Hors.

erion
arch,

iance

ction,

PSYCHOMETRIKA—VOL. 41, NO. 3
SEPTEMBER, 1976

A PROCEDURE FOR ORDERING OBJECT PAIRS CONSISTENT
WITH THE MULTIDIMENSIONAL UNFOLDING MODEL

GEORGE RABINOWITZ

UNIVERSITY OF NORTH CAROQOLINA v

A procedure for ordering object (stimulus) pairs based on individual pre-
ference ratings is described. The basic assumption is that individual responses
are consistent with a nonmetric multidimensional unfolding model. The
method requires data where a numerical response is independently generated
for each individual-object pair. In conjunction with a nonmetric multidimen-
sional sealing procedure, it provides a vehicle for recovering meaningful chject
configurations.

Key words: nonmetric, sealing, measurement, line-of-sight.

Considerable attention has been devoted to the multidimensional un-
folding problem {Coombs, 1950, 1964; Hays & Bennett, 1961; Kruskal, 19644,
Schoneman, 1970; Davidson, 1972, 1973; Zinnes & Griggs, 1974]. However,
little effort has been expended developing measures of inter-object similarity
consistent with the unfolding model apart from those implicit in these general
solutions. Given the known data sensitivity of the multidimensional unfolding
methods, this neglect is somewhat surprising. In the absence of a satisfactory
similarity measure, investigators have turned to theoreticaily inappropriate
alternatives such as Pearson product-moment correlations and sums of
squared differences between pairs of objects to assess inter-object similarity
[Rabinowitz, Note 1; Jones, 1974].

In this paper the linc-of-sight method for ordering the pairwise similarity
of a set of objects will be described. The method is nonmetric and suitable
for large populations of individuals. In combination with standard nonmetric
multidimensional scaling procedures that can be used to scale the object
points [Kruskal, 1964a, 1964b; Guttman, 1968; Young, 1968], it provides a
jmhicle for recovering meaningful cbject configurations. In addition, if
n.ldividual points are subsequently scaled in the fixed object space, the line-of-
sight method offers the potential for a more robust solution to the nonmetric
unfolding problem [Kruskal & Carroll, 1969].

Ral The author wishes to thank Jack Hoadley, Larry Mayer, Sheldon Newhouse, Stuart
binowitz, Forrest Young, and three anonymous reviewers for their useful suggestions.

Soi Requests for reprints should be sent to George Rabinowitz, Department of Political
cience, University of North Carolina, Chapel Hill, North Carolina 27514,
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Two assumptions are made in deriving the measure which are not
integral to the classic nonmetric multidimensional unfolding problem. One
is a distribution assumption: it is assumed that individual points are widely
dispersed in the object space. This assumption will be made more explicit
later in the paper. The other involves the monotonic functions which relate
spatial position to preferential response: it is assumed initially that all subjects
share the same monotonic function. Later this assumption is relaxed to allow
for a variety of functions; however, a unique function for every subject is
not allowed. Sinee rank data implies a separate monotone function for each
individual, it cannot be appropriately analyzed with this method. This
procedure requires data where a numerical response is independently generated
for each individual-object pair which reflects the utility (degree of preference)
of the object for the individual

‘In the discussion which will follow, the underlying logic of the approach
will be illustrated using a Euclidean metric. It will be shown that this logic
can be generalized to any Minkowski metric under any monotonic distortion.
A method will then be proposed which is consistent with this formal develop-
ment, Finally, the method will be applied to some artificiaily generated and
some real data and the results ohserved.

Heuristie Discussion

Suppose we are interested in finding the distance between points A and B
in Figure 1, If we pick any third point (for instance Y) on the line determined
by A and B and between the two points, and add the distances from each of
the points to the third point, the resulting sum would equal the distance of
A to B. This we will dencte as d,5 . Thus, duy + day = d.p . If we pick any
point which lies off the line segment, such as ¥/, the sum of the distances
would be greater than the distance between A and B. Similarly, if we choose
X lying on the line determined by A and B but outside the A to B segment
and calculate the absolute difference between the distance between X and 4
and the distance between X and B, that absolute difference would equal the
distance between A and B. Thus, |d.x — dsx] = d.s . Notice that if we pick
a point not on the line, such as X’, the difference would be less than the distance
between A and B.

If we treat X and Y as individual ideal points and A and B as object
points, and if responses to the objects are directly proportional to Euclidean
distance, the mintmum sum of responses over all subjects to a pair of objects
would form an upper bound on the distance between the two objects and the
mazimum absolute difference of responses across all subjects would form a
lower bound. Since we are not interested in assuming that responses are
proportional to distance, we will not pursue this theme. More crucial to our
purpose is the observation that, if some individual points are sufficiently
close to the line, both on the segment between the two points and on the
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Figure 1
Tlustration of some rudimentary properties of Euclidean spaces.

segment outside the two points, it might be possible to estimate the relative
distance between the two points using either the maximum absolute difference
or the minimum sum.

Formal Discussion

Our initial observations were made on the basis of a Euclidean metric
space; several features are general to any metric space,

First, in any metrie space, the minimum sum that can be obtained by
adding the distances from any third point to each of two fixed points is the
actual distance between the fixed points:

dup < dax + dax .
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This is the triangle inequality. Second, in any metric space, the maximum
absolute difference that can be obtained by subtracting the distances of any
third point from each of two fixed points is the actual distance between the
fixed points:

dap = ldAX — dax I .

To show this, assume the contrary; assume that |d.x — dpx| > das for some
point X. Without loss of generality, let d,x > dsx ; then dax — dax > dup,
whence dux > dis + dsx which violates the triangle inequality. Hence tha
contrary assumption is false,

In a Euclidean space, points lying on a line determined by two fixed
points can be used to determine the length of the line segment between the
points; this is also true in any normed real vector space, which includes
Minkowski metrie spaces. (For a general discussion of real vector spaces see- -
Royden [1068).)

Lemma. In any normed real vector space, given two fixed points 4
and B, A # B, and any point Y on the line segment between A and B, .
dyy + dyy = d,p . Given any point Y lying on the line determined by A and B .
and outside the segment between A and B, |day — dsy| = dusn . :

Proof. Part 1: d,5 in a normed vector space is defined as |4 — Bj|
where || denotes the norm. The line segment between 4 and B is the set of
points {fA + (1 — B :0 <t < 1}. Let Y, an arbitrary point on that segment,
be written as {,d + (1 — £,)B or equivalently, {,(A4 — B) + B. Then

dav ||A — [t(4 — B) + B}H = ||(1 - t)(A — B)H
= |1 —_ tol HA "‘BH = (1 —_ to)d.nll;
dpy = |IB — [t,(A — B) + B]|| = ||—t(4 — B)||
= =t 1A = Bl = tdas -
Hence, d4vy + dpy = (1 — {)dap + bdan = das .

Part 2: Let ¥ be an arbitrary point on the line determined by 4 and B.
but outside the segment; without loss of generality, assume dsy > dpr
USing PB.I't 1., d.lB + dBY = dAy . Hence, dAg = dAy — day . D -

We are now in a position to consider the measurement problem. Let 4
finite set of ¢ object points in an arbitrary normed real vector space be

denoted as ¢ = {C,,C;, ---, C,} and a finite set of p individual ideal points
= {V,,Vs, -, V,l. The model we initially consider is

Tvic, = f(dV‘Gi)r

where 7.0, i8 the prefereniial response of individual ¢ to object j, dv;c,_ is
the distance of the point representing individual 7 from the point representing
object j, and { is any monotonic function from the positive reals to a finite set
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ximum of reals. (Since the direction of f has no actual bearing on the results, we shall
of any henceforth assume f is increasing.)
sen the s The measure of interobject similarity wiill depend on finding maximum

absolute differences and minimum sums of preference scores for each pair of
objects over all individuals. The one major assumption which must be made
beyond the appropriateness of the model involves the distribution of indivi-

) Some dual points. We now offer three definitions to make this assumption explicit,
> dap, and then state the line-of-gight theorem. The first term to be defined is
nce the relevant region. Since f has only a finite range, there exists a distance DMAX
such that all distances greater than DMAX have, as their associated value
o fixed under f, the maximum value in the range of the function, FMAX. Individual
een the points which are further from any object point than DMAX are irrelevant in
nchudes the subsequent measurements since the absolute difference for each pair of
\Ces see objects would be zero and the sum for each pair of objects would be twice
FMAX.
sints A Definition 1: Relevant Region. The relevant region associated with C and f 13
and B, the set of points P which salisfy the condition f{dpe,) < FMAX for some C, in C.
fand B
— B| Ve V
e seb of 7
:gment,

1

W dag

to dam - .v4
. and B
> doy - v2 .v6
L Leta . ¢
oace be
1 points
v, v
@3
i:;li'i;; : Fiaure 2

: _ No individual points (¥’'s) in the area of ¢; and €; maximum absolute difference and
inite seb minimum sum are both poor indicators of interobject distance.
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The next term to be defined is well filled. If the maximum differences and
minimum sums associated with pairs of points in C are to accurately order
the interpoint distances, it seems reasonable that the set of individual points
should be widely distributed in the space. For example, if all the individual
points were distributed in a cluster, as in Figure 2, a rank order based on
minimum sums would locate those points away from the cluster, such as
C, and C, , farther apart than the actual distance would warrant. On the
other hand, a rank order of pairs based on maximum difference would likely
place them too close together. However, if there were even a few points in
that empty region around €, and €, , as in Figure 3, the chances of making a
reasonable ranking using minimum sums or maximum differences would be
considerably enhanced, though not insured.

To insure an accurate ranking based on minimum sums or maximum
differences, two factors must be considered. The first relates to the similarity
of the distances between pairs of points in the objeet set C, The more similar
a pair of distances are, the more difficult it is to order them properly; hence,

'v“ | Ve Vv

® o /
v Oy
V4
V,, ’
® V2 .Vs

v

® 3

F1oure 3
Two individual points (V’s) in the area of € and C3; maximum absolute difference and
minimum sum both are better indicators of interobject distance.

the more
The secon
have as it
increases -
ance of &
mum sum

Defin
toCandf,
where e 18
quadruple
k, I; and ¢
the mintm

Thel
theorem 1
cylinders

Defin
18 the inte
set of pot
where e is

Wen

Theo
there exis

(1)

and
(2)

where V. :
over all p

Figw

Prooj
e/2 units
locate P*
units of .
construct;
cases whe
the secony

H(<e) =

 fdyec)

Part
dV.Cn 2 ¢
(However
units of i




nees and
dy order
al points
dividual
»ased on
such as
On the
Id likely
yints in
naking a
vould be

|ximum
imilarity

e similar

y; hence,

GEORGE RABINOWITZ 355

the more densely the individual points must be distributed in the space.
The second relates to the behavior of the function f. If the function tends to
have as its values very low scores for those distances close to zero and if it
increases very rapidly for scores greater than zero, the idiosyncratic appear-
ance of a point in ¥ quite close to a point in C could radically alter the mini-
mum sums and maximum differences associated with that peint in €,
Definttion 2: Well Filled. A set of points P iz well filled by V with respect
to C and f, if for every point in P there exists a point Vyin V, such thatdy.r < e/2,
where e 13 lhe lesser of ¢* and ¢'; e* is the mintmum |do,e;, — deyc,| over all
quadruples in C, such that 1 7 j, k # 1, and the pair 1, j is not identical to pair
k, I; and ¢ s the lurgest value such that f(¢ — A) = FMIN, where FMIN is
the minemum value in the range of f and A is any real number such that 0 < A<¢e'.
The last term to be defined is eritical region. The proof of the line-of-sight
theorem will depend only on the density of individual points in the hyper-
cylinders surrounding the lines determined by pairs of points in the object set.
Defination 3: Critical Region. The critical region A associated with C and §
18 the tnlersection of the set of points which compose the relevant region and the
set of points lying with e/2 units of the lines delermined by the poinis in C,
where e 18 defined as in the definition of well filled above.
We now state the theorem.

Theorem. If A, the critical region, is well filled by V, and if d¢.c, > deyc,
there exists a ¥* and V* in V such that

(1) fdv.c;) + fldv.e;} 2 Hdyees) + [{dveey),

and

(2) U(dV’Ca) - f(dV" C';‘)i 2 U(dl’oct) - f(qucl)l ]

where V, minimizes the left term of (1) and V, maximizes the right term of (2)
over all points in V.

Figure 4 provides a geometric referent to accompany the proof.

Proof. Part 1: Assume that V, has been found, and then locate P* dy,o, —
¢/2 units from C, in the direction of C, . (However, if dy,c, — €/2 > de,c, ,
locate P* at €, , or if dy,e, < /2, locate P* at C, .) Select V* within /2
units of P* By virtue of the triangular inequslity and the lemma, this
construction strategy insures that dy.c, < dy.¢, and dysg, < dy.c, . (Orin
cases where the first inequality does not hold, dy.., < ¢; and in cases where
the second inequality does not hold, dy.., < e.) Since f is monotonic (or since
f(<e}) = FMIN), f(dvse,) < f(dy.c,) and f(dvee,) < f(dv.e;). Therefore,

MNdvee) + (o) < [@v.o)) + fdy.c).

Part 2: Assume that V, has been found and with no loss of generality let
@v.e. 2 dy,c, . Locate P* dy,c, + €/2 units from C, in the direction of C, .
(However, if dy,o, + €/2 < de,c, , locate P* at C, .) Select V* within e/2
units of P*. By virtue of the triangular inequality, Observation 2, and the
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dcivx_ 8/2

Fiaure 4
ilustration to accompany the proof of the line-of-sight theorem.

lemma, this construction strategy insures that dyse; > dv.c, and dyse, <

dy.c - (Or in cases where dyse, > dy.e, , that dyee, < e.) Since f is mono--

tonic (or since f(<e) = FMIN), f(dvsc.) = f(dp.c;) and f(dvac,) < fldv.e:
Therefore, {{dvyc,) — f(dvae,) = fldv.c.) — [(dv.c)). '

Finally, the assumption of a generally shared monotone function can be
relaxed. The analytic model now becomes rvy,¢;, = fuldv.ie;), where rv,,c,_m-
the response of individual ¢ in subset k to object j, and f, is the monotone-

function shared by members of the subset. To apply this more general model,

it is necessary to assume that each A, , the critical region with respect to fs’
and C, is well filled by its corresponding V. . The resuit then follows du'ectly ;

from the theorem and is stated in the following corollary.

Corollary. let ¥ = {fi,f., -+, f.} be a set of s increasing monotonﬂ'

functions from the pomtlve reals into a finite set of reals. Let
={C,,Cy, - ,C)
and
V=AVa,Via, Vi Vo, o, Vap, s o s Vool

be sets of points in an arbitrary normed real vector space. Let F(dy..c)) be"
defined as fi(dy,,c,); let A, e the critical region with respect to fi and Cf’
and let V, = {Vkl y Via s " Vkm}-
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If each 4, is well filled by its corresponding V. , and if de.c, > dese,
there exists a V* and V* in V such that

3) Fldv.c.) + Fdv,c;) 2 F{dv.o,) + Fldyio,),
and
4 |E{dvac) — Fldvac)l 2 |Fldv.c) — Fldv,e)l,

where V, minimizes the left term of (3) and V', maximizes the right term of (4)
over all points in V.

Procedure

With the addition of this corcllary, the formal development is completed.
If the assumptions underlying the method are satisfied, a ranking of pairs of
objects based either on the minimum sums or maximum absolute differences
will correctly order the object pairs. However, two problems are likely to
arise when the methed is applied. First, a ranking based on either minimum
sums or maximum differences will usually not discriminate adequately between
pairs, and only a weak partial ordering will be possible. For example, if
subjects are rating objects on a nine-point scale which runs from ''like very
much” to “dislike very much,” the sums would have a maximum 17 point
range and the differences a maximum range of nine points, while (with as few
a8 ten objects) there are 45 pairs to be ordered. Second, if a researcher expects
that the subjeets are generally responding in a fashion consistent with the
model but error is present, then basing a measure on a single extreme response
for each pair can be undesirable. To ameliorate both problems, more informa-
tion than the single smallest sum or single largest difference must be used.
The procedure we shall propose is one of several which could be devised.
When developing it we were most interested in the case where the number of
individuals is quite large (p > 500) and considerable error is present in the
data. While the procedure lacks a rigorous foundation, it is consistent with
the formal development and does seem to work empirically.

For notational convenience, we shall define several matrices at this time;
upper case letters will be used for the matrices and their corresponding lower
case letters for the matrix entries. The subscript ¢ will be reserved for individ-
uals, j and k for objects, and m for object pairs; ¢ will run from 1 to p, where
p is the number of individuals; j and &k will run from 1 to g, where ¢ is the
number of objects; and m will run from 1 to ¢{g — 1)/2. In addition, the
subscripts h and g will be used and will run from 1 to p, but will not directly
correspond to individuals. To help clarify any ambiguities, several of the
matrices are illustrated in Table 1.

1) R is the p individual by g object matrix in which the subject preference
responses are recorded. Hence, r,; is the response of individual 7 to object j.
(In keeping with the formal development, we will assume that low values
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l TABLE 1

Il1lustration of Matrices Used in the Procedure

R
Basic Ratingt

Object 1 Object 2 Object 3
Individual 1 20 40 20
Individual 2 70 50 60
Individual 3 70 30 60
Individual &4 10 60 60
Individual 5 30 20 20

5% D*

Unsorted sum Unsorted

absolute difference

Object Object Objaect Object Object Object
Pair 1,2 Pair 1,3 Pair 2,3 | Pair 1,2 Pair 1,3 Pair 2,3
Individual 1 60 40 60 20 0 20
Individual 2 120 130 110 20 10 10
Individual 3 100 130 90 40 10 30
Individual 4 70 70 120 50 50 0
3 Individual 5 50 50 40 1n 10 0
8 D .
Sorted sum Sorted absolute difference
Object Object Object Object Object Object .

Pair 1,2 Pair 1,3 Pair 2,3 Pair 1,2 Pair 1,3 Pair 2,3

Level 1 50 40 40 50 50 30

Level 2 60 50 60 40 10 20

Level 3 70 70 90 20 10 10

Level 4 100 130 110 20 10 0

Level 5 120 130 120 10 0 0
B B

Combined (B = § + D) Cumulated B
: Object Object Object Object Object Object
. . Pair 1,2 Pair 1,3 Pair 2,3 Pair 1,2 Pair 1,3 Palr 2,3
P Level 1 100 90 70 100 90 70
Level 2 100 60 80 . 200 150 150
Level 3 90 80 100 290 230 250
Level 4 120 140 110 410 370 360
Level 5 130 130 120 540 500 480

t The lower the number the more favorably the object is evaluated.
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are associated with favorable ratings and high values with unfavorable
ratings. If high values are associated with favorable ratings, each rating
could be subtracted from an arbitrary constant and made consistent with
this assumption.)

S* is the p individual by g(¢ — 1)/2 object pair matrix in which the sum
of responses to the two objects are recorded. Thus s.,.* = r,; 4+ 7.4 .
D* iz the p individual by ¢(g — 1)/2 objeet pair matrix in which the
absolute difference of responses to the two objects are recorded. Thus
din® = |T'4j - Tn‘kl .

S 18 the p by ¢(g — 1)/2 matrix derived from S* by sorting within each
column of 8* from smallest to largest. Hence, while there are p rows in
the S matrix, they de not correspond to individuals, but rather to what
we shall call levels.

5) Disa p by g{g — 1)/2 matrix which is derived from D* by sorting within
each column of D* from largest to smallest.

6) B is the matrix sum of S and D; thus B = 8 4+ D.

7) B is the cumulative B matrix; thus b,,, = Z,,.l" bum (Note: The order of
values in the gth row of B is equivalent to the order which would be
obtained were one to calculate the mean of the first g rows of B.)

8) S is the cumulative S matrix; thus §,, = Y. 41" Sam

9) D is the cumulative D matrix; thus d,. = Z,,-," Bam

The first row of S and the first row of D correspond to the single smallest
sum and the single largest difference for each pair; a partial order based on
the values in both these rows would be consistent with the pairwise ordering
(if the assumptions are satisfied}. The sum of the two comprise the first row
of B, which would similarly be order preserving. The first row of B would also
provide at least as much discrimination as either the smallest sum row or the
largest difference row. Each successive row of S and I and hence B will be
increasingly inappropriate as a device for sorting the pairs, because of the
density assumptions implicit in using information beyond the smallest sum
and the largest difference. However, if the number of subjects is large and the
distribution of individual points is similar to (tends to overlap) the distribu-
tion of object points, the increase in distortion should not be severe.

A natural way to use information beyond the first row of B is to average
several of the first few rows and use the mean as the basis for the pairwise
ranking. Such an averaging procedure is particularly appropriate if random
erTor might induce unreliability in the initial ranking. Two criteria seem
reasonable to use as a guide in deciding how many rows to include in the
average. First, unless the number of rows used is small relative to the number
of individuals, the method would be inconsistent with the formal development,.
_Second, good diserimination between pairs is essential, if subsequent scaling

B8 to be meaningful. A simple computer-oriented procedure was devised
Wwith these criteria in mind.

R b8~ < R AR A . NI
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For each row of B, an ordering of the g{g — 1)/2 pairs is made. With
respect to each ordering, two values are caleulated; one measures the extent
of pairwise diserimination, the other the extent to which the density criterion
is being strained. They are defined as follows:

Number of distinet ranking positions — 1 ;
Total number of pairs — 1

DISCRIM =

Number of subjects — row of B used to form the ranking .
Number of subjects — 1

DENSE =

These are combined into a single “adequacy” measure, ADEQU =
DISCRIM:-DENSE™*®® where EXPO = 3. The exponent is included
because without it the expression tends to be determined almost exclusively
by the degree of pairwise discrimination. The rows of 8 are then sequentially
examined and when the measure does not increase after a fixed number
of rows are examined (either four or p/150, whichever is larger), the row of B
associated with the largest adequacy value is used for the ranking.

Experience with the method indicates that if the row selected is beyond
the p/25th row, the resulting order is suspect and the procedure should be
repeated with the value of the exponent raised. Since the ranking is baged
on the cumulative matrix, the pairwise order tends to be quite stable from
row to row, and the exact row selected is not particularly important. Indeed,
an alternate procedure of selecting the single row of B with the best pairwise
discrimination in the first p/40 rows seems to produce virtually identical
results. In general, if there are five or fewer response alternatives on the original
rating scale, the data do not possess enough information to satisfactorily
apply the proecedure.

(loadness of Fit

The procedure for obtaining the pairwise ranking uses both the dif-
ferences and sums together. One way to test how well the assumptions under-
lying the method are met is to ecompare the ranking obtained using just the
differences to the ranking obtained using just the sums. With random data
these two rankings tend to be uncorrelated. If the assumptions of the method
are satisfied, the rankings should be virtually identical. Hence, the Spearman
rho correlation between the row of § and the row of ) which corresponds to
the row of B used to form the pairwise ranking should provide a measure
of goodness of fit,

If this fit i3 poor, either the method is faulty or the unfolding model is
inappropriate. In general, if each object is very favorable evaluated by a
reasonable number of individuals, the unfolding model’s applicability should
be questioned. However, if some objects receive no or extremely few very
favorable evaluations, this method is not suitable and the appropriateness
of the model cannot be assessed.




GEORGE RABINOWITZ 361

In no instance does the quality of fit provide an indication of the dimen-
gionality of the space. The method is based directly on distances; hence, if
the model is appropriate and the method’s assumptions are satisfied, the fit
should be good regardless of the dimensionality of the space. Dimensionality
must be determined in the course of the subsequent scaling procedure.

Monte Carlo Simulation

To test the adequacy of the line-of-gsight procedure and to compare it
with Pearson product-moment correlations and sums of squared differences,
a Monte Carlo simulation was performed. Euclidean distances between 1,000
individual and 12 object points in two dimensions were computed under
the following three distribution conditions.

The Overlapping Distribution. Four approximately normally distributed
variables were independently generated, two with an N of 12 and two with
an N of 1,000, each with a mean zero and a standard deviation of one. These
respectively formed the object and individual configurations.

The Shifted Distribution. The two configurations generated above were
retained, but the mean of the first dimension of the individual configuration
was shifted 1.5 units to the right by adding 1.5 to each value on that dimen-
8100,

The Stretched Distribution. The two configurations generated in the first
step were retained, but the first dimension of the object configuration and the
second dimension of the individual configuration were stretched by multiplying
each value on those dimensions by two.

A schematic drawing of the three distributions appears in Figure 5.
They provide a reasonably diverse set of density conditions on which to
apply the methods.

{n order to test the nonmetric sensitivity of the methods, three additional
sets of values were created by calculating the natural logarithms of the

object and individual
individual object individual

object

OVERLAPPING SHIFTED

STRETCHED

FigURE 5
Schematic of three basic distributions used in the simulation. (The figures are drawn so
that the probability of being within the boundary is approximately equal to 0.5).
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distances. To assess the robustness of the methods to error, random normal
error was added to the distances and transformed distances, creating six
additional sets of values. In each instance the error term had a mean of zero
and a standard deviation approximately equal to that of the set of distances
or logged distanees to which it was added. This left half the variance of these
values unexplained and half directly dependent on the distances. Finally,
each of the twelve sets of values were collapsed into nine-point scales by
converting them to standard score units and coding them as follows:

X< 175 =1
—175< X< —125 =2
~125< X < —0.75 = 3
~075 <X < —0.25 = 4
—025<X< 025 =5

026 <X < 075=6
076 £ X< 125=7
125 X< 175=8
1.7 £ X = 9.

The three methods were then applied and the resulting similarity
matrices scaled using a nonmetric multidimensional scaling routine. In Table 2,
the Spearman rho correlation between the order of pairs recovered using each
method and the underlying rank order is displayed, as is the squared Pearson
product-moment correlation (the coefficient of metric determinacy [Young,
1970]) between the scaled and the underlying distances. Using the error-free
data, the line-of-sight method is clearly superior in every instance, It performs
least satisfactorily on the shifted distribution where the density assumptions
are most strained,

The line-of-sight, ordering and the ordering based on the Pearson product-

moment correlations are both more sensitive to error than the sums of squared
differences. The coefficient of metric determinacy remains virtually unchanged
using the sums of squared differences, when the error term is added. Yet, even

with the fairly large error component included in these data, the line-of-sight
method uniformly provides a more data-consistent ordering than the sums
of squared differences. In the two instances, overlapping + error and shifted
+ error, where the Spearman rho correlations produced using the line-of-sight
method are most like those produced using sums of squared differences, the
coefficient of metric determinacy is decidedly more favorable to the line-of-
sight result. This is because the line-of-sight distortions were relatively

Summary of

it}

Overlapping .9
Shifted .9
Stretched .9
LN.Overlapping .9
LN.Shifted .9
LN, Stretched 9
Overlapping + E 9
Shifted + E .8
Stretched + E .9
LN.Overlapping + E .9
LN.Shifted + E .8
LN.Stretched + E 9.
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TABLE 2

Summary of Results Using Simulated Data

Line~of~ Sums of Squared Pearson
Sight Differences R

Metric Metric Metric
RHO* Deter.®% RHO* Deter.k* Deter, **

Overlapping .998 .996 .975 .920 . 866
Shifted .958 957 .901 714 .693
Stretched .982 .967 .861 .578 . 630

LN.Overlapping . 996 .995 .936 . 804 .835
LN.Shifted .974 962 . 809 .593 . .665
LN. Stretched .990 .988 . 812 .409 .550

Overlapping + E . 969 .958 .966 .920 . 787
Shifted + E . 888 .B24 . 881 724 . .43l
Stretched + E .936 . 868 .886 .608 .399

1N.Overlapping + E .977 .976 .922 .794 .821
LN.Shifted + E .881  .805 .79 .540 . .717
LN.Stretched + E .954 .931 .806 402 . 556

*RHO = Spearman rho calculated between the order of palrs re-
covered by the method and the order of pairs based on the actual inter=-
polnt distances.

**Metric Deter. = The ccefficient of metric determinacy. This 1s
the R between the distances between the points following a nommetric
nultidimensional scaling of the similarity matrix and the actual dis-
tances between the points.

unsystematic, while the sums of squared differences distortions were caused

- by the same systematic bias which influenced the error-free ranking.

In Table 3 the line-of-sight results are once again summarized, but in
addition, the Spearman rho correlation between the order of pairs based only
on the sums and the order of pairs based only on the differences appears.
The difference-sum correlation does show a marked sensitivity to deteriora-

tifona in the recovery, and hence seems appropriate as an indicator of goodness
of fit.

An Empirical Example

. In 1968, immediately following the November presidential election,
Individuals in a survey sample of the United States were asked to respond




A S 2R e v

364 PSYCHOMETRIKA

TABLE 3

Comparigon of DIFF-SUM RHO to Actual Fit Measures

DIFF-SIM METRIC
RHO* RHO** DETER. %%
Overlapping .984 .998 .99
Shifted .783 .958 .957
Stretched .958 .982 .967
LN.Overlapping .984 . 996 .995
LN.Shifted 717 974 .962
LN. Stretched . 892 .990 .988
Overlapping + E . 885 . 969 .958
Shifted + E .433 .888 .824
Stretched + E .B45 .936 . 868
LN.Overlapping + E . 825 .977 .976
LN.Shifted + E . 269 . 881 . 805
LN. Stretched + E . 704 954 .931

*DIFF-SUM RHO = Spearman rho correlation between the rank order
of pairs obtained using the larger differences with that obtained using
the smaller sums.

#%RHO = Spearman rho calculated between the order of palrs re-
covered by the method and the order of pairs based on the actual inter-
point distances. ’

**%*METRIC DETER, = The coefficlent of metric determinacy. This is.
the RZ2 between the distances between the points following a nommetric -
multidimensional scaling of the similarity matrix and the actual dis-
tances between the points.

to a set of political candidates on the basis of the subjective warmth they
felt toward each of the candidates. Responses could vary from 100, which
indicated extreme warmth, to zero, which indicated that the subject felt
very cold toward the candidate. The cue for the response was the card which
appears in Figure 6.

There is a considerable literature which suggests that an unfolding model
might be eorrect to apply to these questions {Downs, 1957; Davis & Hinich,
1966; Davis, Hinich, & Ordeshook, 1970; Weisberg & Rusk, 1970; Mauser,
1972]. Hence, it is a reasonable data set on which to use the line-of-sight
method. Traditional methods would be inappropriate for two reasons. First,

the data set
exceeds the ]
critically, it
high [Stokes
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"FEELING" THERMOMETER

WARM 100° Very Warm or favorable
feeling for candidate

85° Good warm or favorable
feeling for candidate

70° Falrly warm or favorable

60° A bit more warm or
favorable than cold
feeling

50° No feeling at all for
candidate

40° A bit more cold or
unfavorable feeling

30° Fairly cold or
unfavorable feeling

15° Quite cold or
unfavorable feeling

a° Very cold or unfavor-

cod able feeling

Figure 6
Illustration of “feeling” thermometer card.

the data set is large; it includes 1,136 subjects and 12 objects, which far
exceeds the limitations of most of the unfolding programs. Second, and more
eritically, it is certain that the amount of error in the responses will be quite
high [Stokes, 1963; Converse, 1964], even if the unfolding model is roughly
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FIGURE 7

Configuration of candidate points from the 1968 U.8. presidential election campaign.

om ) Va3 2

10T4T PLOT OF LEDIVIOOALS LD CANDIDATES U.5. 194d ELECTION 1] 2.1 SARPLE STD DBY 3odEbARK

Figurke 8
Joint plot of individuals and candidates,




GEORGE RABINOWITZ
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Figure 9

Joint plot of Humphrey voters and candidates.
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Figure 10
Joint plot of Nixon voters and candidates.
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JOLNT PLOT OF WALLACE YOTERS BAG CANDICATEY 0, 5. 19sd ELKCTICE (103)  we* UsSKR SOPPLIRD ROURDART BIR 1 VRS

Figure 11
Joint plot of Wallace voters and candidates.

appropriate, This implies that traditional procedures would produce de-
generate solutions [Kruskal & Carroll, 1969; Gleason, 1969).

Using the line-of-sight method, the Spearman rho correlation between
the rank order of pairs based only on the absolute differences and that based
only on the sums was 0.309. This low value makes sense if we anticipate
considerable error and realize that well known candidates tend to draw
more extreme responses. This salience effect produces larger maximum dif-
ferences and smaller minimum sums for these candidates, thus decreasing
the tho. The robustness shown by the line-of-sight measure with the artificial
data suggests that subsequent scaling of the derived matrix is justified.

In Figure 7, the configuration recovered using a nonmetric multidimen-
sional scaling routine on the line-of-sight matrix is displayed. Four basic
groupings are present: a Demoeratic group including Humphrey, Johnson,
and Muskie; a liberal group including McCarthy and Rockefeller; a Repub-
Yican group including Nixon, Agnew, and Reagan; and an American Indepen-
dent group including Wallace and Lemay. Neither Robert Kennedy nor
Romney fall clearly into a single group. Kennedy, who had been assassinated
by the time of the survey, is positioned between the Democratic and liberal
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Fieure 12
Joint plot of all voters and candidates,

groups and toward the center of the space. Romney, who faded from con-
tention after conceding that he had been brainwashed sbout Vietnam, is
located between the Republican and liberal group and away from the center
of the space. The Dlemocratic and Republican groups are antipodal as are the
liberal and the American Independent groups. The two axes so defined are
correlated with the liberal group closer to the Democratic and the American
Independent closer to the Republican. This configuration fits very well with
the general political analysis of the 1968 election (see for example, Converse,
Miller, Rusk, Wolfe [1969]).

Yet before too much is made of the particular configuration, a natural
question arises as to the substantive meaningfulness of the space. If the
configuration recovered is an accurate reflection of voter perceptions of the
candidates, it should be possible to locate points representing voters in the
space. With this in mind, individual ideal points were externally scaled
[Carroll, 1972) in the line-of-sight space. External scaling involves locating
the individual points in the fired object space. To do this a nonmetric multi-
dimensional scaling program was developed. In this procedure, scaling for
each individual point is separate from the sealing of any other point, and is
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based on an iterative negative gradient procedure which minimizes Kruskal's
stress formula two [Kruskal, 1964a). The joint space recovered appears
in Figure 8.

The recoverad space was divided by three lines into three regions: one
associated with Nixon, one with Humphrey, and one with Wallace. Each
of the dividing lines is restricted to run parallel to the actual bisector, but
has been placed to allow for optimal prediction. Both the Humphrey-Nixon
and Wallace-Nixon dividers are shifted away from the Nixon point. This is
consistent with the generally observed phenomenon of increased appeal for
newly-elected presidents {Mueller, 1970] and the post-election timing of the
interview. Each individual was predicted to vote for the candidate in whose
region his ideal point was located, On this basis 84.2 percent of the voters
were predieted correctly.

In Figures 9, 10, and 11 plots of the Humphrey, Nixen, and Wallace
voters appear. In Figure 12 the entire population of voters is plotted. In each
of these plots the darkened lines indicate the respective region boundaries,
An examination of the plots shows that the prediction is good, as most voters

TABLE 4

Demographic Group Summary

% of Total
Squared Population
Symbol Correlation Correlation  in Group

.982 .964
.961 .924
.980 . 960
.980 .960
.907 .822
.898 . 806
.979 .958
.976 952
.979 .958
.980 . 960
. 965 931
.965 .931
.967 .935
.982 .964
.959 .920
.973 947
.979 .958
964 .929
.971 943
.982 .964
L9474 <949
.976 .953

.943

Population

Black

White

white North (Non-Scuth)
White South

wWhite Deep South
Unlon Member in Family
Lower or Working Class
Hpper or Middle Class
Low Income

High Income

Grade School or Leas
Some High School
Finished High School
Some College, Past High
Young (30-)

Middle Age

0Older (50+)

Male

Female

Protestant (White)
Catholic {(White)
Jewish (White)
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* POPULATION
B BLACKS

W WHITES

WHITE NORTHERNERS

WHITE SOUTHERNERS

WHITE DEEP SOUTH SOUTHERN
UNION MEMBER IN FAMILY
LOWER OR WORKING CLASS
MIDOLE OR UPPER CLASS
INCOME ABOVE $10,000
INCOME UNDER $10.000
GRADE SCHOOL OR LESS
SOME HIGH SCHOOL
FINISHED HIGH SCHOOL
WENT BEYOND HIGH SCHOOL
LESS THAN 30 YEARS OLD
BETWEEN 30 AND 50 YEARS
OVER 50 YEARS

MALES

FEMALES .
PROTESTANT (WHITE}
CATHOLIC (WHITE)

JEWISH (WHITE)

@
®©

cgwmz
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Fiaure 13
Joint plot of demographic groups and candidates.

do lie in the “correet’’ region. In addition, the incorrectly-predicted individuals
tend to lie close to the relevant region boundary, which indicates that these
individuals are not badly misplaced.

As a final test of the adequacy of this solution, the mean position of
several demographie subgroups was calculated. The Pearson product-moment
correlation between the distance to each of the candidates from the group
point and the mean evaluation of the candidate by the members of the group
wag computed. The correlations and squared correlations appear in Table 4
and are generally high. The mean group positions are plotted in Figure 13.
The locations are intuitively reasonable, and reflect the demographic dif-
ferences noted by political researchers [Campbell, Converse, Miller, &
Stokes, 1960).

Conclusion

The line-of-sight theory was developed and a method based on that
theory was offered. The method performed well on the artifieial data to which
it was applied, and offers a more suitable approach to assessing interobject
similarity than either Pearson product-mement correlations or sums of
squared differences. Applied to the candidate choice responses, the method

et AT R e i, ».JW R P e o
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provided a first step in an external unfolding analysis which produced sub-
stantively meaningful results.

An IBM 360/Fortran IV eomputer program using this procedure is
available upon request from the author.

REFERENCE NOTE

1. Rabinowits, G. B. Spatial models of electoral choive: An empirical analysis (Working
papers in methodology No. 7). Chapel Hill, North Carolina: Institute for Research
in Social Science, 1973.
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