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Toward a Universal Law of Generalization
for Psychological Science

ROGER N.

A psychological space is established for any set of stimuli
by determining metric distances between the stimuli such
that the probability that a response learned to any stimu-
lus will generalize to any other is an invariant monotonic
function of the distance between them. To a good approx-
imation, this probability of generalization (i) decays expo-
nentially with this distance, and (ii) does so in accordance
with one of two metrics, depending on the relation
between the dimensions along which the stimuli vary.
These empirical regularities are mathematically derivable
from universal principles of natural kinds and probabilis-
tic geometry that may, through evolutionary internaliza-
tion, tend to govern the behaviors of all sentient orga-
nisms.

Newton’s Principin (1) prompts the question of whether

psychological science has any hope of achieving a law that is
comparable in generality (if not in predictive accuracy) to Newton’s
universal law of gravitation. Exploring the direction that currently
seems most favorable for an affirmative answer, I outline empirical
evidence and a theoretical rationale in support of a tentative
candidate for a universal law of generalization.

THE TERCENTENARY OF THE PUBLICATION, IN 1687, OF

Primacy of Generalization

Because any object or situation experienced by an individual is
unlikely to recur in exactly the same form and context, psychology’s
first general law should, I suggest, be a law of generalization.
Learning theorists have seemed to suppose that a principle of
conditioning (through contiguity or reinforcement) could be pri-
mary and that how what is learned then generalizes to new
situations could be left for later formulation, as a secondary princi-
ple. Unfortunately, a full characterization of the change that even a
single environmental event induces in an individual must entail a
specification of how that individual’s behavioral dispositions have
been altered relative to any ensuing situation. Differences in the way
individuals of different species represent the same physical situation
implicate, in each individual, an internal metric of similarity between
possible situations. Indeed, such a metric exists at birth, when
habituation to one stimulus already exhibits unequal generalization
to different test stimuli (2).

Recognition that similarity is fundamental to mental processes
can be traced back over 2000 years to Aristotle’s principle of
association by resemblance. Yet, the experimental investigation of
generalization did not get under way until the turn of this century,
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when Pavlov found that dogs would salivate not only at the sound of
a bell or whistle that had preceded feeding but also at other
sounds—and more so as they were chosen to be more similar to the
original sound, for example, in pitch (3). Since then, numerous
experimenters have obtained empirical “gradients of stimulus gener-
alization,” relating the strength, probability, or speed of a learned
response to some measure of difference between each test stimulus
and the original training stimulus.

However, methods yielding reliable gradients of generalization
were not perfected until the middle of this century. In 1956,
Guttman and Kalish (4) demonstrated that Skinner’s operant condi-
tioning technique of intermittent reinforcement (5) could be used to
obtain orderly gradients of generalization for animals. A pigeon that
was only intermittently permitted access to grain for pecking a
translucent key illuminated by light of a particular wavelength
would continue to respond long after termination of all reinforce-
ment (6). Guttman and Kalish could then measure stable rates of
responding to many different test wavelengths. And between 1955
and 1958, I established that orderly gradients of generalization
could be obtained from humans during identification learning—in
which subjects acquired, through correction of incorrect responses,
a one-to-one association between # stimuli (Munsell color chips, for
example) and # arbitrarily assigned verbal responses (7-9). The
frequency with which any stimulus led to the response assigned to
any other provided the measure of generalization between those two
stimuli.

Apparent Noninvariance of Generalization

In striving to establish psychology as a quantitative science,
researchers had traditionally preferred to choose, as the independent
variable, a physical measure of stimulus difference—such as the
difference in wavelengths of lights, frequencies of tones, or angular
orientations of shapes. However, quantification does not in itself
guarantee invariance. Probability (or rate) of a generalized response
reliably decreased with physical difference from the training stimu-
lus. However, the way it decreased varied from one training
stimulus, sensory continuum, or species to another. Generalization
could even exhibit a nonmonotonic increase between stimuli sepa-
rated by certain special intervals—for example, between tones
separated by an octave (10), between hues at the opposite (red and
violet) ends of the visible spectrum (1I), and between shapes
differing by particular angles related to inherent symmetries of those
shapes (12).

At midcentury, influential behavioral scientists (including the
neurophysiologist Karl S. Lashley and the mathematical learning
theorists Robert R. Bush and Frederick Mosteller) were reaching
the discouraging conclusion that there could be no invariant law of
generalization (13). If we took physical difference as the indepen-
dent variable, gradients of generalization, reflecting properties of the
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particular animal as much as the physically measured differences
between the stimuli, could not be expected to be uniform or even
monotonic. If, instead, we sought a psychological measure of
difference as the independent variable, the most basic such measure
would surely be the generalization data themselves—apparently
rendering the attempt to determine a functional law entirely circular.

Invariance in Psychological Space

What is sometimes required is not more data or more refined data
but a different conception of the problem. Newton arrived at
universal laws of motion only by departing from Aristotle’s and
Ptolemy’s choice of the concretely given earth as the fixed reference
and by choosing, instead, an abstractly conceptualized absolute
space, with respect to which all objects including the earth move
according to the same laws (I). And 230 years later, in order to
ensure that the laws of physics are invariant for all observers
regardless of their own relative motions, Einstein had to replace
Newton’s Euclidean space with an even more abstract four-dimen-
sional Riemannian manifold (14).

Analogously in psychology, a law that is invariant across percep-
tual dimensions, modalities, individuals, and species may be attain-
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Fig. 1. Twelve gradients of generalization. Measures of generalization
between stimuli are plotted against distances between corresponding points
in the psychological space that renders the relation most nearly monotonic.
Sources of the generalization data (g) and the distances () are as follows. (A)
4, McGuire (33); 4, Shepard (7, 18). (B) g, Shepard (7, 17); 4, Shepard (7,
18). (C) g, Shepard (17); 4, Shepard (8). (D) g, Attneave (25); 4, Shepard
(8). (E) g, Guttman and Kalish (4); 4, Shepard (11). (F) g, Miller and Nicely
(34); 4, Shepard (35). (G) g, Attneave (25); d, Shepard (8). (H) g, Blough
(36); d, Shepard (11). (1) g, Peterson and Barney (37); d, Shepard (35). (J)g
and 4, Shepard and Cermak (38). (K) g, Ekman (39); 4, Shepard (18). (L) g,
Rothkopf (40); 4, Cunningham and Shepard (41). The generalization data in
the bottom row are of a somewhat different type. [See (39) and the section
“Limitations and Proposed Extensions.”]
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able only by formulating that law with respect to the appropriate
abstract psychological space. The previously troublesome variations
in the gradient of generalization might then be attributable to
variations in the psychophysical function that, for each individual,
maps physical parameter space (the space whose coordinates include
the physical intensity, frequency, and orientation of each stimulus)
into that individual’s psychological space. If so, a purely psychologi-
cal function relating generalization to distance in such a psychologi-
cal space might attain invariance.

Instead of starting with a physical parameter space, I proposed to
start with the generalization data and to ask: Is there an invariant
monotonic function whose inverse will uniquely transform those
data into numbers interpretable as distances in some appropriate
metric space? The requirement that the resulting numbers approxi-
mate distances in a metric space breaks the circularity (7, 15). Thus,
in a K-dimensional space, the distances between points within each
subset of K + 2 points must satisfy definite conditions, expressible,
in the Euclidean case, in terms of certain Cayley-Menger determi-
nants (16). Moreover, the lower the dimensionality of the space, the
stronger these constraints become. In a one-dimensional space, the
distances must satisfy the following very strong additivity condition
(9, 15, 17): For each subset of three points, the distance between the
two most widely separated points equals the sum of the distances of
those two points to the third point that lies between them.

The uniqueness of the function that satisfies such constraints is
implicit in the following geometrical consequence of those con-
straints (18, 19): Provided that the number, #, of points in a space is
not too small relative to the number of dimensions of the space, the
rank order of the #(» — 1)/2 distances among those » points permits
a close approximation to the distances themselves, up to multiplica-
tion by an arbitrary scale factor. Through Monte Carlo investiga-
tions I found that for random configurations of ten points in a two-
dimensional space, distances inferred from their rank orders had an
average correlation with the true distances of 0.998, and that for 45
points, the correlation exceeded 0.999,999 (19).

The actual determination of the unknown function (and, hence,
of the associated distances) implied by a matrix of generalization
data is achieved by numerical methods developed by Shepard (18)
and Kruskal (20) and known as “nonmetric” multidimensional
scaling. In a specified type of space, such methods move # points
representing the » stimuli (usually by steepest descent) until the
stationary configuration is achieved that minimizes an explicitly
defined measure of departure from a monotonic relation between
the generalization measures g; and the corresponding distances ;.
Configurations can be obtained in spaces with different numbers of
dimensions, and even with different metrics, until the most parsimo-
nious representation is found for which the residual departure from
monotonicity is acceptably small. The plot of the generalization
measures g; against the distances 4; between points in the resulting
configuration is interpreted as the gradient of generalization. It is a
psychological rather than a psychophysical function because it can
be determined in the absence of any physical measurements on the
stimuli.

Intimations of an Exponential Law

For a given set of # stimuli, an appropriate generalization
experiment yields, for every ordered pair of these stimuli, an
empirical estimate of the probability p; that a response learned to
stimulus ¢ is made to stimulus j. The multidimensional scaling
method is usually applied to an # X » symmetric matrix of general-
ization measures, gy, obtained from such probabilities through a
normalization such as g;; = [(py * p))/(pui * p5)]" Where p; and p; are

-
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the probabilities that stimuli 7 and j each evoke their originally
associated responses (8, 15).

A sample of the plots relating such generalization measures to the
distances in the configurations that I obtained by applying multidi-
mensional scaling to those measures is presented in Fig. 1. The
spatial configurations themselves are presented elsewhere (9, 11).
The data are from a number of researchers, who tested both visual
and auditory stimuli, and both human and animal subjects. Yet, in
every case, the decrease of generalization with psychological distance
is monotonic, generally concave upward, and more or less approxi-
mates a simple exponential decay function—the smooth curve fitted
to each plot solely by adjustment of its slope parameter. Moreover, I
have verified that multidimensional scaling does not impose this
form of the function but, by means of the assumed geometrical
constraints, merely renders explicit whatever form is implicitly
contained in the data (11, 18).

Multidimensional scaling does, however, impose monotonicity.
When monotonicity was not achievable in one dimension, recourse
was taken to a higher dimensional space. The increase in generaliza-
tion between the red and violet ends of the visible spectrum was thus
accommodated in a two-dimensional space, where the continuum of
hue curves to form a circle (9, 18), in fact, the color circle originally
described by Newton (21). Heightened generalization between
tones separated by an octave was accommodated in a three-
dimensional space, where the continuum of pitch twists into a helix
(10, 11). And augmented generalization between all planar orienta-
tions differing by 180°, in the case of a polygon approximating
central symmetry, was accommodated in a four-dimensional space,
where the 360° circle of orientations deforms into the edge of a
Mobius band (12). Only in relation to such abstract spatial represen-
tations can we achieve an invariant law.

Two Metrics for Psychological Space

When generalization data require a psychological space of more
than one dimension, they also provide evidence about the metric of
that psychological space (22, 23). For unitary stimuli, such as colors
differing in perceptually integral attributes of lightness and satura-
tion, the closest approximation to an invariant relation between
generalization data and distances has uniformly been achieved in a
space endowed with the familiar Euclidean metric (17, 20, 23, 24).
For analyzable stimuli, such as shapes differing in perceptually
separable attributes of size and orientation, the closest approach to
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invariance has generally been achieved with a different, Minkow-
skian metric (23-25), approximating what is sometimes referred to
as the “city-block” metric, because distances between points in an
orthogonal grid of streets conform with that non-Euclidean metric.
These two metrics are also associated with what mathematicians call
the Ly-norm and Ly-norm for the space. In terms of the coordinates
x4 (for stimulus 7 on dimension k) of a K-dimensional space, these
metrics are obtained by setting » = 2 or 1, respectively, in the
Minkowski power metric formula:

K
d;j = (Z 1% — xjkl’)
k=1

In a two-dimensional coordinate space, these two metrics are
distinguished by the fact that around any point, the contours of
equal distance, and hence of equal generalization, are circular if
7 = 2 (the Ly-norm), and rhombic if » = 1 (the L;-norm).

Are these regularities of the decay of generalization in psychologi-
cal space and of the implied metric of that space reflections of no
more than arbitrary design features of some terrestrial animals? Or
do they have a deeper, more pervasive source? I now outline a theory
of generalization based on the idea that these regularities may be
evolutionary accommodations to universal properties of the world.

1r

1

A Theory of Generalization

An object that is significant for an individual’s survival and
reproduction is never sui generis; it is always a member of a
particular class—what philosophers term a “natural kind.” Such a
class corresponds to some region in the individual’s psychological
space, which I call a consequential region. I suggest that the
psychophysical function that maps physical parameter space into a
species’ psychological space has been shaped over evolutionary
history so that consequential regions for that species, although
variously shaped, are not consistently elongated or flattened in
particular directions.

The problem that a positive or negative encounter with an
unfamiliar object poses for an individual is just the problem of
inferring the consequential region to which that object belongs. A
bird that ingested a caterpillar bearing particular coloration and
markings and found it delectable or sickening, must decide whether
another object of more or less similar visual appearance is of the
same natural kind and should therefore be seized or avoided,
respectively. Generalization is thus a cognitive act, not merely a
failure of sensory discrimination. Indeed, an animal would be ill
served by the assumption that just because it can detect a difference
between the present and a previous situation, what it learned about
that previous situation has no bearing on the present one.

In finding a novel stimulus to be consequential, the individual
learns only that there is some consequential region that overlaps the
point in psychological space corresponding to that stimulus. In
accordance with whatever probabilities the individual imputes to
nature, a priori, the individual can only assume that nature chose the
consequential region at random. Such an individual can nevertheless
obtain an estimate of the conditional probability, given that the
consequential region overlaps the first point, that it also overlaps a
second, by integrating over all (probabilistically weighted) possible
locations, sizes, and shapes of the consequential region.

Mathematical Formulation

For the present, I suppose psychological space to be a coordinate
space of some dimensionality, K. The space of objects differing only
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in color, for example, might be the three-dimensional space of
lightness, hue, and saturation. I represent any test stimulus by the
vector of its coordinates, X = (x1, %, * **, Xg). If the coordinate
system is chosen so that the origin corresponds to the stimulus
found to be consequential, that stimulus is represented by the null
vector 0 = (0, 0, --+, 0). I then make the following provisional
specifications concerning what an individual assumes about the
disposition of a consequential region in this space: (i) all locations
are equally probable; (ii) the probability that the region has a size s is
given by a density function p(s) with a finite expectation p; and (iii)
the region is convex, of finite extension in all directions, and
centrally symmetric.

Now, if the individual were to assume that the consequential
region has some particular shape and, also, a particular size s, then
the constraint of central symmetry entails that the set of such regions
that overlap the original point 0 or the test point x would be just the
set of such regions whose centers fall within a region of this size and

' sh&pe centered on 0 or on x, respectively. Therefore, the set of such
regions that overlap both 0 and x would be the set of regions whose
centers, c, fall in the intersection of such regions centered on 0 and
on x (see Fig. 2A). Because all locations of the consequential region
are taken to be equally likely, the conditional probability that x is
contained in the consequential region, given that 0 is, is just the
ratio m(s,x)/m(s) of the (volumetric) measure of the overlap to the
measure of a whole such region (Fig. 24).

N
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Fig. 3. Six generalization functions, g(d), relating probability of generaliza-
tion to normalized distance in psychological space, derived by substituting
into Eq. 6 the functions p(s) shown in the shaded insets, and integrating
(dotted curve); and the corresponding simple exponential decay function
(smooth curve). In (C), the function Ei is defined as follows
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By hypothesis, however, the individual does not know the size, s,
of the consequential region. In order to obtain the individual’s
estimate of the conditional probability that x falls in this region,
given that 0 does, the product of the ratio m(s,x)/m(s) and the
individual’s corresponding a priori probability p(s)ds (that the size
lies between s and s + ds) must be integrated over all possible sizes, s.
I take the result to be the probability g(x) that a response learned to
the stimulus 0 will generalize to x

s = [ g 2o

Because the size of the consequential region cannot be negative and
is assumed to have finite expectation p, p(s) is zero for all s < 0, and
(in addition to being nonnegative itself) satisfies the two conditions

m(s,x) x)
m(.v)

)

JO pls) ds =1 (3)

00

[ s d=p<o )

Derivation of the Exponential Law

In the unidimensional case, a convex consequential region is
simply an interval of a certain length, m(s) = s, and the measure of
the overlap m(s,x) is then s — Ixl, if s = lxl, or zero, if s < Ixl.
Accordingly, Eq. 2 reduces to

” s — lxl
a6 = o0 =2 )
The distance between the two stimuli 0 and x is now just 4 = Ixl.

Separating terms and successively differentiating with respect to 4,
we obtain, for g(d4) and its first and second derivatives,

s = [ s de—a[ 84

©)
k)
-[ B %
d
o=t "

Regardless of the form assumed for the probability density function
p(s), then, generalization g(4) has unit value at 4 = 0 (Egs. 3 and 6),
monotonically decreases with increasing 4 (Eq. 7), and is concave
upward, unless rendered linear in those intervals, if any, where
2(d) = 0 (Eq. 8).

The exact form for the generalization function g(4) depends on
the particular probability density function p(s). However, a sensitiv-
ity analysis suggests that this dependence is rather weak. The dotted
curves in Fig. 3 are the functions g(#) obtained by integration after
substituting, for p(s) in Eq. 6, the six quite different density
functions shown in the shaded inserts, namely, functions p(s) that
are rectangular (A), triangular and decreasing (B), exponential (C),
triangular and incrcasing (D), parabolic (E), and Erlanglan (F). At
least for these six shapes, g(#) is not only monotonic decreasing and
concave upward but reasonably close to a simple exponential decay
function (the smooth curve). Evidently, the form of g(d) is a
relatively robust consequence of the probabilistic geometry of
consequential regions.

The Erlang probability density function (the shaded inset in Fig.
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3F), in particular, yields exactly the exponential decay function for
g(d). This choice for p(s) has, moreover, a unique theoretical
justification: In the absence of any information to the contrary, an
individual might best assume that nature selects the consequential
region and the first stimulus independently. In this case, the
probability that that first stimulus would fall within the consequen-
tial region is proportional to its volumetric measure m(s), which,
here, is simply 5. According to Bayes’s rule (26), an individual who
assumed a probability density function 4(s) before encountering the
first stimulus, should revise that function, after finding that stimulus
to be consequential, to a density function p(s) = C - m(s) - 4(s).
Here, C is the normalizing constant determined by Eq. 3, and 4(s) is
assumed to be subject to the constraints already stated for p(s) in
Egs. 3 and 4.

In addition, if 4(s) is to represent a condition of minimum
knowledge about the size of the consequential region, g(s) should
maximize the Shannon-Wiener entropy measure of uncertainty (27).
The function 4(s) that both satisfies the stated constraints and
maximizes this entropy measure is an exponential probability densi-
ty function (28) of the form displayed in the shaded inset in Fig. 3C.

Square consequential region
(correlated dimensions)

A

1.24

1.01

Fig. 4. Equal generaliza-
tion contours plotted in
one quadrant of two-di-
mensional  psychological
space. The contours on the
left were derived on as-

}/‘F ‘\ Rectangular size distribution, p (s)

Substituting such a function for 4(s) and solving for C, we obtain for
p(s), in the one-dimensional case, exactly the Erlang probability
density function with shape parameter 2

welfew2) o

This is just the density function that is displayed as the shaded inset
in Fig. 3F and that yielded the exponential decay for the generaliza-
tion function

4 = exp(—z f) (10)

Derivation of the Two Metrics

In the multidimensional case, the consequential region is no
longer merely an interval of a certain length s. However, just as the
shape assumed for the density function p(s) had little effect on the
derived generalization function g(d), the shape assumed for the
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two directions are uncor-
related and have density
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that are either rectangular
(C) or Erlangian (D). In
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consequential region has (up to an affine normalization) little effect
on the contours of equal generalization. This, too, is a consequence
of a geometrical fact. The region can be quite irregular and even
nonconvex but, as long as it is centrally symmetric, the locus of
centers of such a region having a specified overlap with a given such
region approximates the ellipse of the Euclidean metric (Fig. 2B).

Figure 4A shows, for one quadrant of a two-dimensional space,
the contours of equal generalization around the stimulus (0, 0) that
are obtained by carrying out the integration of Eq. 2 under the two
assumptions (i) that the consequential region, though still of
unknown size and location, has the shape of a square aligned with
the coordinate axes, and (ii) that p(s) is the rectangular distribution.
Except for the (rhombic) contours very close to the original stimulus
(0, 0), the resulting contours are more circular than square. The
same is true when other density functions are substituted for p(s).

For stimuli, like colors, that differ along dimensions that do not
correspond to uniquely defined independent variables in the world,
moreover, psychological space should have no preferred axes. The
consequential region is then most reasonably assumed to be circular
or, whatever other shapes may be assumed, to have all possible
orientations in the space with equal probability. Symmetry then
entails strictly circular contours of equal generalization (Fig. 4B)
and, hence, the Euclidean metric (or L,-norm).

For stimuli that differ along dimensions, such as size and orienta-
tion, that correspond to uniquely defined independent variables in
the world, however, psychological space should possess, corre-
sponding preferred axes. Whatever type of shape is then assumed for
the consequential region, the degree to which that region is
extended along one preferred axis should not be correlated with the
degree to which it is extended along another such axis. Instead of
assuming that the region is a square or circle, in the two-dimensional
case, the individual might assume that it is a rectangle or an ellipse
aligned with the preferred axes of the space. Integration must then
be carried out over the two independently variable size dimensions
of the consequential region, say s and ¢ (as indicated on the right in
Fig. 4), with corresponding probability density functions, p(s) and
200).

As before, the curves of equal generalization depend very little on
either the form chosen for these density functions or the shape
chosen for the consequential region. However, in the absence of a
correlation between the two size dimensions of the consequential
region, the contours no longer approximate the circles associated
with the L-norm. Instead, they approximate the rhombs associated
with the L;-norm. This is illustrated in Fig. 4C, for the assumptions
that the consequential region is rectangular and that p(s) and p(#) are
both the rectangular probability density function. Indeed, when the
probability density functions p(s) and p(¢) are taken to be the Erlang
function (Eq. 9) derived from the assumption of maximum uncer-
tainty about the two size dimensions of the consequential region,
generalization falls away with distance in exact accordance both with
the exponential decay function (Eq. 10) and with the metric of the
Li-norm (Fig. 4D).

Limitations and Proposed Extensions

The theory of generalization, as set forth here, strictly applies only
to the highly idealized experiment in which generalization is tested
immediately after a single learning trial with a novel stimulus.
Existing evidence and theoretical considerations indicate that in the
cases either of protracted discrimination training with highly similar
stimuli (29, 30) or of delayed test stimuli (&), “noise” in the internal
representation of the stimuli will manifest itself in two deviations
from the functional relations derived here. The first is a deviation
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away from the simple exponential and toward an inflected, Gaussian
function. In Fig. 1 such a deviation is evident in L, where the data
(probabilities that similar stimuli were judged to be identical) do not
represent generalization so much as failure of discrimination, and
perhaps in E and H, where test stimuli continued to be presented
long after the termination of reinforcement. The second is a
deviation away from rhombic and toward elliptical curves of equal
generalization, even for analyzable stimuli. To the extent that
primitive organisms do not support the distinction between general-
ization and failure of discrimination, they too may manifest these
deviations. Moreover, under the most natural extension of the
present theory to multiple learning trials, differential reinforcement
could shape the generalization function and contours around a
particular stimulus into a wide variety of forms.

Here, space does not permit more than a brief mention of a few
such directions in which I am currently extending the theory. (i)
Phenomena of discrimination and classification learning, and possi-
bly the asymmetries of generalization described by Tversky (31),
require that over a series of trials, the probabilities that an individual
associates with the alternative candidates for a consequential region
are modified on the basis of the frequencies with which positive and
negative stimuli fall inside or outside each such candidate region
(32). In this connection, the assumption of sharply bounded
consequential regions has the advantage that solely through this
process of probability adjustment, an individual could come to
discriminate stimuli that do from those that do not belong to such a
sharply bounded region. (ii) Nevertheless, preliminary mathematical
investigations indicate that the robust exponential function and two
metrics are also derivable if the probability or magnitude of a
consequence, instead of being assumed to drop off discontinuously
at the boundary of a discrete consequential region, is assumed to
decline gradually, in accordance with a continuous, unimodal
distribution of, for example, Gaussian form but unknown location
and dispersion. (iii) If the possible dispersions of the consequential
region (or of the unimodal distribution) along preferred dimensions
are assumed to be negatively correlated, the curves of equal general-
ization obtained by integration take on a concave, star-shaped form
corresponding to a value » < 1 in Eq. 1. Such curves imply a
violation of the triangle inequality for psychological distances, a
violation for which Tversky and Gati have reported evidence with
stimuli having highly separable dimensions (30). (iv) Finally, the
idea of candidate regions furnishes a basis for explaining, also, a very
prevalent chronometric finding, namely, that the time to discrimi-
nate between two stimuli is reciprocally (not exponentially) related
to the distance between those stimuli in psychological space. We
need merely suppose that a stimulus elicits internal representational
events corresponding to candidate regions in accordance with
probabilities, per unit time, proportional to the probabilities already
defined, and that discrimination is precipitated by the first such
event that corresponds to a region that includes one but not both of
the two stimuli.

Conclusions

We generalize from one situation to another not because we
cannot tell the difference between the two situations but because we
judge that they are likely to belong to a set of situations having the
same consequence. Generalization, which stems from uncertainty
about the distribution of consequential stimuli in psychological
space, is thus to be distinguished from failure of discrimination,
which stems from uncertainty about the relative locations of individ-
ual stimuli in that space. Empirical results and theoretical derivations
point toward two pervasive regularities of generalization. First,
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probability of generalization approximates an exponential decay
function of distance in psychological space. Second, to the degree
that the spreads of consequential stimuli along orthogonal dimen-
sions of that space tend to be correlated or uncorrelated, psychologi-
cal distances in that space approximate the Euclidean or non-
Euclidean metrics associated, respectively, with the L,- and L;-
norms for that space. I tentatively suggest that because these
regularities reflect universal principles of natural kinds and of
probabilistic geometry, natural selection may favor their increasingly
close approximation in sentient organisms wherever they evolve.

Undoubtedly, psychological science had lagged behind physical
science by at least 300 years. Undoubtedly, too, prediction of
behavior can never attain the precision for animate that it has for
celestial bodies. Yet, psychology may not be inherently limited
merely to the descriptive characterization of the behaviors of
particular terrestrial species. Possibly, behind the diverse behaviors
of humans and animals, as behind the various motions of planets
and stars, we may discern the operation of universal laws.
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