 

    
                

      (17) 

Another interesting property are the following identities: 

     
2

2 2
2

1 1 1

2 2
2

* *s s s
ij ij* *

ij ik jki ik ik jk ik jk ik ij
k k kij ij

d d
d x z x x z x z x d

d d  

             
    

    

     
2

2 2
2

1 1 1

2 2
2

* *s s s
ij ij* *

ij jk ikj jk jk ik jk ik jk ij
k k kij ij

d d
d z x z z x z x z d

d d  

             
    

    
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 Intuitively, the observed distances, the *
ijd are the lengths of the vectors attached 

to the xi that produce the zj,i points (see figure above).  Similarly, the *
ijd are the lengths of 

the vectors attached to the zj that produce the xi,j points.   

 It is a relatively simple process to iterate back and forth between equations (7) and 

(8) [equivalently, equations (11) and (12)] until the x̂ ’s and ẑ ’s reproduce each other. 

 Note that this process is strictly descending; that is: 

     2 21 1 1 1

1 1 1 1 1 1 1 1

2 2 2p p p p ps s s
(h ) (h ) (h ) (h ) (h) (h) (h) (h)
ij jk jki jk jki jk jki ij

i i k i k i k i

z z z z z z   

       

              (18) 

where h is the iteration number.  The third and fourth terms of the inequality are true 

because 1(h )
jkz  , by equation (11), is the centroid of the (h)

jkiz .  The second and third terms of 

the inequality are true because the 1(h )
jkiz   are computed using 1(h )

jkz   as shown in equations 

(11) and (13).  That is, the point 1(h )
j,iz   , by construction, lies on the line that passes 

through xi and 1(h )
jz   hence it must be closer to 1(h )

jz   than the point (h)
j,iz  because (h)

j,iz lies 

on the straight line through xi and (h)
jz .  Furthermore, by the identities shown above, the 

distance from xi to (h)
j,iz  is *

ijd  and the distance from xi to 1(h )
j,iz   is *

ijd .  Hence, by the 

triangle inequality the distance from 1(h )
jz  to 1(h )

j,iz   must be less than the distance from 

1(h )
jz   to (h)

j,iz . 

 Finally, the problem of a zero distance is easily handled in this framework.  

Suppose at some point that 0(h)
ijd  .  Then the corresponding vector of length *

ijd could 

not be “aimed” at a point because xi = zj so that no (h)
j,iz [or (h)

i ,jx ] could be computed.  In 
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this instance any (h)
j,iz [or (h)

i ,jx ] point with distance *
ijd from xi [or zj ] will still satisfy the 

inequality above. 

 Although this algorithm works very well and converges quickly the fly in the 

ointment is that the statistical properties of the ij  are not clear.  For example, suppose 

20ij ~ N( , )   then 2*
ij ijd ~ N(d , ) .  But this will not work because 0*

ijd  .   

 

The Cahoon-Hinich Solution 

Cahoon and Hinich assume that the observed data are noisy squared distances and 

transform the data by picking one of the stimuli to be the origin and subtracting the 

column corresponding to that stimulus from the other columns in the data matrix.  (I will 

denote that matrix as Δ.)  Let D* be the noisy matrix of squared distances.  Cahoon and 

Hinich assume: 

D* = D + E                              (19) 

where D is the p by q matrix of true squared distances given in equation (2) and E is a p 

by q matrix of error.  When one of the columns is subtracted from the others this has the 

effect of canceling out the 2

1

s

ik
k

x

  terms from the other columns in D.   

To simplify notation assume that there are q+1 stimuli and we subtract column 

q+1 from the first q columns of D.  Let the transformed matrix be denoted as D . The 

entries in D  become: 

 
s s s s s

2 2 2 2
ik jk ik q+1,k ik jk q 1,k jk q 1,k

k 1 k 1 k 1 k 1 k 1

(x  - z ) (x  - z ) 2 x z z z z 
    

           
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Now setting stimulus q+1 to the origin, that is, 

1 1

1 2

1

1

0

0

0

q ,

q ,

q

q ,s

z

z

..
z

..

..

z









   
   
   
   
    
   
   
   
    

, the entries in D  

simplify to 
s s

2
ik jk jk

k 1 k 1

2 x z z
 

   .  When error is taken into account the Cahoon-Hinich 

model becomes: 

2
1

1 1

2
s s

ij ik jk jk ij i ,q
k k

x z z 
 

            (20) 

Now consider the column means of the p by q matrix Δ: 

2

1 1

2
s s

j k jk jk
k k

x z z
 

      

The sum of the error terms across the respondents can be assumed to be zero.  

Subtracting the column means from each entry in the corresponding column cancels the 

2

1

s

jk
k

z

  terms; that is,  

 

 

 

1
1

1 1 1

2 2 12
1

1

1

2

2

2

s

jk k k
k

j ,q
s

j ,qjk k k
k

*
j j p j

pj p,qs

jk pk k
k

z x x

z x x

.
.J

.
.

.
.

z x x











 
  

    
  
      
  
        
  
  
  
          







            (21) 
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Using equation (20) and the regularity assumptions on the errors, the q by q covariance 

matrix of the j p jJ    is: 

2
14 x q q q

'Z' Z J J                              (22) 

Where x  is the s by s variance-covariance matrix for X,   is a q by q diagonal matrix 

of the variances for the stimuli, namely, 2 2
j ijE( )   , and 2

1q  is the corresponding 

variance for stimulus q+1, 2 2
1 1q i,qE( )     

 Let  

p* * J *                                           (23) 

where *  is the p by q matrix from equation (21) and *  is the vector of the means of 

the q columns of * .  The q by q sample covariance matrix is: 

 1 * *'S
p

                                            (24) 

Cahoon and Hinich then recover estimates of the parameters of the model by analyzing S 

with maximum likelihood factor analysis and the vector of means *  with OLS and 

bootstrapping (errors in variables problems). 

 The statistical properties of the method are not completely clear as no parametric 

assumptions are made about the error. 

 

Transforming the Thermometer Scores into Roll Call Votes 

 

In 1968 respondents were asked to give feeling thermometer ratings to 12 political 

figures:  George Wallace, Hubert Humphrey, Richard Nixon, Eugene McCarthy, Ronald 
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Reagan, Nelson Rockefeller, Lyndon Johnson, George Romney, Robert Kennedy, 

Edmund Muskie, Spiro Agnew, and Curtis LeMay.  The NES survey was conducted after 

Robert Kennedy’s assassination in June, 1968.  This obviously affects the ratings 

Kennedy received. 

Suppose a respondent gave ratings of 30, 80, and 55 to Wallace (W), Humphrey 

(H), and Nixon (N) respectively.  With respect to these three candidates, the rank order is 

H > N > W.  Now suppose a second respondent gave ratings of 45, 65, and 95, 

respectively, for a rank order of N > H > W.  These rank orders can be converted to 

binary choice data by treating each pair of candidates as a roll call vote.  For example, 

consider the pair of Wallace and Humphrey.  If a respondent rates Wallace higher than 

Humphrey make that Yea, and if Humphrey is rated higher than Wallace, make that Nay.  

Doing this consistently across respondents creates a roll call vote where the outcomes are 

Wallace and Humphrey, respectively. 

With the actual 1968 data, I used the order of the 12 political figures listed above 

(which is their actual order in the NES data set) to create the roll calls.  That is, given a 

pair of politicians, the one earlier in the NES ordering was treated as a Yea and the later 

one a Nay.  So if the pair was Ronald Reagan and Curtis LeMay, then if a respondent 

rated Reagan higher than LeMay that is a Yea vote.  If a respondent gave a pair of 

politicians the same rating, for example, 55 and 55, then I treated it as missing data (that 

is, as if the respondent abstained on the roll call). 

Example: 
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50 97 85 60 40 40 75 30 80 60 40 30 

 WALLACE      HUMPHREY    6 
 WALLACE      NIXON       6 
 WALLACE      MCCARTHY    6 
 WALLACE      REAGAN      1 
 WALLACE      ROCKEFELLER 1 
 WALLACE      LBJ         6 
 WALLACE      ROMNEY      1 
 WALLACE      R.KENNEDY   6 
 WALLACE      MUSKIE      6 
 WALLACE      AGNEW       1 
 WALLACE      LEMAY       1 
 HUMPHREY     NIXON       1 
 HUMPHREY     MCCARTHY    1 
 HUMPHREY     REAGAN      1 
 HUMPHREY     ROCKEFELLER 1 
 HUMPHREY     LBJ         1 
 HUMPHREY     ROMNEY      1 
 HUMPHREY     R.KENNEDY   1 
 HUMPHREY     MUSKIE      1 
 HUMPHREY     AGNEW       1 
 HUMPHREY     LEMAY       1 
 NIXON        MCCARTHY    1 
 NIXON        REAGAN      1 
 NIXON        ROCKEFELLER 1 
 NIXON        LBJ         1 
 NIXON        ROMNEY      1 
 NIXON        R.KENNEDY   1 
 NIXON        MUSKIE      1 
 NIXON        AGNEW       1 
 NIXON        LEMAY       1 
 MCCARTHY     REAGAN      1 
 MCCARTHY     ROCKEFELLER 1 
 MCCARTHY     LBJ         6 
 MCCARTHY     ROMNEY      1 
 MCCARTHY     R.KENNEDY   6 
 MCCARTHY     MUSKIE      0 
 MCCARTHY     AGNEW       1 
 MCCARTHY     LEMAY       1 
 REAGAN       ROCKEFELLER 0 
 REAGAN       LBJ         6 
 REAGAN       ROMNEY      1 
 REAGAN       R.KENNEDY   6 
 REAGAN       MUSKIE      6 
 REAGAN       AGNEW       0 
 REAGAN       LEMAY       1 
 ROCKEFELLER  LBJ         6 
 ROCKEFELLER  ROMNEY      1 
 ROCKEFELLER  R.KENNEDY   6 
 ROCKEFELLER  MUSKIE      6 
 ROCKEFELLER  AGNEW       0 
 ROCKEFELLER  LEMAY       1 
 LBJ          ROMNEY      1 
 LBJ          R.KENNEDY   6 
 LBJ          MUSKIE      1 
 LBJ          AGNEW       1 
 LBJ          LEMAY       1 
 ROMNEY       R.KENNEDY   6 
 ROMNEY       MUSKIE      6 
 ROMNEY       AGNEW       6 
 ROMNEY       LEMAY       0 
 R.KENNEDY    MUSKIE      1 
 R.KENNEDY    AGNEW       1 
 R.KENNEDY    LEMAY       1 
 MUSKIE       AGNEW       1 
 MUSKIE       LEMAY       1 
 AGNEW        LEMAY       1 
 
 



 16



 17

 

 

 


