PROBIT MODEL ON 105" HOUSE

WINBUGS MODEL

model
{
#
X[,1] = DW-NOMINATE 1st Dimension
X[,2] = DW-NOMINATE 2nd Dimension
X[,3] = 1 if Republican, 0 otherwise
X[,4] = 1 if South (CQ def.), O otherwise
#
PRIORS
#
for (k in 1 : 3) { beta[k] ~ dnorm(0,0.001)} # vague priors
#
LIKELIHOOD
#

for (i in 1 : 434) # loop over congressional districts

{

#
X[1,3] ~ dbern(p[il);
probit(p[i]) <- mu[i];
mul[i] <- beta[l1]+X[i,2]*beta[2]+X[i,4]*beta[3]
#
Borrowed From Simon Jackman
#
HIh[i] <- X[i,3]1*log(p[i]) + (A-X[i,3DD*log(1-p[iD);
3
sumllh <- sum(11h[]);
#
}

WINBUGS INITS

starting values
list(beta=c(1,1,1))

STATA OUTPUT (For Reference)

. probit partydum southdum x2

Iteration O: log likelihood = -306.65663
Iteration 1: log likelihood = -298.38522
Iteration 2: log likelihood = -298.37588
Probit regression Number of obs = 443
LR chi2(2) = 16.56
Prob > chi2 = 0.0003
Log likelihood = -298.37588 Pseudo R2 = 0.0270
partydum | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ e
southdum | -4938932 -1455113 3.39 0.001 -2086964 -77909
x2 | --4628059 -1362891 -3.40 0.001 -.7299277 -.1956841
_cons | -.1111626 .0757394 -1.47 0.142 -.2596092 .0372839

WINBUGS OUTPUT

Model “Blew Up” at 15,141!! With 3 chains

node mean sd MC error2.5% median 97.5% start sample
const beta[l] -0.1057 0.07703 9.577E-4 -0.2595 -0.1046 0.04287 1 15141
south beta[3] 0.4921 0.1467 0.001851 0.207 0.4919 0.7781 1 15141
X2 beta[2] -0.4698 0.1394 0.001418 -0.7483 -0.4688 -0.2006 1 15141

sumllh -293.8 1.25 0.0121 -297.0 -2934 -2924 1 15141
Discarding the first 1000 trials

node mean sd MC error2.5% median 97.5% start sample

const beta[l] -0.1052 0.07665 0.001071-0.2577 -0.1041 0.04136 1001 12141
south beta[3] 0.4913 0.1463 0.001917 0.2095 0.4902 0.7796 1001 12141
X2 beta[2] -0.4694 0.1394 0.001581 -0.7497 -0.4686 -0.2016 1001 12141

sumllh -293.8 1.233 0.01363 -297.0 -293.4 -2924 1001 12141

Density

6.0
4.0
2.0
0.0

3.0
2.0
1.0
0.0

Plots

beta[1] chains 1:3 sample: 12141

beta[3] chains 1:3 sample: 12141

AutoCorrelation Plots

1.0
0.5
0.0
-0.5
-1.0

1.0
0.5
0.0
-0.5
-1.0

beta[1] chains 1:3

- -l._ - - —— - -
L T T T
0 20 40
lag
beta[3] chains 1:3
I I
a [[[
0 20 40

3.0
2.0
1.0
0.0

0.6
0.4
0.2
0.0

beta[2] chains 1:3 sample: 12141

sumllh chains 1:3 sample: 12141

-310.0 -305.0 -300.0 -295.0

1.0
0.5
0.0
-0.5
-1.0

10
0.5
0.0
-0.5
-1.0

beta[2] chains 1:3

I e e
L T T T
0 20 40
lag
sumllh chains 1:3
L [[[
0 20 40

History

0.4
0.2
0.0
-0.2
-0.4

0.5
0.0
-0.5
-1.0
-1.5

1.0
0.5
0.0

-0.5

-290.0
-295.0
-300.0
-305.0
-310.0

Plots

beta[1] chains 1:3

T
1001 2000 4000
iteration

beta[2] chains 1:3

1001 2000 4000
iteration

beta[3] chains 1:3

T
1001 2000 4000
iteration

sumllh chains 1:3

1001 2000 4000
iteration

Brooks, Gelman, and Rubin Diagnostic

The B-G-R Diagnostic requires running multiple chains and it is
based upon a comparison of between and within variance of the
multiple chains. Note that the chains must start from very
different initial values! Let m=# of chains and n=# of
iterations. The Within and Between formulas are:

n

Within chain variance W = ! }:

- 22%70)

Between chain variance B = Ll (49J. -0)2
_14

And the overall variance is:

EmmMMVMMMeVuD=@—E)N+lB
n n

And the Gelman-Rubin Statistic is:

The Gelman-Rubin Statistic R =

In the graphs below the Green Line is the width of the central
interval constructed from the pooled runs (all widths are
normalized so that the maximum value is 1). The Blue line is
the average width of the 80% intervals constructed from each
run. The Red line is R.

beta[1] chains 1:3 beta[2] chains 1:3
15F 15
1.0 5= 10F =
0.5 0.5f
0.0 0.0
T T T T T T T T T T
1051 1500 2000 2500 1051 1500 2000 2500
start-iteration start-iteration
beta[3] chains 1:3 sumllh chains 1:3
15F 15
1.0 — 10F = = =
0.5 0.5f
0.0 0.0
T T T T T T T T T T
1051 1500 2000 2500 1051 1500 2000 2500
start-iteration start-iteration

Once convergence 1s reached, W and V(6) (within and overall)
should be about equal because variation within the chains and
variations between the chains should coincide, so R should be
about equal to 1.

R General Linear Model and Optimizer Function

#

#

House_105_example.r -- GLM and OPTIM Examples
#

#

library(MASS)

#

#

#

KEAAAAAAAAAAAAAAAAAAAAAAAAAANK
Fr is called by optim

xxxxxxxxxxxxxx
#

fr <- function(beta){
lambda <- NULL
vaguevariance <- 1.0
lambda[1] <- beta[1]
lambda[2] <- beta[2]
lambda[3] <- beta[3]
#
i<-1
logL <- 0.0
while (i <= nrow) {
#
Calculate "1" and "0" probabilities
#
sum <- lambda[1] + lambda[2]*TT[i,4]+lambda[3]*TT[i,2]

6

pyes <- pnorm(sum)
pno <- 1.0 - pyes
logL <- logL + TT[i,3]*log(pyes) + (1 - TT[i,3])*log(pno)

i <-i+1

#return(-loglL)

priorbetas <- -(lambda[1]*lambda[1])/(2*vaguevariance) -
(lambda[2]*1ambda[2])/(2*vaguevariance)- (lambda[3]*lambda[3])/(2*vaguevariance)
#

Multiply Likelihood Distribution by Priors. Note that

the priors on the betas are

normals with variance = 1000 so they wash out!

eturn(-logL-priorbetas)

96%%%6%6%%%%%%%6%6%6%%% % %6%6%6%%% % % %6%6%6%% % % %%%%%%
Read in data from STATA output
96%%%6%6%%%%%%%6%6%%%% % %6%6%6%%% % % %6%6%%% % % %%%%%%

cx.file <- "c:/docs_bayesian_statistics/h105_example.raw"

Standard fields and their widths

HFHEIFEITHFEHFHFEHHEYYTIHHHR

rcx.fields <- c("dwnomln™,"dwnom2n","partydum”, " southdum')

rcx.fieldWidths <- c¢(9,11,11,11)

#

Input File

#

TT <- read.fwf(File=rcx.file,widths=rcx.fieldWidths,as.is=TRUE,col _names=rcx.fields)
dim(TT)

nrow <- length(TT[,1])

ncol <- length(TT[1,]D)

nparam <- ncol - 1

STATA OUTPUT FOR REFERENCE
&&888888885888888888888858888588888858888E8EEELESEEEEEEEEEEEEEESEEEEEEEEEEEEEES

TTL.1] x1 | 443 .0674718 4179452 -.69 1.44
TTL. 2] x2 | 443 -.0308804 .4962939 -1.38 1.49
TT[.3] partydum | 443 .5214447 5001047 0 1
TT[. 4] southdum | 443 .3092551 .4627091 0 1

- probit partydum southdum x2

Iteration O: log likelihood = -306.65663
Iteration 1: log likelihood = -298.38522
Iteration 2: log likelihood = -298.37588
Probit regression Number of obs = 443
LR chi2(2) = 16.56
Prob > chi2 = 0.0003
Log likelihood = -298.37588 Pseudo R2 = 0.0270
partydum | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ T E—————————
southdum | -4938932 -1455113 3.39 0.001 .2086964 -77909
x2 | -.4628059 -1362891 -3.40 0.001 -.7299277 -.1956841
_cons | -.1111626 .0757394 -1.47 0.142 -.2596092 -0372839

HFHHFEHEHFHFHF TSR

#

probitl05 <-gIm(TT[,3] ~ TTL,4]1+TTL,2],family=binomial (I ink=probit))
sumprobitl05 <- summary(probitl05)

#

---- Useful Commands To See What is in an Object
#

#> length(sumprobit105)

#[1] 17

#> class(sumprobitl05)

#[1] "summary.glm"

#> names(sumprobitl05)

[1] “call™ “terms™ “Family™ "deviance™

[5] "aic" "contrasts" "df.residual” "null.deviance"
[9] "df.null” "iter"” "deviance.resid" "coefficients"
#[13] "aliased” "dispersion” tdf "cov.unscaled"
#[17] "cov.scaled"

#

&8&&&&&EE&EE&
USE OPTIM TO GET PARAMETERS OF PROBIT

#

*** Calculate Log-Likelihood ***

#

beta <- NULL
beta[1] <- 1.0
beta[2] <- 1.0
beta[3] <- 1.0
#
#
DO MAXIMUM LIKELIHOOD MAXIMIZATION HERE

.

#

model <- optim(beta,fr,hessian=TRUE)

#model <- optim(c(1.00,1.00,1.0),fr,hessian=TRUE)

z Log-Likelihood (inverse -- optim minimizes!!)
fongax <- model$value

z Parameter Estimates

ﬁetamax <- model$par

z convergence an integer code.

0 indicates successful convergence.
ﬁconverge <- model$convergence

ﬁ counts

A two-element integer vector giving the number of calls to

fn (function) and gr (gradients -- optional) respectively.
ncounts <- model$counts

#

xhessian <- model$hessian

#

Perform Eigenvalue-Eigenvector Decomposition of Hessian Matrix
#

ev <- eigen(xhessian)

#

The Two Lines Below Put the Eigenvalues in a
Diagonal Matrix -- The first one creates an
identity matrix and the second command puts
the singular values on the diagonal

8

#
Lambda <- diag(nparam)
diag(Lambda) <- ev$val
#

Compute U*LAMBDA*U" for check below
#
XX <- ev$vec %*% Lambda %*% t(ev$vec)

#
Compute Fit of decomposition -- This is just the sum of squared
error -- Note that ssesvd should be zero!
#
i<-0
1<-0
sseeig <- 0
while (i < nparam) {
i<-i+1
j<-0
while (J < nparam) {

J<-3+1
sseeilg <- sseeig + (xhessian[i,j] - XX[i,j])**2
}

}
#

Lambdalnv <- diag(nparam)

diag(Lambdalnv) <- 1/ev$val

#

Compute U*[(LAMBDA)-1]*U" for check below
#

XXInv <- ev$vec %*% Lambdalnv %*% t(ev$vec)

#

results <- rep(0,nparam*4)

dim(results) <- c(nparam,4)

#

results[,1] <- betamax

results[,2] <- sqrt(diag(XXInv))

results[,3] <- betamax/sqgrt(diag(XXInv))

results[,4] <- pt(-abs(results[,3]),nrow-nparam-1)*2
#

R OUTPUT: HERE IS THE OUTPUT OF THE GLM FUNCTION:

> summary(model)
> sumprobitl05

THIS JUST GIVES YOU THE FORMULA

Call:
glm(formula = TT[, 3] ~ TT[, 4] + TT[, 2], family = binomial(link = probit))

THIS SUMMARIZES the “DEVIANCE” — corresponds to the sum of squares in linear
normal models

Deviance Residuals:
Min 1Q Median 30 Max
-1.6650 -1.1863 0.8572 1.1174 1.5439

THE COEFFICIENTS IN THE USUAL FORMAT (THESE ARE THE SAME AS STATA):

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -0.11116 0.07584 -1.466 0.142737
TTL, 4] 0.49390 0.14483 3.410 0.000649 **=*
TTL, 2] -0.46281 0.13528 -3.421 0.000623 **=*

Signif. codes: O “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 °~ ~ 1
(Dispersion parameter for binomial family taken to be 1)

Null Deviance is the deviation of a model that contains only the intercept
term, that is, a fixed probability for all observations. In this instance:

-2*231*[L0OG(231/443)]-2*212*[L0G(212/443)] = 300.83 + 312.48 = 613.31
Residual Deviance corresponds to the residual sum of squares in OLS which is
used to estimate the standard deviation around the regression line. Here is
is simply:
-2*[LOG LIKELIHOOD] = -2*(-298.37588)=596.75

Null deviance: 613.31 on 442 degrees of freedom
Residual deviance: 596.75 on 440 degrees of freedom
AIC: 602.75

The Akaike Information Criterion (AIC) is:
602.75 = -2*(LOG LIKELIHOOD)+ 2*K = -2*(-298.37588)+2*3

Where k=# of betas and the LOG LIKELIHOOD is given by STATA above.
Number of Fisher Scoring iterations: 3
This is simply the number of iterations to estimate the model. Note that it

is the same as the number of iterations in STATA.
>

10

R OUTPUT: HERE IS THE OUTPUT OF THE SUMMARY OF OPTIM:

> summary(model)
Length Class Mode

par 3 -none- numeric
value 1 -none- numeric
counts 2 -none- numeric
convergence 1 -none- numeric
message 0 -none- NULL

hessian 9 -none- numeric

>
> model$par
[1] -0.1060596 0.4791577 -0.4500236
> model$value
[1] 298.6042
> model$counts
function gradient

128 NA
> model$convergence
[1] O
> model$message
NULL
> model$hessian

[.1] [.2] [.3]

[1,] 276.819442 83.19293 -8.827006
[2,]1 83.192933 84.19293 24.061936
[3,] -8.827006 24.06194 67.535112
>

Solution From OPTIM:

> results

[.1] [.2] [.3]

[.4]

Constant [1,] -0.1060596 0.07514533 -1.411393 0.1588371538
Southdum [2,] 0.4791577 0.14347464 3.339668 0.0009103595
X2 [3.] -0.4500236 0.13459983 -3.343419 0.0008984467

>

Check on the Accuracy of the Inverse of the Hessian:

> sseeig
[1] 1.746854e-26

11

