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Derivation of the Logit Probability
Utility function for Yea and Nay choices:
U = -df, U = -d3,
iy € + giy and in — € + €in 1)

where dfy and d are the squared distances from the ith legislator to the Yea and Nay

choices and the € are distributed as the logarithm of the inverse of an exponential variable

(Dhrymes, 1978, p. 342). Namely

f(g)=e®e® , -0 <g<+w ?)

The probability that the legislator will choose the Yea alternative is:
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In order to get the distribution of €y, = €;, set up the joint density and then do a change

of variables (note that the distribution of €, - Siy will be the same as the distribution

of &y ~ &jn):
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Sety =&, -€, and Z=¢g
Hence &, =Y *Z and g, =Z

and the Jacobian is:
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To get the distribution of Y = &, - &;, integrate out z:
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This requires another change in variables:
Setv=e“(1+e™)
Note that 0 <V < oo because 0 < e <oo as -0 <Z <o
Hence, In(v) =-z + In(1+e?)

and z = In(1+e?) - In(v)
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Therefore, — =-— and J=
oV \V} \Y;

Hence
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Therefore, f(e, -¢ )=fy)= ——,
( iy |n) (y) (1+e_y)2
To get the distribution function:
t -y
e t 1
F(y<t) = [ —dy = -
2 (1+e”) —oo|1+e7™
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