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GEORGE B. RABINOWITZ
The University of North Carolina at Chapel Hill

An Introduction to Nonmetric
Multidimensional Scaling”

Nonmetric multidimensional scaling methods are useful for spatially representing the
interrelationships among a set of data objects. In this, they are similar to factor analytic
methods. The assumptions and procedures associated with these methods are, however,
somewhat different from those associated with factor analysis, and are more appropriate
to certain political data. In this paper the logic underlying nonmetric multidimensional
scaling methods is described, and some guides for using these procedures are offered.

Nonmetric multidimensional scaling techniques are among the set of
procedures available to investigators interested in spatial representation of
political objects. These techniques are useful in illuminating the structure
hidden in a complex data matrix, and form an important addition to the
factor analytic methods which have been widely used in the discipline. They
have achieved considerable popularity in recent years, primarily for three
reasons. First, they often yield solutions in a sufficiently low dimensionality
to permit a visual examination of the structure. This is an invaluable interpre-
tative aid. Second, they permit the investigation of many matrices which
cannot be congenially analyzed using factor analysis. Third, they make only
ordinal assumptions about the data, which is often advantageous given the
“weak” nature of most social science data. This paper is a general introduc-
tion to nonmetric multidimensional scaling.!

*I wish to thank Stuart Rabinowitz, Herbert Weisberg, the members of the Compara-
tive Politics Discussion Group at the University of North Carolina, and three unknown
reviewers fo: the valuable suggestions they have made.

! The strategy used in these procedures is quite flexible and can be applied to a wide
variety of problems. These include the direct analysis of preference data (data in which
individuals indicate which of a set of objects they prefer) and nonmetric factor analysis.
However, the wide familiarity and availability of metric factor analytic procedures and
technical problems which arise in the direct analysis of preference data have limited the
application of this approach in these areas. In this piece we will limit our focus to more
conventional nonmetric multidimensional scaling.
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An Intuitive Example

Let us launch the discussion by way of a particular example. Suppose that
we were interested in an individual’s perception of five political candidates:
McGovern, Humphrey, Nixon, Percy, and Wallace. We might ask the individ-
ual a variety of questions. For example, we might ask how much he likes each
candidate, or what the good and -bad points of each candidate are. One task
would be particularly rewarding for the information it produces: Ask the
individual to order pairs of candidates according to the degree of similarity
that he perceives among them. If the individual organizes politics (and
politicians) along a liberal-conservative continuum, we would expect him to
perceive candidates of like ideology to be relatively similar; if he organizes
politics on the basis of party affiliations, we would expect him to perceive
candidates of the same party to be relatively similar; if he has an incoherent
or idiosyncratic view, we would expect no recognizable pattern to emerge.
Let us suppose, then, that we asked him to rank pairs of these candidates on
the basis of their similarity, and he ordered them as follows:

Most similar: 1. Humphrey - McGovern
2. McGovern - Percy

3. Nixon - Wallace

4. Nixon - Percy

5. Humphrey - Percy

6. Humphrey - Nixon

7. Humphrey - Wallace

8. McGovern - Nixon

9. Percy - Wallace

0

Least similar: 10. McGovern - Wallace

This ranking, while of interest, does not adequately convey a sense of the
manner in which the individual’s perceptions of these political figures are
organized. If the ranking were used to locate points representing the candi-
dates in a visualizable space, the underlying structure of his perceptions might
be revealed more clearly.

In a technical sense, locating objects in a representational space involves
assigning to each object a series of numbers, one number for each of the
dimensions in the space. The numbers position the object points on the
dimensions. If one dimension is involved, one number is assigned to each
object. If the space is two-dimensional, two numbers are associated with
each object. The first number positions the point on the first axis; the second
number positions the point on the second axis. If three dimensions are
involved, three numbers are assigned to each object, and so on.
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In order to assign these numbers in a rational way, it is necessary to
associate a mathematically meaningful property with the observed data. For
example, think of creating an ordinal scale of objects on the basis of their
physical weight. The real number properties of greater, equal, and less than
can be associated respectively with an object weighing more than, the same
as, or less than another object. On this basis, given any finite number of
objects and a simple balance, it would be possible to assign a number to each
object such that whenever one object is heavier than another and tips the
balance in its direction, a higher number is assigned to it.

What mathematically meaningful property might be associated with our
pairwise ranking of candidates? It does seem that the more similar a pair of
candidates are perceived as being, the closer the points representing these
candidates should be when they are located in the space. With this as a
criterion we can approach the problem of scaling these points.?

Can these points scale in one dimension? The most dissimilar pair is
McGovern and Wallace; hence on a single dimension these will have to lie at
opposite ends of the scale. Humphrey-McGovern are the most similar pair;
hence they must lie next to each other on the scale. This situation is depicted
in Figure 1. Now consider the location of the Percy point. Percy is more
similar to McGovern than to Humphrey; hence his point should be closer to
McGovern’s than to Humphrey’s. This creates a problem. We have already
decided that Wallace and McGovern must lie at opposite ends of the scale;
hence Percy cannot be located at Py or any point to the left of McGovern. We
also decided that Humphrey must be immediately next to McGovern; hence
Percy cannot be located at P, or any point between McGovern and Hum-
phrey. If we were to try to locate Percy at the Humphrey point or anywhere

M1 H
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|
[
[
|
P 2
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FIGURE 1
Illustration of the Impossibility of a Unidimensional Representation of the Data

? This assumption appears quite reasonable; however, it is by no means the only, or
necessarily the ‘‘correct,” assumption to apply to these observations. Its usefulness
depends on the degree to which the individual’s psychic perception of proximity
corresponds to physical proximity. Nevertheless, unless strong reasons dictate the as-
sumption is not valid, it is an excellent choice.
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P =PERCY

W=WALLACE

FIGURE 2
A Random Configuration of the Five Points

to-the right of Humphrey (i.e., at P3), the Percy point would be closer to
Humphrey than to McGovern, which reverses the similarity order. With the
McGovern, Humphrey, and Wallace points positioned at acceptable locations,
there is no adequate place for the Percy point; thus no perfect representation
of these similarities is possible on a single dimension.

Can we scale the points in two dimensions? Clearly, this is more compli-
cated. Let us start with a rather arbitrary decision. We will initiate the process
by randomly locating five points in the space, one point for each candidate.?
In Figure 2 the randomly generated configuration of points is displayed.
Obviously, this configuration does not even approach satisfying the scaling
criterion. The Humphrey and McGovern points which should be closest are
quite far apart and generally the points are scrambled incoherently.

How might we proceed? A naive, but reasonable approach would be to
move the points in the space so that the distances between them are more

*The process of placing the points can be likened to a dart-thrower tossing five
labeled darts, each aimed at the same bull’s-eye. The location of each dart would depend
only on the chance fluctuation of the throw. Similarly, the location of the five points is
entirely arbitrary and depends only on chance factors.
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consistent with the similarities. However, it is not entirely clear how the
points should be moved. For example, if we moved the Humphrey and
McGovern points very close together, it might bring McGovern too close to
Nixon and Wallace, it might take McGovern too far from Percy, or somehow
violate the relation of Humphrey to the other candidates. Ideally, when
moving each point, we would take into consideration all of its interrelations.
One reasonable tactic would be to generate a set of target values, one for each
pair, which could be used to guide the moves.

Let us draw a graph. Each point on the graph will represent a pair of
candidates. Location on the Y axis will be determined by the rank order
similarity of the pair, and position on the X axis by the interpoint distance in
the scaling space. It is important to distinguish between the scaling space and
the graph. The scaling space appears in Figure 2; it is the space in which the
candidate points are represented. It contains five points, one for each candi-
date, and is two-dimensional, but could be of one, three, four, or any finite
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GRAPH A
Plot of Distance Against Similarity—Random Configuration



348 George B. Rabinowitz

I —=5

—

DISTANCE

GRAPH B
Plot of Three Monotonic Lines

dimensionality. It is the end product of the scaling procedure. The graph has
ten points, one for each pair of candidates, is always two-dimensional (y =
similarity, x = distance), and is useful in creating the target distances. The
graph associated with the scaling space in Figure 2 appears in Graph A.

What would this graph look like had our scaling effort been successful?
Our scaling objective is to locate the points so that the distance between pairs
of points increases as pairs are perceived to be less similar. Had we success-
fully located the candidate points, when we connected the ten points on the
graph the resulting line would have moved down and to the right, indicative
of increasing distance as we moved from the most to the least similar pair.

Lines which move consistently in one direction are called monotonic lines.
In Graph B three lines appear. Notice, all three lines are monotonic—they
continually move to the right, indicative of increasing distance as one moves
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down from the most to the least similar pair. However, the three lines are
quite different: one line is almost straight, another a smooth hyperbolic
curve, and the third slightly S-shaped. That each of the lines satisfies the
scaling criterion illustrates the nonmetric nature of the scaling goal. If the
procedure were metric, there would be an exact relationship between the
similarity measure and the interpoint distances. For example, if we insisted
that our interpoint distances be a linear function of the similarities, then only
straight lines would be acceptable. Algebraically, insisting on a linear function
requires that for every unit change in the similarity measure there be a fixed
change in interpoint distance. Any such assumption presupposes that the
units of the similarity measure are meaningful. Since in this case we started
with only the rank order of pairwise similarity, making this assumption would
be inappropriate. In general, by allowing for any monotonic relation we allow
greater flexibility in our attempts to locate points in the scaling space and
make only ordinal assumptions about the measure of interpair similarity.

Now let us look back at the graph associated with Figure 2. Quite clearly,
the line in Graph A is not moving uniformly down and to the right. In Graph
C this line reappears along with another line. The second line is constructed
to be as similar to the first line as possible (in a least squares sense) with the
restriction that it never move down and to the left. Using the more technical
vocabulary, the distance values on the second line are restricted to be
monotonically decreasing with (as a function of) perceived similarity. There-
fore, as one moves from more to less similar pairs, the distance associated
with each successive pair on the graph never decreases. This second line will
always move either straight down or down and to the right. (In the literature,
the graph in which both the actual and monotonic distances appear is called a
Shepard Diagram.)

Our object in the scaling process is to have distances between pairs
decrease monotonically as pairs are perceived to be more similar. Our object
in constructing targets is to generate a set of values which can guide us when
we move the points in the scaling space. Notice that when the first line is
zigzagging, not at all satisfying the original scaling criterion, the second line
runs straight down and seems to be a “smoothed out” version of the first line
which is consistent with the scaling criterion. Clearly, it would be a consider-
able improvement of the configuration which appears in Figure 2, if the
actual interpoint distances were more like the values associated with the
second of these two lines. Hence, these second values will make excellent
targets, and we shall use them for that purpose. (In the literature, target
values are called disparities. They are also sometimes identified as d-hats, d, or
d-stars, d*.)
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Plot of Distance Against Similarity for Actual Distances (O’s) and
Target Values (X’s)—Random Configuration

The numerical values of the distances and targets appear in Table 1. The
strategy for calculating the targets is to set them equal to the actual distances
except when violations of the monotonicity requirement occur. When viola-
tions do occur, targets are calculated by averaging as few actual distances as
possible to resolve the violation. Note that when a series of target values are
the same, they are simply the average of the actual distances over the series of
pairs. Hence, a pair whose actual distance is satisfactory will tend to have a
target value equal to the actual distance; a pair whose actual distance is
smaller than that of pairs which are perceived to be more similar will tend to
have a target value larger than its actual distance; and a pair whose actual
distance is larger than that of pairs which are perceived to be less similar will
tend to have a target value smaller than its actual distance. A detailed

example showing how these target values are calculated appears in Appendix
Al

4This least squares method is not the only way we could calculate targets; it is,
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The strategy for moving the points is exceedingly straightforward. If two
points are farther apart than they should be—that is, if the actual distance for
the pair is greater than the target value—the points will be moved closer
together; if the points are closer together than they should be, they will be
moved farther apart. The relative amount of movement will be determined by
the difference between the actual and target distances. The greater the
difference, the more the two points will be moved. Points will always be
moved directly toward or directly away from each other—that is, they will be
moved along the line linking the two points.

Generally, when the points are moved the new actual distances will no¢
equal the target values. It would be possible to pick any single distance, such
as the Humphrey-McGovern distance, and make that actual distance equal to
its target; it is ordinarily not possible to make every distance correspond. The
targets provide a guide for moving the points. Our goal in moving the points is
only to improve the configuration. Once we have succeeded in improving the
solution by making the actual distances more like these targets, we can then
calculate new targets and repeat the entire procedure in the hope of further
improving the configuration. Eventually, we should obtain a solution in

TABLE 1

Actual Distances and Target Values Corresponding
with the Initial Configuration Which Appears

in Figure 2
Pair Actual Distance Target Value
Humphrey - McGovern 2.218 0.961
McGovern - Percy 0.909 0.961
Nixon - Wallace 0.239 0.961
Nixon - Percy 0.479 0.961
Humphrey - Percy 2.766 1.554
Nixon - Humphrey 2.288 1.554
Wallace - Humphrey 2.130 1.554
Nixon - McGovern 0.662 1.554
Wallace - Percy 0.666 1.554
Wallace - McGovern 0.815 1.554

however, a particularly reasonable approach. Any method we use would have to share
two features with it: first, the target values must be based on the actual distances;
second, the target values must be a monotonic function of the original rank order of
pairs. Another common method is the rank image method. An example using this
method appears in Appendix B.
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which the actual distances are a monotonic function of similarity, if such a
solution is possible.

Let us now go down the list of Table 1, moving pairs of points. The first
pair, Humphrey-McGovern, should be moved toward each other and moved
quite a lot since the difference between the actual and target distances is
considerable. The next pair, McGovern-Percy, should be moved slightly apart,
since the target distance is a’little larger than the actual distance. This is the
second move for the McGovern point, and in general, each point will be

H= HUMPHREY
M = McGOVERN
N = NIXON N
P = PERCY
W= WALLACE
FIGURE 3

The Configuration of Five Points after the First Set of Movcs
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TABLE 2

Actual Distances and Target Values Corresponding
with Configuration after the First Iteration Which
Appears in Figure 3

Pair Actual Distance Target Value
Humphrey - McGovern 0.856 0.856
McGovern - Percy 0.864 0.860
Nixon - Wallace 0.856 0.860
Nixon - Percy 1.739 1.588
Humphrey - Percy 1.437 1.588
Nixon - Humphrey 2.366 1.822
Wallace - Humphrey 1.511 1.822
Nixon - McGovern 2.381 1.822
Wallace - Percy 1.218 1.822
Wallace - McGovern 1.634 1.822

moved several times in the course of any particular sequence. After making
the ten moves indicated on the list, we would have a new configuration of
points. Such a configuration appears in Figure 3. Clearly, this is a consid-
erable improvement over the configuration which appeared in Figure 2.
However, it is still far from perfect. For example, Nixon and Percy are farther
apart than Percy and Wallace, while they should be closer together. Once
more, we can move the points and try to further improve the configuration.

The distances and target values associated with the pairs of points as they
are located in Figure 3 appear in Table 2 and are plotted in Graph D. The new
target values are again calculated to be as similar to the new distances as
possible while still satisfying the monotonicity requirement. Notice that the
new target values are much closer to the new distances than were the previous
targets to the previous distances. If the solution were “perfect,” the target
values would be identical to the distances.

We can now proceed to move the points, making one modification in our
strategy this time. While we again will move the points in relation to the
difference between the actual and target distances, we will in general move
the points less, since we are interested in changing the configuration less
radically. (In the nonmetric multidimensional scaling literature, the amount a
configuration is changed from iteration to iteration is called the step-size.)
The configuration of points recovered after this second move is displayed in
Figure 4. The configuration is better than the previous one, but still not
perfect. Clearly, we could continue to repeat the process indefinitely in the
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Plot of Distance Against Similarity for Actual Distances (O’s) and
Target Values (X’s)—Configuration after First Set of Moves

hope of improving the configuration each time. We would stop when the
actual distances and target values are in exact correspondence, indicating that
the solution is perfect, or should that never occur, when we succumb to
general fatigue. The configuration recovered after three additional iterations
appears in Figure 5, and in Table 3 are the interpoint distances and target
values associated with Figures 4 and 5. The final configuration displayed in
Figure 5 is perfect; the distances consistently increase from the most similar
Humphrey-McGovern pair to the least similar Wallace-McGovern pair.

The two-dimensional solution in Figure 5 gives us an image of the way in
which the individual perceived these five candidates. It seems that both party
identification and left-right ideology might have influenced his perceptions.
We will postpone further discussion of the configuration until a later section
when we will consider both the general interpretation problem and the
interpretation of this configuration in more detail.
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FIGURE 4

The Configuration of Five Points after thc Second Set of Moves
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W P = PERCY
W= WALLACE
FIGURE 5

The Final Configuration of Five Points Obtained aftcr the Fifth Set of Moves
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TABLE 3

Actual Distances and Target Values Corresponding to
the Configurations Displayed in Figures 4 and 5

Figure 4 Figure 5

Pair Actual Target Actual Target
Humphrey-McGovern 1.501 954 .937 937
McGovern-Percy 914 954 973 973
Nixon-Wallace 447 954 1.141 1.141
Nixon-Percy 1.503 1.021 1.257 1.257
Humphrey-Percy 742 1.021 1.283 1.283
Nixon-Humphrey 818  1.021 1.408 1.408
Wallace-Humphrey 1.243  1.243 1.568 1.568
Nixon-McGovern 2.318 2.133 1.876 1.876
Wallace-Percy 1.948 2.133 2.195 2.195
Wallace-McGovern 2.741 2.741 2421 2421

The Analytic Procedure

While the procedure we used to locate the points seemed successful in this
five-candidate example, it had two very critical drawbacks. First, there was no
measure available to indicate the adequacy of the solution. Second, unless we
achieved a perfect solution, there was no way of knowing when we could stop
the procedure. Both of these would constitute serious problems in more
complex and realistic situations. The motivation for performing nonmetric
multidimensional scaling procedures is to help elucidate the structure in a
complex data matrix. Even when such matrices are quite structured, idiosyn-
cratic features are almost invariably present and mitigate against perfect
solutions. Realistically, our goal is not to find a perfect configuration, but
rather the best one possible. It is therefore essential to confront the problems
of (a)defining a measure which reflects the adequacy of any particular
solution and (b) delineating a method for determining when the iterative
procedure should be terminated.

The strategy used to move the points involved two basic steps. First, given
the set of similarities and the interpoint distances in the scaling space, the
target values were calculated. Second, the points were moved in order to
make the actual distances more like the target values. The object of the
scaling process is to have the actual distances a monotonic function of the
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original similarities. The target values were created to be as similar to the
distances as possible, with the restriction that they be a monotonic function
of the original similarities. A natural measure of how close the solution is to
satisfying the monotonicity goal would be the average (or mean) squared
difference-between the actual distance and the target values. The smaller the
average difference, the better the solution would be. Formula A represents
the mean squared difference.

Formula A
f pai
#o 2" [(Actual distance pair i) — (Target value pair i)]
i=1 # of pairs

It should be apparent that the formula is sensible. If the actual distances
were a monotonic function of the similarities, then the actual distances and
target values for each pair would be identical, and all the differences would be
zero. As the actual distances depart from the monotonicity goal, the actual
distances and target values will diverge and the differences will increase. Since
the differences are squared, their signs will not influence the measure.

There is, however, a major problem with this measure; it is quite sensitive
to the scale factor used to calculate distances. No basic unit of measurement
is present when one performs nonmetric multidimensional scaling. All that is
critical is the relative distance between points. Were we, for example, to
double every interpoint distance, the solution would be neither better nor
worse than before. However, as a result of doubling, our measure would
change dramatically. The actual distances are doubled; hence the targets
would double. Since both target values and actual distances are doubled, their
differences would double. Based on squared differences, the measure would
quadruple.

Formula B
# of pairs [, . .. . 12
> [(Actual distance pair i) — (Target value pair i)}
i=1 # of pairs

# ofzpairs [(Actual distance pair i) — (Mean actual distance over all pairs)] 2
i=1 # of pairs
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This problem can be alleviated by adding an appropriate denominator to
the measure. Formula B modifies Formula A by dividing it by the variance of
the interpoint distances. Should the scale factor be changed, both the numer-
ator and denominator would be affected equally, and hence the effects would
cancel out, leaving the measure unchanged.

The revised measure can be interpreted as the proportion of the total
variance in interpoint distances inconsistent with the monotonicity con-
straint. It is similar to the ratio of unexplained to total variance central to
regression and analysis of variance. This measure will vary between 0 and 1.
For perfect solutions it will be zero; as solutions depart from the monoto-
nicity constraint, its value will increase to a maximum of one.

In keeping with statistical tradition, we might make one more change in
the measure. Generally, one does not work directly with variances or squared
correlations, but rather with their square roots, standard deviations and
simple correlations. Hence, we shall define a final measure which is the square
root of the previous one. This measure appears in Formula C and is rewritten
in Formula C'. In Formula C' the “# of pairs” term which appears in the
numerator and denominator simply cancels out and is removed.

Formula C 1
. 2
# ofz;;alrs [(Actual distance pair i) — (Target value pair i)] >
&1 # of pairs
L#of Zpalrs [(Actual distance pair i) — (Mean actual distance over all pairs)] >
&1 # of pairs
Formula C'
1
# ofzpairs [(Actual distance pair i) — (Target value pair i)] > —|2
i=1

# ofzpairs [(Actual distance pair i) — (Mean actual distance over all pairs)] >

i=1

The final measure will also vary from O for perfect solutions to a maximum of
1.

In the nonmetric multidimensional scaling literature this measure is called
Stress 2. The term “Stress” follows from the fact that the measure increases
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as the solution gets worse, the ‘“2” from the fact that it was the second of
two Stress formulas developed.’

Given a measure of the badness of fit of a particular solution, the problem
of determining when to terminate the iterative procedure can be easily
handled. Generally, we would expect that each successive solution would be
closer to satisfying the monotonicity requirement than the solution which
preceded it. Hence, if the Stress does not improve over several iterations, the
procedure can be reasonably terminated.

We now have enough information to delineate a complete procedure.

1. Initially, locate the points, one for each of the objects to be scaled,
in a space of fixed dimensionality.

2. On the basis of the interpoint distances and the similarities, con-
struct a set of target values.

3. Calculate the Stress of the solution.

4. If the solution is perfect or if the basic procedure has been repeated
several times (undergone several iterations) and the Stress has not
improved, stop the entire procedure. Otherwise, go on to step 5.

5. Move the points in order to make the actual distances more similar
to the target values, with the magnitude of the move adjusted to
reflect the desired amount of change.

6. Repeat the process starting at step 2.

5 The original Stress formula, Stress 1, differs only in the denominator. In Stress 1 the
variance of distances term is replaced by the mean square distance. The formula for
Stress 1 is:

r—
# of pairs )
£ [(Actual distance pair i) — (Target value pair )]*{ 7

i=1
# of pairs
T (Actual distance pair i)?
i=1

L

Stress 1, like Stress 2, is sensitive to the difference between the actual distances and
target values and insensitive to the scale factor. The Stress 1 denominator will always be
greater than or equal to that for Stress 2. Hence, Stress values will be lower using Stress 1
than Stress 2. While Stress 2 has a more intuitive interpretation and provides certain
technical advantages over Stress 1, both measures perform well as measures of badness of
fit. In the text, when we refer to the Stress of a solution we will mean the Stress
calculated according to any satisfactory measure of badness of fit, such as Stress 2 or
Stress 1.
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The procedure seems quite reasonable. However, its development has not
been very rigorous. It would be useful to approach the task of scaling the
points in a more analytic fashion. Underlying much of the procedure is the
notion that the lower the Stress, the better the solution. Analytically, we
could define the problem as one of finding the configuration of points for
which the Stress value is minimized.

In minimizing such complex functions mathematicians use what are called
negative gradient or steepest descent techniques. These methods work as
follows:

1. One determines how much the measure will improve for a very small
change in each of the independent variables. (The independent
variables in the Stress formula are the locations of the points on the
axes. Fach coordinate location is something that we can manipulate.
Hence, if we have 5 points to locate in 2 dimensions, we have 5 X 2
= 10 independent variables). Technically, the amount the function
improves with a very small change of an independent variable is
called the partial derivative of the function with respect to that
variable.

2. One then changes the values of each independent variable in propor-
tion to the relative amount of improvement; variables are changed
more if the improvement (partial derivative) calculated was large.
One then repeats the procedure iteratively until a change in any of
the independent variables will cause no (or negligible) improvement.
This occurs when all the partial derivatives are zero or close to zero.®

Analytically, we can solve the problem of minimizing Stress by calculating
the partial derivatives and using them to relccate the points. When one goes
through the analytic solution, it is remarkably like the intuitive procedure we
developed earlier. That is, it turns out that points are always moved directly
toward or away from each other with the relative amount of movement
determined by the difference between the actual and target distances. How-
ever, placing the problem in an analytic context is still useful. First, we know

SIf we list these partial derivatives in order, starting with that associated with the first
point on the first dimension and continuing to the last point on the last dimension, the
resulting set of ordered partial derivatives is called the gradient. The gradient is a vector
whose direction summarizes the dircction in which the points are moved. The size of the
gradient is the square root of the sum of the squared partial derivatives, and hence offers
some information about the rate of change for a very small movement of the points. It is
easier to technically discuss some aspects of the procedure in terms of the gradient;
hence this vector is regularly referenced in the literature.



362 George B. Rabinowitz

that our intuitive solution did not miss an alternative approach which would
have been easier and more accurate. Second, when we moved the points in
the intuitive procedure we worked pair by pair. In the intuitive procedure
each poiflt was moved several times in the course of a single iteration; these
moves may have been in the same or in quite different directions. The partial
derivatives for each point on each axis represent the sum of all the pairwise
moves. Hence, using the partial derivatives is slightly more efficient.

Third, our only stopping criterion occurred when the Stress failed to
improve after several iterations. Now when the partial derivatives are all zero,
we know all our moves cancel out and we have reached some kind of
optimum solution. Fourth, we never had a satisfactory way to decide how
much to change a configuration on any given iteration. It happens that if we
change our solution just enough so that our last move gives us no information
about our next move, we are changing our configuration just the right
amount. While this is a little technical, it nevertheless is useful to know that
once we have broached the problem analytically we have a better notion of
how radically we should change the configuration from iteration to iteration.

Comparison with Factor Analysis

The procedure is well defined and can be programmed to run on a
computer. Once programmed, it can easily be applied to problems of substan-
tive interest. Since factor analysis has been the most widely used multidimen-
sional scaling procedure, an obvious question is “how do these methods
compare?”’’

Obviously, they differ in terms of the level of measurement they presume;
factor analysis assuming interval level data, nonmetric multidimensional scal-
ing, ordinal level data. However, this distinction is somewhat artificial. It is
feasible to construct a nonmetric .factor analysis procedure or a metric
multidimensional scaling technique. There is a more fundamental difference
between the two methods.

Most critically, the basic models underlying the methods are different.
Factor analysis is based on a scalar product model; nonmetric multidimen-
sional scaling is based on a distance model. While this is a rather technical
sounding distinction, it is of some significance. In Figure 6 two points, X and

7A full discussion of factor analysis is beyond the intended scope of this paper. In
this section the most critical difference between factor analysis and multidimensional
scaling is emphasized. Because the discussion is brief, it is necessarily somewhat more
technical than those sections which precede and follow it.
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FIGURE 6
Basic Scalar Products with Points Equidistant from Origin

Y, appear. The length of the line labeled C is the distance between the two
points. The length of the line labeled A is the distance of point X from the
origin. In keeping with standard notation, we will denote this distance X In
general, the distance of a point from the origin will be denoted by the symbol
representing the point surrounded by two vertical lines. The length of the line
labeled B is the distance of the Y point from the origin or |YI. The angle
made by the intersection of these two lines we will denote as 6 xy . The scalar
product between X and Y is equal to the length of X from the origin times
the length of Y from the origin times the cosine of the angle between them;
that is, IX11YICOS GXY-
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How is this scalar product related to the interpoint distance? When the
points are all equidistant from the origin, the distance and the scalar product
will depend only on the angular separation. As the angle becomes larger, the
distance will increase and the scalar product will decrease. Under this condi-
tion there is an inverse monotonic relation between distances and scalar
products. The larger the distance, the smaller the scalar product and vice
versa.

In instances where the distances of the points from the origin are not
equal, this relationship breaks down. In Figure 7 we see three points, X, Y,
and Z. Here IX|=1Y|, but IZ|is quite a bit larger than IX|and Y. The largest

FIGURE 7
Illustration Where Scalar Products Are Not Monotonically Related to
Interpoint Distance



Nonmetric Multidimensional Scaling 365

scalar product will be between X and Z, since |Z| is large, and the angle
between X and Z is small. The next largest scalar product will be between Y
and Z; 1YI1Z! = IXI|Zl, but the angle between Y and Z is greater than that
between X and Z. The smallest of the scalar products will be between X and
Y, since X! and 1Y are both small and the angle between them is the largest
of all. Now look at the distances; it is obvious from inspection that the XY
distance is the smallest, the XZ distance next, and the YZ distance the largest.
Here, there is no monotonic relation between distance and scalar product; the
pair with the smallest scalar product has the smallest distance, the pair with
the largest scalar product has the middle distance, and the pair with the
middle scalar product has the largest distance. In general then, when all points
are equidistant from the origin, the scalar product is monotonically related to
the distance; when points are not equidistant from the origin, the scalar
product is not monotonically related to the distance.

The basic difference between factor analysis and nonmetric multidimen-
sional scaling should now be clearer. Factor analytic procedures treat input
data as scalar products; a “perfect” configuration following a factor analysis
is one in which the interpoint scalar products match the values in the input
data matrix. In contrast, a “perfect” configuration following a nonmetric
multidimensional scaling analysis is one in which the interpoint distances
match the input data values.

Both covariance matrices and Pearson product-moment correlation ma-
trices are scalar product matrices. However, Pearson product-moment correla-
tions are scalar products between standardized variables, hence between
variables of identical length. Either factor analysis, which is directly a scalar
product model, or nonmetric multidimensional scaling, which requires data to
be a monotonic function of distance, can legitimately be used to analyze
product-moment correlation matrices, The standard nonparametric measures
of association are conceptually similar to standardized scalar products; hence
they lend themselves to either nonmetric multidimensional scaling analysis or
(nonmetric) factor analysis.

How similar will the results be using these methods? Since the models
underlying the two methods differ, we would in general expect them to
produce somewhat different results. The principal component variant of
factor analysis keeps all variables of constant length and should produce
results more similar to those obtained using nonmetric multidimensional
scaling. Since nonmetric multidimensional scaling procedures are nonmetric,
which implies less restrictive criteria of fit, they usually achieve solutions in
the same or lower dimensionalities than metric factor analysis or principal
component analysis.
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In many instances we collect similarities data which are not scalar product
measures, but are measures the analyst wishes to treat as a monotonic
function of distance. For example, a measure of internation hostility or
internatiopn trade, sociometric choice, individual perceptions of interobject
similarities (such as in the five-candidate example), and the line-of-sight
measure of pairwise similarity are all proximity rather than scalar product
measures.® In these instances the nonmetric multidimensional scaling model
is correct to apply, and the factor analytic model is not.

Which method should be chosen to analyze a particular set of data? Asa
general rule, factor analytic procedures should be used when one “is creating
standard indices, such as an efficacy or civil rights index, or if one is
interested in testing the dimensionality or viability of items for forming
potential indices. This type of scaling is metric and is usually consistent with
the linear model underlying classic factor analysis. Nonmetric multidimen-
sional scaling methods are most useful in analyzing proximity structures such
as party or candidate spaces, internation relations, and legislative voting
patterns. Nevertheless, it is the measure of similarity which determines which
method to apply, and an analyst should give careful thought to the substan-
tive implication of the particular similarity measure he applies. If the measure
is a proximity measure, a nonmetric multidimensional scaling method should
be used. If the measure is an unstandardized scalar product measure, a factor
analytic method should be used. If the measure is a standardized scalar
product, it is often useful to apply both methods.’

Guidelines for Use

A researcher interested in using a nonmetric multidimensional scaling
program should be familiar with some basic guidelines. We will now discuss
those issues which an investigator confronts when he applies this methodol-
ogy to research problems.

Data

Data input into a nonmetric multidimensional scaling program is usually a
matrix of values reflecting the similarity or dissimilarity among pairs of

8 The line-of-sight measure of pairwise similarity is discussed in Rabinowitz (1973,
Chapter 2). It is designed to measure the relative similarity between pairs of objects
(such as political parties) from individual ratings of those objects, under the assumption
that the individuals have common perception but different evaluations of the objects.

®A full treatment of proximity measures is beyond the scope of this paper. See
MacRae (1970), Weisberg (1968), Morrison (1972), and Rabinowitz (1973) for discus-
sion of some of the standard measures of association and their utility for spatial analyses.
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TABLE 4

Matrix of Perceived Intercandidate Similarity

McGovern Humphrey Nixon Percy Wallace

McGovern —

Humphrey 1 —

Nixon 8 6 —

Percy 2 5 4 —

Wallace 10 7 3 9 —

objects. In our five-candidate example we had arranged our ten candidate
pairs in a list proceeding from most to least similar. We could have supplied
the same information in a conventional matrix form. Such a matrix appears in
Table 4. An entry in this matrix is the rank order similarity of a candidate
pair. Hence, a 1 is assigned to the Humphrey-McGovern pair, a 2 to the
McGovern-Percy pair, and so on through the list. When this matrix is input to
a nonmetric multidimensional scaling program the numerical values will be
used only to sort the pairs from most to least similar, and a list identical to
the one we used in the five-candidate problem will be formed by the program.
Correlation matrices contain essentially similar information. Each entry in a
correlation matrix is a number reflecting the similarity between two objects,
and these numbers can be used to rank the object pairs from most to least
similar.

If one is working with a correlation matrix, it is necessary to be sure that
items are coded consistently. For example, if we are analyzing a set of roll
calls with Yea coded 1 and Nay, 3, and if on some of these votes Yea is liberal
and on others Yea is conservative, all the items should be recoded so that a
liberal vote receives consistently one score and a conservative vote another.
Artificial negative (or positive) correlations due to question wording or
coding must be avoided, since this will lead to artificially large (or small)
distances between object points.

Interpretation of Results

The usual objective in performing a nonmetric multidimensional scaling
analysis is to uncover the structure present in a complex data matrix. To do
this an analyst must deal with three basic questions:

1. What is the correct dimensionality for the spatial representation of
the data matrix?
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2. How satisfactory a solution has been achieved? That is, what does
any particular Stress value tell us about the solution?

3. How can the spatial configuration recovered be substantively inter-
preted?

Determining dimensionality. Every nonmetric multidimensional scaling
sdlution takes place in a space of fixed dimensionality. The analyst first
chooses the number of dimensions in which he wishes to work and then
obtains a solution in that dimensionality. For example, in the five-candidate
problem, we first tried a one-dimensional solution, decided a perfect one-
dimensional solution was impossible, and then went on to try a separate
two-dimensional solution.

The primary guide in selecting the number of dimensions in which to
perform the analysis is the substantive knowledge the user brings to the
problem. Invariably the analyst has an a priori notion concerning the number

STRESS

Elbow

DIMENSIONALITY

FIGURE 8
Ilustrative Plot of Stress against Dimensionality with a Clear Elbow at
Three Dimensions
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of dimensions underlying his data matrix. If very strong substantive reasons
indicate that only a specific dimensionality is appropriate, the analyst can
obtain solutions in only that dimensionality. More usual is the case where the
analyst feels the solution should be within a certain range of dimensions, but
is not sure which dimensionality is correct. The normal procedure in this case
is to obtain a solution in each of the relevant dimensionalities and to use
these results to select the correct one.

Figure 8 contains a plot of Stress against dimensionality for some hypo-
thetical set of solutions. The Stress values for the one- to five-dimensional
solutions are respectively .4, .25, .1, .09, .08. Notice that Stress decreases
markedly as one goes from one to two and two to three dimensions, but then
seems to level off, decreasing only slightly as we add dimensions after that.
We know Stress will always decrease as we add dimensions, since as we add
dimensions we are increasing the number of coordinates which we will
estimate and hence increasing the number of manipulable independent vari-
ables.!® In this example, it seems that the first three dimensions are each
capturing a significant part of the structure present in the original data
matrix, while the fourth and fifth dimensions seem to be capturing idiosyn-
cratic features, or perhaps only random error. Notice the elbow in the curve
at the third dimensional point. This elbow occurred because of the drop in
the rate of change in Stress after the third dimension was added. The
appearance of an elbow in the Stress against dimensionality curve provides a
good indication of the correct dimensionality. In this example the dimension-
ality is three.

Unfortunately, in many empirical instances there is not a clearly discern-
ible elbow. In these instances an analyst must draw on his substantive
expertise to select the dimensionality he will report. When there is neither a
clear substantive nor a clear empirical basis for selecting a specific dimension-
ality, then it is often useful to report the solution in several different
dimensionalities.

Interpretation of Stress. The following guidelines are useful in relating
Stress to the quality of solution.

Quality of Solution Stress 2 Stress 1

Perfect 0.00-0.05 0.000-0.025
Excellent 0.05-0.10 0.025-0.050
Good 0.10-0.20 0.050-0.100
Fair 0.20-0.40 0.100-0.200
Poor 0.40-1.00 0.200-1.000

10 Occasionally, Stress will be higher for a higher than for a lower dimensional
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While valuable, these guidelines must be applied cautiously. Stress, ideally,
would be insensitive to the number of points used in the analysis. However, as
the number of points increases, Stress tends to increase. In addition, one-
dimensional solutions tend to be disproportionally prone to high Stress. If
one is analyzing data with a large number of objects (N > 30) or if one is
working in one dimension, it is reasonable to extend these ranges slightly. On
the other hand, if the number of points analyzed is small (N < 10) or if when
we form the ratio of the number of points to the number of dimensions, this
ratio is small (ratio < 4), the resulting Stress might be lower than the quality
of solution warrants. Nevertheless, in most situations the guidelines are
satisfactory.

Interpreting a Configuration: Traditional Method. When interpreting a
spatial representation of data, our first instinct should be to delineate the
basic cluster pattern present in the configuration. One of the great advantages
of nonmetric multidimensional scaling is its tendency to produce solutions in
a limited number of dimensions, thus giving us a visualizable picture of the
major interrelationships among the objects in our data matrix. By getting this
overview, we are much less likely to fall into those misinterpretations which
arise when we are forced to work dimension by dimension, without a sense of
how the entire space fits together.

In Figure 9 the final configuration of the five candidate points is redrawn
with the representational axes included and some of the major groupings
demarked. We can identify two broad patterns. The regular Democrats,
Humphrey and McGovern, are drawn together to the upper left side of
the space; the two regular Republicans, Percy and Nixon, to the middle
right. Similarly, the more liberal group of McGovern, Percy, and Humphrey
are located toward the top of the space, while the more conserv-
ative group of Nixon and Wallace lies toward the bottom. The clustering
pattern is weak, since the distances within clusters are quite large; never-
theless, it does seem that party and idealogy effects are represented in the
space.

If we want to move from this general description to an analysis of the
structure in dimensional terms, we move to mathematically tenuous grounds.
The problem is familiar to anyone who has studied factor analysis. In a

solution. This result only occurs artificially, either because the procedure was terminated
prematurely, or because a false or local minimum was obtained. (In a later section the
problem of local minima will be discussed.)
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H= HUMPHREY
M= McGOVERN

N = NIXON
P = PERCY
W= WALLACE

FIGURE 9
The Final Configuration of Five Points Redrawn with the Representational
Axes Included and the Major Groupings Demarked
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Euclidean space, the particular axes we use as a basis on which to locate our
points are entirely arbitrary. If, for example, we had rotated our axes and
represented our points as in Figure 10, the solution would have identical
Stress and be mathematically equivalent to our initial one. Notice, however,
that the X and Y coordinates for the two solutions are quite different. When
analysts interpret spatial configurations dimensionally, they do so in terms of
the location of the points on specific axes. This makes the selection of the
axes very critical, and puts the -analyst in the somewhat awkward position of
interpreting a configuration in terms of specific dimensions which are math-
ematically irrelevant to the solution obtained.

Factor analysts cope with this problem by defining specific simple struc-
ture criteria for selecting axes. The idea underlying simple structure is to have

H=HUMPHREY
M= McGOVERN

|
|
|
!
®___"l N = NIXON

P = PERCY
W= WALLACE
FIGURE 10

The Final Configuration Redrawn after a Rotation
(Previous representational axes are also shown.)
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axes run through clusters of points. Axes are then interpreted in terms of the
clusters they pass through. When clusters are well defined, this tends to
encourage interpretations similar to those one would make when visually
overviewing the structure. If no strong clustering pattern is present, then
these rotational methods are less useful. In addition, if we are interested in
interpreting dimensions as underlying factors or causes and clusters are
formed because of the interrelation of several different factors, these methods
produce misleading results.

The standard rotational methods used in factor analysis are divided into
two types: orthogonal, in which the axes are kept at right angles and hence
are independent; and oblique, in which the axes are allowed to correlate. The
most common orthogonal rotation is the varimax rotation. The most com-
mon oblique rotations are the direct and indirect oblimin rotations. In
general, the orthogonal rotations are most useful as a vehicle for overviewing
structure, since the nonassociation between axes makes comparisons between
objects easier. The oblique rotations are better suited to delineating dimen-
sions, since ‘“‘real world” attributes of legitimate substantive interest are likely
to be interrelated.

It is appropriate to apply these standard rotational procedures when
performing a nonmetric multidimensional scaling analysis as well. However,
there is a caveat: in a nonmetric multidimensional scaling solution the origin
is arbitrary. That is, the origin can be changed without altering the Stress or
any essential attribute of the structure. Since rotations are around a fixed
point, this could-be a problem. Fortunately, the centroid of the configura-
tion, the point in the middle of the space, is a natural origin for these
solutions and is a very reasonable point about which to perform rotations.
The standard nonmetric multidimensional scaling programs all locate the
origin at the centroid.

It is important, of course, not to interpret the origin and distance from the
origin as one would in a factor analysis. Factor analysis is a scalar product
model; hence the origin is fixed and distance from the origin is an important
piece of information. When performing a nonmetric multidimensional scaling
analysis, even after a “standard rotation” interpretation of axes must rest on
the relative, not the absolute, location of points on the dimensions. In
addition, because of the nonmetric nature of the algorithm, the structure of
the space will be insensitive to any factors which are common to the entire
set of items. For example, in a factor analysis, the first principal component
will often have high loadings for all the items when the items in the matrix
tend to be positively correlated. In a nonmetric factor analysis or a nonmetric
multidimensional scaling analysis this first component will not appear, be-
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cause it does not discriminate between items.!! Nonmetric multidimensional
scaling solutions emphasize those dimensions which lead to discrimination
between items.

Interpreting a Configuration: External Criteria. In both nonmetric multi-
dimensional scaling and factor analysis, there are other and perhaps better
ways to approach the problems of dimensional interpretation. These involve
using external criteria to help select dimensions. If an investigator is seriously
interested in explicating the structure among his data objects, he is likely to
have an a priori sense of what the underlying dimensions are. If the research
design can be controlled, it should be possible to include in the analysis both
the means to test dimensional hypotheses and the means to locate axes in the
space.

When we asked the individual to rank the candidate pairs according to how
similar he perceived them to be, we noted that if the individual organized
politics (and politicians) along a liberal-conservative continuum, he would
perceive candidates of like ideology to be relatively similar; if he organized
politics on the basis of party affiliation he would perceive candidates of the
same party to be alike; if he had an incoherent view of politics he would
display no discernible pattern in his pairwise perceptions. The two underlying
dimensions which we identified as most likely to shape his political orienta-
tions were party and ideology. Let us suppose that when we asked him for his
perceptions of pairwise similarities, we also asked him to locate the five
candidates on two independent continua, one party, the other liberal-conser-
vative. This produced two dimensions independent of (external to) the space
created on the basis of the similarity judgments, which are displayed in Figure
11.

How might we use this external information to clarify our understanding
of the similarity space? If the individual had used either party or ideology
exclusively as a guide in his perceptions of candidate similarity, then the
configuration recovered on the basis of the similarity judgments should have
been unidimensional and should have corresponded to one or the other of the
two external dimensions. If the individual had used both party and ideology,
we would expect the similarity space to be two-dimensional and reflect both
a party and an ideology component. The space is two-dimensional and seems
to be influenced by party and ideology, but it is unclear to what extent each
component influences the spatial structure and how an axis representing each
component can be located in the space.

' A nonmetric factor analysis differs from a metric factor analysis in that the scalar
products need only preserve the same rank order as the input data values rather than
duplicate the actual values.
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FIGURE 11
Individual’s Perception of the Five Candidates on a Democratic-Republican
and a Liberal-Conservative Dimension

Inserting a new axis in the space is geometrically equivalent to drawing a
line through the space running through the origin. If we are interested in
seeing whether or not the spatial structure can reflect a specific external
dimension, like the party or ideology dimension, it would be reasonable to
determine the single axis in the space on which the projections are most like
those of the externally determined dimension. If the projections on the
internally drawn axis are quite similar to those on the external axis, we would
have evidence which supports the hypothesis that the external dimension is
one of the underlying causes of the structure; if the projections on the best
fitting internal dimension and the external dimension are quite different, the
hypothesis could be rejected. This raises two closely related questions: First,
“How can we determine the internal axis which most closely corresponds to
the external axis?” Second, “How can we measure the degree of fit between
the projections on the internal and external axes?”!?

The basic numerical information we have at the end of a nonmetric
multidimensional scaling procedure is numbers whichlocate the object points
on each of the (arbitrary) representational axes. Associated with each axis are
as many numbers as there are points in the space. Conceptually, we can think
of the axes as standard analytic variables. Suppose we performed an unstan-
dardized multiple regression using as the independent variables the representa-
tional axes and using as the dependent variable the externally determined
axis. We would obtain the linear combination of the representational axes
which most closely corresponds with the external axis. That is, for each

2To clarify any ambiguities in the text, we mean by an “external axis” an axis
defined completely independent of the recovered configuration, and by an “internal
axis’ an axis actually drawn through the space.
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representational axis we will have a weight which reflects how important that
axis is in predicting position on the external dimension. If we orient a new
axis in the space such that it corresponds with each representational axis in
proportion to the magnitude of the regression coefficient (weight), we will
have the single internal axis which is most like (in a least squares sense) the
external axis. The degree of fit can be measured by the Pearson product-
moment correlation between the internal and external axes. This bivariate
correlation is identical to the multiple correlation between the representa-
tional axes and the external dimension.

The regression equation to determine the orientation of the party axis
would be

bjaxis; +b,axis, + constant + error = external party dimension,

where the b values are unstandardized regression coefficients, the constant
and error terms are those associated with an ordinary least squares regression,
and axis, and axis, are variables representing the location of the points on
the representational axes. On each variable (axis,, axis,, and the external
party dimension) there are as many observations as points in the space, in this
case five. While the particular representational axes used will influence the b
values and the constant term, the eventual orientation of the axis representing
party will be entirely independent of them. Similarly, the multiple correlation
coefficient will not be influenced by the particular representational axes used.

To determine the orientation of the axis, we calculate its slope by taking
the ratio of the b coefficients. For example, if b, /b; =3, the axis should be
drawn so that for each one-unit change on the first representational axis there
is a three-unit change on the second representational axis. When we actually
perform the regression with these data our results are:

10.8 axis; — 5.7 axis, +.002 + error = external party, and
1.2 axis; + 6.5 axis, +.200 + error = external ideology.
The b, /b, ratio used to orient the party axis internal to the space is

—5.7/10.8 = —0.528; the b, /b, ratio used to orient the internal ideological
axis is 6.5/1.2 = 5.417. Both of these axes are drawn in Figure 12."® The

'* A simple procedure which can be used to construct an axis once the b coefficients
have been determined is to mark the point with coordinate (b,, b,) and then draw the
line determined by that point and the origin. This line is the appropriate internal axis.
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FIGURE 12
The Final Configuration of Five Points with Representational and Party
Identification and Ideology Axes Inserted
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correlation between the projection of points on the internal party axis and
external party dimension is .996, and that between the internal ideological
axis and the external ideological dimension is .995. The close correspondence
is apparent if one compares the projection of points on the internal axes in
Figure 12 with the external dimensions in Figure 11.

The results support the hypothesis that party and ideology were critical in
determining the observed spatial structure. Of course, the small N of five
candidates warrants considerable caution. In general, the use of external
dimensions to reveal the underlying basis for a spatial structure is a potent
addition to the rotation methods. By using external dimensions, the analyst
determines axes with real substantive interpretability and obtains a measure
of fit between the hypothesized determinants of the structure and the spatial
structure which has been observed.

Problems with the Method

As with most analytic procedures, these methods present problems to
which an investigator should be sensitive before applying them in his research.
Problems arise from two sources, one the nonmetric nature of the procedures,
the other the iterative strategy used in arriving at a best fit solution.

Problems Associated with the Nonmetric Assumptions

These techniques make only ordinal assumptions and return metric results.
The jump in level of measurement occurs because of the metric constraints
present in this type of data. One need work only a few examples by hand to
realize that for most similarity matrices only a single representation is
possible. However, when the number of dimensions becomes large relative to
the number of variables, the constraint essential to these procedures starts to
evaporate. One can then obtain solutions with low Stress that do not
represent the data well. Hence, the procedure should not be applied (or
should be applied very cautiously) to data when the ratio of objects to
dimensions is small (ratio < 4). Similarly, analysis with less than ten, and
certainly with less than eight points should be avoided. (We have violated
both these caveats with our five-candidate problem in order to present an
example with greater intelligibility.)

There is another caveat which arises from the nonmetric nature of the
procedure. Let us again violate the constraint restrictions and suppose that we
have six points whose correct location is displayed in Figure 13. Notice that
the five points, excluding f, are located in two distinct clusters: the A,B,C
cluster and the D,E cluster. The similarity order obtained using just the ten
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FIGURE 13
Iustration of a Potentially Degenerate Configuration
(Excluding f, all within-cluster distances are less than between-cluster distances.)
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FIGURE 14

A Degenerate Solution Incerrectly Locating All Within-Cluster Points at the
Same Position

pairs formed from these five points is AB, DE, BC, AC, AE, AD, BE, CD, CE,
BD. This ordering can be broken into two distinct halves—the within-cluster
pairs AB, DE, BC, and AC, followed by the between-cluster pairs AE, AD,
BE, CD, CE, BD. When this condition arises a nonmetric procedure cannot be
appropriately applied, for a “perfect” solution can always be obtained by
locating each point in a cluster at exactly the same point in the solution
space. For example, using just the five points, the obviously incorrect uni-
dimensional solution in Figure 14 will be “perfect.” The AB, DE, BC, and AC
pairs will all have an actual distance of 0.0 and the AE, AD, BE, CD, CE, and
BD pairs will all have an actual distance of 1.0. These distances satisfy the
monotonicity requirement so targets will equal distances and the Stress will
be zero.

This condition usually arises when an analyst is using a very limited
number of points. For example, the presence of the £ point in this case would
be enough to prevent the solution from degenerating.® Nevertheless, it is
important, particularly if the data are expected to be severely clustered, to be
on the lookout for this type of degeneracy. It is easy to detect; Stress will be
very low, even in one dimension, and points will be located in very tight
distinct clusters. The occurrence of this degeneracy informs the analyst that
his data are quite clustered, but gives him no insight into their finer structure.
The problem can be circumvented only by performing a metric analysis.

'*The rank order of pair similarity with f included is: AB, DE, BC, Ef, Af, AC, Df,
Bf, Cf, AE, AD, BE, CD, CE, BD. If A, B, and C were located at the same position, the
AC distance would be zero. This implies that the Af distance must be zero, since Af
precedes AC in the similarity order. This in turn implies the f point would also have to
be located at the same position as A, B, and C. However, the Ef pair precedes the Af pair
in the similarity order; hence, the Ff distance would also have to be zero. Clearly, Stress
would become very high were E positioned with A, B, and C; hence a different solution
would be sought and the degeneracy would not occur.
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Problems Associated with the Numerical Method (the Iterative Strategy)

In Figure 15 a curve is drawn. Notice that it has two low points, one at A
and one at B. Point A is called a global minimum, since it is associated with
the lowest point on the curve. Point B is called a local minimum, since it is
associated with the lowest point on the curve in its immediate vicinity. If we
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FIGURE 15
Nlustration of a Local Minimum at B and a Global Minimum at A
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start at point X and move to a minimum, we will wind up at A, the global
minimum. If we start at point Y and move to a minimum, we will wind up at
B, the local minimum. Notice that if we had a procedure oriented to
obtaining a minimum from a fixed starting point, we would not know that B
was a local and,not a global minimum. In analogous fashion, the procedure
we use to minimize Stress is not sensitive to whether the minimum found is
local or global. In either case, Stress would decline fairly consistently from
iteration to iteration until the minimum was achieved.

If one does have a local minimum, it is usually easy to detect, in that
Stress is high and the solution does not make sense empirically. Often, this is
not a real problem since only one minimum exists, which must therefore be a
global one. However, to help insure the analyst that the solution he reports is
indeed the global minimum, several strategies are available.

The particular starting configuration we use is an important determinant
of the likelihood of a local minima solution. We started our five-candidate
problem by randomly (arbitrarily) locating five points in the space. If we had
started with a more reasonable configuration, for example, one based on a
metric analysis of the same data matrix, we would have been much closer to
the eventual best solution. In general, a rational (as opposed to a random)
start is an excellent way to reduce the risk of hitting a local minimum.
Another good strategy is simply to perform the analysis several times using
different random starting configurations, and then choosing the one solution
with the lowest Stress. Either of these approaches is effective in nullifying
potential local minima problems. The “safest” of all strategies is to run one
solution with a rational start and several with random starts to check on the
result. Most of the nonmetric multidimensional scaling programs allow for
either a series of random starts, some type of rational start, or both.

Programs Available

There are several programs available to perform nonmetric multidimen-
sional scaling. The three which have been most widely used are MDSCAL
(new version KYST), TORSCA (new version POLYCON), and SSAI (this
program is regularly updated). The programs produce quite similar results and
may be used interchangeably. The main distinctions between the programs
are technical, and involve the way in which target values and the measure of
fit (Stress) are calculated and how one obtains the initial configuration to
start the analysis. The basic algorithm in each of these programs is essentially
identical to the one described in this paper.
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Summary

We have completed a general introduction to nonmetric multidimensional
scaling. Let us now summarize the major points.

Assumption

When points representing objects are located spatially, if, according to the
measure used, one pair of objects is more similar than another pair, the points
in the more similar pair should be located closer in the space.

Procedure

Points representing the objects are located in a space of fixed dimension-
ality and are then moved iteratively until a minimum Stress configuration is
obtained. Stress is a measure of badness to fit; it ranges from 0.0 for a
perfect solution to 1.0 for the worst possible configuration.

Guidelines for Use

1. Input data is a matrix which reflects the similarity or dissimilarity
between pairs of objects.

2. The researcher specifies the dimensionalities in which he wishes to
obtain solutions. The eventual decisions on dimensionality are based
on substantive expertise and the plot of Stress against dimension-
ality.

3. The adequacy of a solution is determined using the following guide-
lines, realizing that the guidelines are not perfect and are sensitive to
the number of points used in the analysis.

Quality of Solution Stress 2 Stress 1

Perfect 0.00—0.05 0.000-0.025
Excellent 0.05-0.10 0.025-0.050
Good 0.10-0.20 0.050-0.100
Fair 0.20-0.40 0.100-0.200

Poor 0.40-1.00 0.200-1.000
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4. The solution should be interpreted initially by describing the overall
clustering pattern. If a dimensional interpretation is desired, either
the standard rotational methods or the use of external criteria is
appropriate.

Caveats

1. Be very circumspect about solutions where the ratio of the number
of points to the number of dimensions is less than four.

2. Do not work with less than eight and preferably not less than ten
points.

3. If Stress is very low and points are located in tight distinct clusters,
the solution is probably degenerate. Check the original matrix to see
if all the within-cluster pairs are more similar than any between-
cluster pairs.

4. Beware of potential local minima problems.

Annotated Bibliography

General

There is an extensive nonmetric multidimensional scaling literature. The
articles which develop the theory underlying the three major nonmetric
multidimensional scaling programs are: Shepard (1962a, 1962b), Kruskal
(1964a, 1964b), Guttman (1968), and Young (1968); of these, the Kruskal
(1964a) piece is the most readable for a nontechnical audience. The algorithm
used in nonmetric multidimensional scaling is quite flexible and can be
applied to a wide variety of problems. A sense of the variety of potential uses
is provided in Young (1972) and Lingoes (1972). The most common alternate
use is in the direct analysis of preference data; procedures appropriate to this
application are discussed in Green and Carmone (1970), Gleason (1969), and
Rabinowitz (1973). An overview of current scaling procedures not restricted
to nonmetric multidimensional methods appears in Shepard (1972). Many of
the programs Shepard discusses are considered in more detail in Green and
Rao (1972).

MacRae and Schwarz (1968) and Weisberg (1968) compare nonmetric
multidimensional scaling and factor analysis in the analysis of legislative roll
calls. Weisberg (1974) compares principal component analysis and nonmetric
multidimensional scaling more generally. Weisberg and Rusk (1970), Rusk
and Weisberg (1972), Mauser (1972), and Rabinowitz (1973) provide applica-
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tions of nonmetric multidimensional scaling techniques. They all analyze the
dimensions underlying candidate evaluations. Taken together, the Weisberg
and Rusk, Mauser, and Rabinowitz pieces illustrate the scope of data to
which the method can be legitimately applied and the importance of the
similarity measure in determining the eventual spatial configuration.

Sources

The nonmetric multidimensional scaling programs referred to in the paper
are available from the sources listed below.

MDSCAL and KYST

Computer Program Librarian
Bell Laboratories
Murray Hill, New Jersey 07974

TORSCA and POLYCON

Professor Forrest Young
Psychology Department
University of North Carolina
Chapel Hill, North Carolina 27514

SSAI

Professor J. C. Lingoes
1000A N. University Building
The University of Michigan
Ann Arbor, Michigan 48104

For a comparison of the effectiveness of TORSCA, SSAI, and MDSCAL, see
Spence (1972) and Lingoes and Roskum (1973).

Metric Constraint and Interpreting Stress

The degree of spatial constraint present in an ordinal data matrix is
examined in Shepard (1966).

Detailed investigations of the relation between Stress and the adequacy of
solution appear in Young (1970) and Sherman (1972). Spence and Ogilvie
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(1973) present tables which delineate realistic upper bounds for Stress values
given a fixed number of points and a fixed dimensionality.

Factor Analysis and Metric Multidimensional Scaling

There are many texts dealing with factor analysis. An excellent general
text is Harman (1967). A less technical and quite readable text is Rummel
(1970).

A method for performing metric multidimensional scaling appears in
Torgerson (1958, pp. 247-297).

Interpreting Structure

For a good discussion of the use of unidimensional scales in interpreting
spatial structure, see Cliff and Young (1966). A very useful, but fairly
difficult article which deals with some alternate approaches to interpreting a
nonmetric multidimensional scaling solution is Degerman (1972).

Appendix A

Calculation of Target Values Using the Least Squares Criteria

Let us suppose that the actual interpoint distances were those displayed in
the second column of Table 5. Let us calculate the target distances associated
with these actual distances. The calculations are displayed in the next five
columns of Table 5.

We start by simply listing the actual distances until we have a violation of
the monotonicity requirement. The first four pairs all have their distances in
the correct order. Hence, initially these target distances are the same as the
actual distances. The fifth distance, however, is smaller than the fourth
distance; this violates the monotonicity requirement. To try to rectify this
violation we will simply average the fourth and fifth distances. The fourth
distance is 7.0; the fifth distance is 2.0; their average is (7.0 + 2.0)/2 =9.0/2 =
4.5. However, this still does not solve the problem;our new target of 4.5 for
the fourth pair is less than the target of 6.0 for the third pair. To keep the
targets monotonic we must also include the third pair in the average. The new
average is (6.0 + 4.5 + 4.5)/3 = 15.0/3 = 5.0. The target values for the first
five pairs are now monotonic (2.0, 4.0, 5.0, 5.0, 5.0), so we can proceed to
the sixth pair. Again we will set the target distance equal to the actual
distance unless there is a violation in the monotonicity requirement. The
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TABLE 5
Illustration of Target Value Calculation Using Least Squares Method

Actual Final Actual
Pair  Distance Calculation of Targets Target  Distance
1 2.0 20 2.0 20 2.0 2.0 2.0 2.0
2 4.0 40 4.0 4.0 40 40 4.0 4.0
3 6.0 60 60 5.0 50 5.0 5.0 6.0
4 7.0 7.0 45 5.0 50 5.0 5.0 7.0
5 2.0 20 45 5.0 5.0 5.0 5.0 2.0
6 7.0 7.0 7.0 7.0 7.0
7 8.0 8.0 8.0 8.0 8.0
8 9.0 9.0 9.0 9.0 9.0
9 10.0 10.0 9.5 9.5 10.0
10 9.0 9.0 95 9.5 9.0

sixth, seventh, eighth, and ninth distances have actual distances consistent
with the monotonicity requirement, so their targets are set equal to their
actual distance. The tenth pair has an actual distance of 9.0, which is less than
the target distance of 10.0 associated with the ninth pair. These two must be
averaged to form the targets for the ninth and tenth pairs. Their average is
(10.0 + 9.0)/2 = 19.0/2 = 9.5. This creates no new violations of the
monotonicity requirement; hence our ten targets are now calculated.

The full set of targets appears in the next-to-last column of Table 5. The
actual distances reappear in the last column. Notice that the target distances
do seem to serve their purpose. The pair most clearly out of order is the fifth
pair, where the actual distance is too small. Here the target distance is
considerably greater than the actual distance. Were the two pairs immediately
preceding it in the order closer together, the fit would also improve, and for
them the target distances are less than the actual distances. For the first,
second, sixth, seventh, and eighth pairs the target and actual distances are the
same, and these pairs do seem to have reasonable interpoint distances. The
ninth and tenth pairs are slightly out of order, and here the ninth target is
slightly smaller and the tenth slightly larger than their respective actual
distances.

Appendix B

To calculate the targets using the rank image method, one simply sorts the
actual distances and uses the smallest distance as the target for the most
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TABLE 6

Illustration of Target Value
Calculations Using Rank
Image Method

Pair Actual Distance Target Distance

1 2.0 2.0
2 4.0 2.0
3 6.0 4.0
4 7.0 6.0
5 2.0 7.0
6 7.0 7.0
7 8.0 8.0
8 9.0 9.0
9 10.0 9.0
10 9.0 10.0

similar pair, the next smaller distance as the target for the next most similar
pair, and so on. The actual and target distances appear in Table 6 below.
Notice, the targets are simply the actual distances, now sorted to run from
the most to least similar.

Manuscript submitted February 7, 1974.
Final manuscript received December 19, 1974.
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