
1

PROBIT MODEL ON 105th HOUSE

WINBUGS MODEL

model
{

X[,1] = DW-NOMINATE 1st Dimension
X[,2] = DW-NOMINATE 2nd Dimension
X[,3] = 1 if Republican, 0 otherwise
X[,4] = 1 if South (CQ def.), 0 otherwise

PRIORS

 for (k in 1 : 3) { beta[k] ~ dnorm(0,0.001)} # vague priors

LIKELIHOOD

 for (i in 1 : 434) # loop over congressional districts
 {

 X[i,3] ~ dbern(p[i]);
 probit(p[i]) <- mu[i];
 mu[i] <- beta[1]+X[i,2]*beta[2]+X[i,4]*beta[3]

Borrowed From Simon Jackman

 llh[i] <- X[i,3]*log(p[i]) + (1-X[i,3])*log(1-p[i]);
 }
 sumllh <- sum(llh[]);

}

WINBUGS INITS

starting values
list(beta=c(1,1,1))

2

STATA OUTPUT (For Reference)

. probit partydum southdum x2

Iteration 0: log likelihood = -306.65663
Iteration 1: log likelihood = -298.38522
Iteration 2: log likelihood = -298.37588

Probit regression Number of obs = 443
 LR chi2(2) = 16.56
 Prob > chi2 = 0.0003
Log likelihood = -298.37588 Pseudo R2 = 0.0270

--
 partydum | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 southdum | .4938932 .1455113 3.39 0.001 .2086964 .77909
 x2 | -.4628059 .1362891 -3.40 0.001 -.7299277 -.1956841
 _cons | -.1111626 .0757394 -1.47 0.142 -.2596092 .0372839
--

WINBUGS OUTPUT

Model “Blew Up” at 15,141!! With 3 chains

 node mean sd MC error 2.5% median 97.5% start sample
const beta[1] -0.1057 0.07703 9.577E-4 -0.2595 -0.1046 0.04287 1 15141
south beta[3] 0.4921 0.1467 0.001851 0.207 0.4919 0.7781 1 15141
x2 beta[2] -0.4698 0.1394 0.001418 -0.7483 -0.4688 -0.2006 1 15141
 sumllh -293.8 1.25 0.0121 -297.0 -293.4 -292.4 1 15141

Discarding the first 1000 trials

node mean sd MC error 2.5% median 97.5% start sample
const beta[1] -0.1052 0.07665 0.001071 -0.2577 -0.1041 0.04136 1001 12141
south beta[3] 0.4913 0.1463 0.001917 0.2095 0.4902 0.7796 1001 12141
x2 beta[2] -0.4694 0.1394 0.001581 -0.7497 -0.4686 -0.2016 1001 12141
 sumllh -293.8 1.233 0.01363 -297.0 -293.4 -292.4 1001 12141

3

Density Plots

beta[1] chains 1:3 sample: 12141

 -0.4 -0.2 0.0 0.2

 0.0
 2.0
 4.0
 6.0

beta[2] chains 1:3 sample: 12141

 -1.5 -1.0 -0.5 0.0

 0.0
 1.0
 2.0
 3.0

beta[3] chains 1:3 sample: 12141

 -0.5 0.0 0.5 1.0

 0.0
 1.0
 2.0
 3.0

sumllh chains 1:3 sample: 12141

 -310.0 -305.0 -300.0 -295.0

 0.0
 0.2
 0.4
 0.6

AutoCorrelation Plots

beta[1] chains 1:3

lag
0 20 40

 -1.0
 -0.5
 0.0
 0.5
 1.0

beta[2] chains 1:3

lag
0 20 40

 -1.0
 -0.5
 0.0
 0.5
 1.0

beta[3] chains 1:3

lag
0 20 40

 -1.0
 -0.5
 0.0
 0.5
 1.0

sumllh chains 1:3

lag
0 20 40

 -1.0
 -0.5
 0.0
 0.5
 1.0

4

History Plots

beta[1] chains 1:3

iteration
1001 2000 4000

 -0.4

 -0.2

 0.0

 0.2

 0.4

beta[2] chains 1:3

iteration
1001 2000 4000

 -1.5

 -1.0

 -0.5

 0.0

 0.5

beta[3] chains 1:3

iteration
1001 2000 4000

 -0.5

 0.0

 0.5

 1.0

sumllh chains 1:3

iteration
1001 2000 4000

 -310.0

 -305.0

 -300.0

 -295.0

 -290.0

5

Brooks, Gelman, and Rubin Diagnostic

The B-G-R Diagnostic requires running multiple chains and it is
based upon a comparison of between and within variance of the
multiple chains. Note that the chains must start from very
different initial values! Let m=# of chains and n=# of
iterations. The Within and Between formulas are:

()2

1 1

1Within chain variance W
(1)

m n
i
j j

j im n
θ θ

= =

= −
− ∑∑

()2

1
Between chain variance B

1

m

j
j

n
m

θ θ
=

= −
− ∑

And the overall variance is:

1 1ˆEstimated variance () 1V W B
n n

θ  = − + 
 

And the Gelman-Rubin Statistic is:

ˆ()The Gelman-Rubin Statistic R V
W
θ

=

In the graphs below the Green Line is the width of the central
interval constructed from the pooled runs (all widths are
normalized so that the maximum value is 1). The Blue line is
the average width of the 80% intervals constructed from each
run. The Red line is R.

6

beta[1] chains 1:3

start-iteration
1051 1500 2000 2500

 0.0
 0.5
 1.0
 1.5

beta[2] chains 1:3

start-iteration
1051 1500 2000 2500

 0.0
 0.5
 1.0
 1.5

beta[3] chains 1:3

start-iteration
1051 1500 2000 2500

 0.0
 0.5
 1.0
 1.5

sumllh chains 1:3

start-iteration
1051 1500 2000 2500

 0.0
 0.5
 1.0
 1.5

Once convergence is reached, W and V(θ) (within and overall)
should be about equal because variation within the chains and
variations between the chains should coincide, so R should be
about equal to 1.

R General Linear Model and Optimizer Function

House_105_example.r -- GLM and OPTIM Examples

library(MASS)

fr is called by optim

fr <- function(beta){
lambda <- NULL
vaguevariance <- 1.0
lambda[1] <- beta[1]
lambda[2] <- beta[2]
lambda[3] <- beta[3]

i <- 1
logL <- 0.0
while (i <= nrow) {

Calculate "1" and "0" probabilities

 sum <- lambda[1] + lambda[2]*TT[i,4]+lambda[3]*TT[i,2]

7

 pyes <- pnorm(sum)
 pno <- 1.0 - pyes
 logL <- logL + TT[i,3]*log(pyes) + (1 - TT[i,3])*log(pno)

 i <- i + 1
 }
#return(-logL)
priorbetas <- -(lambda[1]*lambda[1])/(2*vaguevariance) -
(lambda[2]*lambda[2])/(2*vaguevariance)- (lambda[3]*lambda[3])/(2*vaguevariance)

Multiply Likelihood Distribution by Priors. Note that
the priors on the betas are
normals with variance = 1000 so they wash out!

return(-logL-priorbetas)
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Read in data from STATA output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rcx.file <- "c:/docs_bayesian_statistics/h105_example.raw"

Standard fields and their widths

rcx.fields <- c("dwnom1n","dwnom2n","partydum","southdum")
rcx.fieldWidths <- c(9,11,11,11)

Input File

TT <- read.fwf(file=rcx.file,widths=rcx.fieldWidths,as.is=TRUE,col.names=rcx.fields)
dim(TT)
nrow <- length(TT[,1])
ncol <- length(TT[1,])
nparam <- ncol - 1

STATA OUTPUT FOR REFERENCE
&&&
TT[,1] x1 | 443 .0674718 .4179452 -.69 1.44
TT[,2] x2 | 443 -.0308804 .4962939 -1.38 1.49
TT[,3] partydum | 443 .5214447 .5001047 0 1
TT[,4] southdum | 443 .3092551 .4627091 0 1

. probit partydum southdum x2

Iteration 0: log likelihood = -306.65663
Iteration 1: log likelihood = -298.38522
Iteration 2: log likelihood = -298.37588

Probit regression Number of obs = 443
LR chi2(2) = 16.56
Prob > chi2 = 0.0003
Log likelihood = -298.37588 Pseudo R2 = 0.0270

--
partydum | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
southdum | .4938932 .1455113 3.39 0.001 .2086964 .77909
x2 | -.4628059 .1362891 -3.40 0.001 -.7299277 -.1956841
_cons | -.1111626 .0757394 -1.47 0.142 -.2596092 .0372839
--

8

probit105 <-glm(TT[,3] ~ TT[,4]+TT[,2],family=binomial(link=probit))
sumprobit105 <- summary(probit105)

---- Useful Commands To See What is in an Object

#> length(sumprobit105)
#[1] 17
#> class(sumprobit105)
#[1] "summary.glm"
#> names(sumprobit105)
[1] "call" "terms" "family" "deviance"
[5] "aic" "contrasts" "df.residual" "null.deviance"
[9] "df.null" "iter" "deviance.resid" "coefficients"
#[13] "aliased" "dispersion" "df" "cov.unscaled"
#[17] "cov.scaled"

&&&
USE OPTIM TO GET PARAMETERS OF PROBIT

*** Calculate Log-Likelihood ***

beta <- NULL
beta[1] <- 1.0
beta[2] <- 1.0
beta[3] <- 1.0

DO MAXIMUM LIKELIHOOD MAXIMIZATION HERE
***'

model <- optim(beta,fr,hessian=TRUE)
#model <- optim(c(1.00,1.00,1.0),fr,hessian=TRUE)

Log-Likelihood (inverse -- optim minimizes!!)

logLmax <- model$value

Parameter Estimates

betamax <- model$par

convergence an integer code.
0 indicates successful convergence.

nconverge <- model$convergence

counts
A two-element integer vector giving the number of calls to
fn (function) and gr (gradients -- optional) respectively.
ncounts <- model$counts

xhessian <- model$hessian

Perform Eigenvalue-Eigenvector Decomposition of Hessian Matrix

ev <- eigen(xhessian)

The Two Lines Below Put the Eigenvalues in a
Diagonal Matrix -- The first one creates an
identity matrix and the second command puts
the singular values on the diagonal

9

Lambda <- diag(nparam)
diag(Lambda) <- ev$val

Compute U*LAMBDA*U' for check below

XX <- ev$vec %*% Lambda %*% t(ev$vec)

Compute Fit of decomposition -- This is just the sum of squared
error -- Note that ssesvd should be zero!

i <- 0
j <- 0
sseeig <- 0
while (i < nparam) {
 i <- i + 1
 j <- 0
 while (j < nparam) {
 j <- j + 1
 sseeig <- sseeig + (xhessian[i,j] - XX[i,j])**2
 }
}

LambdaInv <- diag(nparam)
diag(LambdaInv) <- 1/ev$val

Compute U*[(LAMBDA)-1]*U' for check below

XXInv <- ev$vec %*% LambdaInv %*% t(ev$vec)

results <- rep(0,nparam*4)
dim(results) <- c(nparam,4)

results[,1] <- betamax
results[,2] <- sqrt(diag(XXInv))
results[,3] <- betamax/sqrt(diag(XXInv))
results[,4] <- pt(-abs(results[,3]),nrow-nparam-1)*2

R OUTPUT: HERE IS THE OUTPUT OF THE GLM FUNCTION:

> summary(model)
> sumprobit105

THIS JUST GIVES YOU THE FORMULA

Call:
glm(formula = TT[, 3] ~ TT[, 4] + TT[, 2], family = binomial(link = probit))

THIS SUMMARIZES the “DEVIANCE” – corresponds to the sum of squares in linear
normal models

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.6650 -1.1863 0.8572 1.1174 1.5439

10

THE COEFFICIENTS IN THE USUAL FORMAT (THESE ARE THE SAME AS STATA):

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.11116 0.07584 -1.466 0.142737
TT[, 4] 0.49390 0.14483 3.410 0.000649 ***
TT[, 2] -0.46281 0.13528 -3.421 0.000623 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null Deviance is the deviation of a model that contains only the intercept
term, that is, a fixed probability for all observations. In this instance:

-2*231*[LOG(231/443)]-2*212*[LOG(212/443)] = 300.83 + 312.48 = 613.31

Residual Deviance corresponds to the residual sum of squares in OLS which is
used to estimate the standard deviation around the regression line. Here is
is simply:
-2*[LOG LIKELIHOOD] = -2*(-298.37588)=596.75

 Null deviance: 613.31 on 442 degrees of freedom
Residual deviance: 596.75 on 440 degrees of freedom
AIC: 602.75

The Akaike Information Criterion (AIC) is:
602.75 = -2*(LOG LIKELIHOOD)+ 2*K = -2*(-298.37588)+2*3

Where k=# of betas and the LOG LIKELIHOOD is given by STATA above.

Number of Fisher Scoring iterations: 3

This is simply the number of iterations to estimate the model. Note that it
is the same as the number of iterations in STATA.
>

11

R OUTPUT: HERE IS THE OUTPUT OF THE SUMMARY OF OPTIM:

> summary(model)
 Length Class Mode
par 3 -none- numeric
value 1 -none- numeric
counts 2 -none- numeric
convergence 1 -none- numeric
message 0 -none- NULL
hessian 9 -none- numeric
>
> model$par
[1] -0.1060596 0.4791577 -0.4500236
> model$value
[1] 298.6042
> model$counts
function gradient
 128 NA
> model$convergence
[1] 0
> model$message
NULL
> model$hessian
 [,1] [,2] [,3]
[1,] 276.819442 83.19293 -8.827006
[2,] 83.192933 84.19293 24.061936
[3,] -8.827006 24.06194 67.535112
>

Solution From OPTIM:

> results
 [,1] [,2] [,3] [,4]
Constant [1,] -0.1060596 0.07514533 -1.411393 0.1588371538
Southdum [2,] 0.4791577 0.14347464 3.339668 0.0009103595
X2 [3,] -0.4500236 0.13459983 -3.343419 0.0008984467
>

Check on the Accuracy of the Inverse of the Hessian:

> sseeig
[1] 1.746854e-26

