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Derivation of the Logit Probability 
 
 
Utility function for Yea and Nay choices: 
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where  and  are the squared distances from the ith legislator to the Yea and Nay 

choices and the ε are distributed as the logarithm of the inverse of an exponential variable 

(Dhrymes, 1978, p. 342).  Namely 
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The probability that the legislator will choose the Yea alternative is: 
 
 

2 22 2
iy iyin ind dd d

iy in iy in in iyP(U  > U ) = P(e  +  > e  + ) = P(e  - e  >  - ) =− −− −ε ε ε ε
 

2 2
iy ind d

in iyP(  -  < e  - e ) − −ε ε =      (3) 
22
iyin dd

iy inP(  -  > e  - e ) −−ε ε
 

In order to get the distribution of iy in-  ε ε set up the joint density and then do a change 

of variables (note that the distribution of in iy-  ε ε will be the same as the distribution 

of iy in - ε ε ): 
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iy in inSet and y =  -     z = ε ε ε  

iy inHence and   = y + z      = zε ε  

and the Jacobian is: 
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To get the distribution of  integrate out z: iy iny =  - ε ε
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This requires another change in variables: 

-z ySet v = e (1 e )−+  
 

-zNote that because as  0 < v <    0 < e  <    -  < z < ∞ ∞ ∞  

-yHence,   ln(v) = -z + ln(1+e )  
 

-yand  z = ln(1+e ) -  ln(v)  
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Hence 
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To get the distribution function: 
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