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PROBIT MODEL ON 105th HOUSE 

WINBUGS MODEL 

model 
{ 
#   
#  X[,1] = DW-NOMINATE 1st Dimension 
#  X[,2] = DW-NOMINATE 2nd Dimension 
#  X[,3] = 1 if Republican, 0 otherwise 
#  X[,4] = 1 if South (CQ def.), 0 otherwise 
#   
#  PRIORS 
# 
         for (k in 1 : 3) { beta[k] ~ dnorm(0,0.001)} # vague priors 
#    
# LIKELIHOOD  
# 
    for (i in 1 : 434)  # loop over congressional districts 
    {      
# 
         X[i,3] ~ dbern(p[i]); 
         probit(p[i]) <- mu[i]; 
         mu[i] <- beta[1]+X[i,2]*beta[2]+X[i,4]*beta[3] 
# 
#  Borrowed From Simon Jackman 
# 
         llh[i] <- X[i,3]*log(p[i]) + (1-X[i,3])*log(1-p[i]); 
    }   
    sumllh <- sum(llh[]); 
# 
} 
 
WINBUGS INITS 
 
# starting values 
list(beta=c(1,1,1)) 
 
 



2 

 

 
STATA OUTPUT (For Reference) 
 
. probit partydum southdum x2 
 
Iteration 0:   log likelihood = -306.65663 
Iteration 1:   log likelihood = -298.38522 
Iteration 2:   log likelihood = -298.37588 
 
Probit regression                                 Number of obs   =        443 
                                                  LR chi2(2)      =      16.56 
                                                  Prob > chi2     =     0.0003 
Log likelihood = -298.37588                       Pseudo R2       =     0.0270 
 
------------------------------------------------------------------------------ 
    partydum |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    southdum |   .4938932   .1455113     3.39   0.001     .2086964      .77909 
          x2 |  -.4628059   .1362891    -3.40   0.001    -.7299277   -.1956841 
       _cons |  -.1111626   .0757394    -1.47   0.142    -.2596092    .0372839 
------------------------------------------------------------------------------ 
 
 

WINBUGS OUTPUT 
 
Model “Blew Up” at 15,141!! With 3 chains 
 
  node  mean  sd  MC error 2.5% median 97.5% start sample 
const beta[1] -0.1057 0.07703 9.577E-4 -0.2595 -0.1046 0.04287 1 15141 
south beta[3] 0.4921 0.1467 0.001851 0.207 0.4919 0.7781 1 15141 
x2 beta[2] -0.4698 0.1394 0.001418 -0.7483 -0.4688 -0.2006 1 15141 
 sumllh -293.8 1.25 0.0121 -297.0 -293.4 -292.4 1 15141 
 
 
Discarding the first 1000 trials 
 

node  mean  sd  MC error 2.5% median 97.5% start sample 
const beta[1] -0.1052 0.07665 0.001071 -0.2577 -0.1041 0.04136 1001 12141 
south beta[3] 0.4913 0.1463 0.001917 0.2095 0.4902 0.7796 1001 12141 
x2 beta[2] -0.4694 0.1394 0.001581 -0.7497 -0.4686 -0.2016 1001 12141 
 sumllh -293.8 1.233 0.01363 -297.0 -293.4 -292.4 1001 12141 
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Density Plots 
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AutoCorrelation Plots 
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History Plots 
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Brooks, Gelman, and Rubin Diagnostic  
 
 
The B-G-R Diagnostic requires running multiple chains and it is 
based upon a comparison of between and within variance of the 
multiple chains.  Note that the chains must start from very 
different initial values!  Let m=# of chains and n=# of 
iterations.  The Within and Between formulas are: 
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And the overall variance is: 
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And the Gelman-Rubin Statistic is: 
 

ˆ( )The Gelman-Rubin Statistic R V
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In the graphs below the Green Line is the width of the central 
interval constructed from the pooled runs (all widths are 
normalized so that the maximum value is 1).  The Blue line is 
the average width of the 80% intervals constructed from each 
run.  The Red line is R. 
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start-iteration
1051 1500 2000 2500

    0.0
    0.5
    1.0
    1.5

 
 
Once convergence is reached, W and V(θ) (within and overall) 
should be about equal because variation within the chains and 
variations between the chains should coincide, so R should be 
about equal to 1. 
 
 
 

R General Linear Model and Optimizer Function 

 
# 
# 
# House_105_example.r -- GLM and OPTIM Examples 
# 
# 
library(MASS) 
# 
# 
# 
# **************************** 
#  fr is called by optim 
# **************************** 
# 
fr <- function(beta){ 
lambda <- NULL 
vaguevariance <- 1.0 
lambda[1] <- beta[1] 
lambda[2] <- beta[2] 
lambda[3] <- beta[3] 
# 
i <- 1 
logL <- 0.0 
while (i <= nrow) { 
# 
#  Calculate "1" and "0" probabilities 
# 
       sum <- lambda[1] + lambda[2]*TT[i,4]+lambda[3]*TT[i,2] 
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       pyes <- pnorm(sum) 
       pno <- 1.0 - pyes 
       logL <- logL + TT[i,3]*log(pyes) + (1 - TT[i,3])*log(pno) 
        
   i <- i + 1 
   } 
#return(-logL) 
priorbetas <- -(lambda[1]*lambda[1])/(2*vaguevariance) - 
(lambda[2]*lambda[2])/(2*vaguevariance)- (lambda[3]*lambda[3])/(2*vaguevariance) 
# 
#  Multiply Likelihood Distribution by Priors.  Note that  
#  the priors on the betas are 
#  normals with variance = 1000 so they wash out! 
# 
return(-logL-priorbetas) 
} 
# 
# 
#  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
#  Read in data from STATA output 
#  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# 
rcx.file <- "c:/docs_bayesian_statistics/h105_example.raw" 
# 
# Standard fields and their widths 
# 
rcx.fields <- c("dwnom1n","dwnom2n","partydum","southdum")  
rcx.fieldWidths <- c(9,11,11,11) 
#     
# Input File 
# 
TT <- read.fwf(file=rcx.file,widths=rcx.fieldWidths,as.is=TRUE,col.names=rcx.fields) 
dim(TT) 
nrow <- length(TT[,1]) 
ncol <- length(TT[1,]) 
nparam <- ncol - 1 
# 
#                 STATA OUTPUT FOR REFERENCE 
#  &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
#  TT[,1]          x1 |       443    .0674718    .4179452       -.69       1.44 
#  TT[,2]          x2 |       443   -.0308804    .4962939      -1.38       1.49 
#  TT[,3]    partydum |       443    .5214447    .5001047          0          1 
#  TT[,4]    southdum |       443    .3092551    .4627091          0          1 
#  
#  . probit partydum southdum x2 
# 
#  Iteration 0:   log likelihood = -306.65663 
#  Iteration 1:   log likelihood = -298.38522 
#  Iteration 2:   log likelihood = -298.37588 
# 
#  Probit regression                                 Number of obs   =        443 
#                                                    LR chi2(2)      =      16.56 
#                                                    Prob > chi2     =     0.0003 
#  Log likelihood = -298.37588                       Pseudo R2       =     0.0270 
# 
#  ------------------------------------------------------------------------------ 
#      partydum |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
#  -------------+---------------------------------------------------------------- 
#      southdum |   .4938932   .1455113     3.39   0.001     .2086964      .77909 
#            x2 |  -.4628059   .1362891    -3.40   0.001    -.7299277   -.1956841 
#         _cons |  -.1111626   .0757394    -1.47   0.142    -.2596092    .0372839 
#  ------------------------------------------------------------------------------ 
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# 
probit105 <-glm(TT[,3] ~ TT[,4]+TT[,2],family=binomial(link=probit)) 
sumprobit105 <- summary(probit105) 
# 
#  ---- Useful Commands To See What is in an Object 
# 
#> length(sumprobit105) 
#[1] 17 
#> class(sumprobit105) 
#[1] "summary.glm" 
#> names(sumprobit105) 
# [1] "call"           "terms"          "family"         "deviance"       
# [5] "aic"            "contrasts"      "df.residual"    "null.deviance"  
# [9] "df.null"        "iter"           "deviance.resid" "coefficients"   
#[13] "aliased"        "dispersion"     "df"             "cov.unscaled"   
#[17] "cov.scaled"     
#  
#  &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
#     USE OPTIM TO GET PARAMETERS OF PROBIT 
# 
# *** Calculate Log-Likelihood *** 
# 
beta <- NULL 
beta[1] <- 1.0 
beta[2] <- 1.0 
beta[3] <- 1.0 
# 
# ******************************************* 
#  DO MAXIMUM LIKELIHOOD MAXIMIZATION HERE 
# *******************************************' 
# 
model <- optim(beta,fr,hessian=TRUE) 
#model <- optim(c(1.00,1.00,1.0),fr,hessian=TRUE) 
# 
#  Log-Likelihood (inverse -- optim minimizes!!) 
# 
logLmax <- model$value 
# 
#  Parameter Estimates 
# 
betamax <- model$par 
# 
# convergence an integer code.  
#     0 indicates successful convergence.  
# 
nconverge <- model$convergence 
# 
# counts  
#  A two-element integer vector giving the number of calls to  
#    fn (function) and gr (gradients -- optional) respectively.  
ncounts <- model$counts 
# 
xhessian <- model$hessian 
# 
#  Perform Eigenvalue-Eigenvector Decomposition of Hessian Matrix 
# 
ev <- eigen(xhessian) 
# 
#  The Two Lines Below Put the Eigenvalues in a 
#    Diagonal Matrix -- The first one creates an  
#    identity matrix and the second command puts 
#    the singular values on the diagonal 



9 

 

# 
Lambda <- diag(nparam) 
diag(Lambda) <- ev$val 
# 
#  Compute U*LAMBDA*U' for check below 
# 
XX <- ev$vec %*% Lambda %*% t(ev$vec) 
# 
# Compute Fit of decomposition -- This is just the sum of squared 
#  error -- Note that ssesvd should be zero! 
# 
i <- 0 
j <- 0 
sseeig <- 0 
while (i < nparam) { 
  i <- i + 1 
  j <- 0 
  while (j < nparam) { 
     j <- j + 1 
     sseeig <- sseeig + (xhessian[i,j] - XX[i,j])**2 
  } 
} 
# 
LambdaInv <- diag(nparam) 
diag(LambdaInv) <- 1/ev$val 
# 
#  Compute U*[(LAMBDA)-1]*U' for check below 
# 
XXInv <- ev$vec %*% LambdaInv %*% t(ev$vec) 
# 
results <- rep(0,nparam*4) 
dim(results) <- c(nparam,4) 
# 
results[,1] <- betamax 
results[,2] <- sqrt(diag(XXInv)) 
results[,3] <- betamax/sqrt(diag(XXInv)) 
results[,4] <- pt(-abs(results[,3]),nrow-nparam-1)*2 
# 
 
R OUTPUT:  HERE IS THE OUTPUT OF THE GLM FUNCTION: 
 
> summary(model) 
> sumprobit105 
 
THIS JUST GIVES YOU THE FORMULA 
 
Call: 
glm(formula = TT[, 3] ~ TT[, 4] + TT[, 2], family = binomial(link = probit)) 
 
THIS SUMMARIZES the “DEVIANCE” – corresponds to the sum of squares in linear 
normal models  
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.6650  -1.1863   0.8572   1.1174   1.5439   
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THE COEFFICIENTS IN THE USUAL FORMAT (THESE ARE THE SAME AS STATA): 
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -0.11116    0.07584  -1.466 0.142737     
TT[, 4]      0.49390    0.14483   3.410 0.000649 *** 
TT[, 2]     -0.46281    0.13528  -3.421 0.000623 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
Null Deviance is the deviation of a model that contains only the intercept 
term, that is, a fixed probability for all observations.  In this instance: 
 
-2*231*[LOG(231/443)]-2*212*[LOG(212/443)] = 300.83 + 312.48 = 613.31 
 
Residual Deviance corresponds to the residual sum of squares in OLS which is 
used to estimate the standard deviation around the regression line.  Here is 
is simply: 
-2*[LOG LIKELIHOOD] = -2*(-298.37588)=596.75 
 
    Null deviance: 613.31  on 442  degrees of freedom 
Residual deviance: 596.75  on 440  degrees of freedom 
AIC: 602.75  
 
The Akaike Information Criterion (AIC) is: 
602.75 = -2*(LOG LIKELIHOOD)+ 2*K = -2*(-298.37588)+2*3 
 
Where k=# of betas and the LOG LIKELIHOOD is given by STATA above. 
 
Number of Fisher Scoring iterations: 3 
 
This is simply the number of iterations to estimate the model.  Note that it 
is the same as the number of iterations in STATA. 
> 
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R OUTPUT:  HERE IS THE OUTPUT OF THE SUMMARY OF OPTIM: 
 
 
> summary(model) 
            Length Class  Mode    
par         3      -none- numeric 
value       1      -none- numeric 
counts      2      -none- numeric 
convergence 1      -none- numeric 
message     0      -none- NULL    
hessian     9      -none- numeric 
> 
> model$par 
[1] -0.1060596  0.4791577 -0.4500236 
> model$value 
[1] 298.6042 
> model$counts 
function gradient  
     128       NA  
> model$convergence 
[1] 0 
> model$message 
NULL 
> model$hessian 
           [,1]     [,2]      [,3] 
[1,] 276.819442 83.19293 -8.827006 
[2,]  83.192933 84.19293 24.061936 
[3,]  -8.827006 24.06194 67.535112 
> 
 
Solution From OPTIM: 
 
> results 
           [,1]       [,2]      [,3]         [,4] 
Constant [1,] -0.1060596 0.07514533 -1.411393 0.1588371538 
Southdum [2,]  0.4791577 0.14347464  3.339668 0.0009103595 
X2       [3,] -0.4500236 0.13459983 -3.343419 0.0008984467 
> 
 
Check on the Accuracy of the Inverse of the Hessian: 
 
> sseeig 
[1] 1.746854e-26 


