HOMEWORK 6 ANSWERS

5.1a) birasprob

[1] 0.7263436

b) Using m=100000 1 get:

)

acceptrate
[1] 3534
probthetagtO
[1] 0.7328806
c) probthetasirgtO
[1] 0.73406
Code
Chapter 5 -- Bayesian Computation With R
Problem 5.1
Remove all objects just to be safe
(list=Is(al I=TRUE))
ibrary(LearnBayes)
Set up log function for problem -- In this case the log of
the product of product of success probabilites expressed
in logit-type form and a Normal Prior with mean O and sigma=0.25
g(thetaly) ~ [exp(y*theta)/(1 + exp(theta))**n]*exp[-(theta - mu)/2*Sigma”2]
where theta = log[p/(1-p)] => p = exp(theta)/(1 + exp(theta))
ogf <- function(theta,parameters)

At R HHHHH - B HHFEHHH

HHH

HHHFH=HD HH Y

y <- parameters[1]
n <- parameters[2]
mu <- parameters[3]
sigma <- parameters[4]

log of posterior

logposterior <- y*theta-n*log(l+exp(theta))-((theta-mu)"2)/(2*sigman2)
return(logposterior)

laplace is part of the LearnBayes Library -- It finds the mode of the
log poserior density. At the mode it uses a Taylor Series approximation
and the posterior density is approximated by a multivariate normal
density with mean Theta and VCOV equal to the Inverse numerical Hession

Note that the second argment is the best guess about the value of theta --
theta is the **only** variable here! Since the data indicate that theta >0
we start laplace there to find the mode

arameters <- c(5, 5, 0, 0.25)

it <- laplace(logf,0,parameters)

fit
$m
[1] 0.1449219

$var -- Note this is the variance, not the standard deviation

[.1]
[1,] 0.057993

$int
[1] -3.789343

$converge
[1] TRUE

So this gives a Normal (0.1449219, 0.057993)
8&&EE
Part (a): Using the pnorm(x,mean,sd) function in R we get:

iasprob <- 1 - pnorm(0,mean=fit$mode,sd=sqgrt(Fit$var))
What this computes is the probability **above** zero for a N(0.1449219, 0.057993)

biasprob
[1] 0.7263436

88
Part (b): Rejection Sampling

Need to sample theta from a function p(theta) such that the ratio of
the posterior and the sampling function is less than 1:

g(thetaly)/[c*p(theta)] < 1 where c is some normalizing constant
Then draw a uniform random number using runif(x) in R. |If
runif(x) <= g(thetaly)/[c*p(theta)] then accept theta

so (1) draw theta from p(theta)
(2) compute value of g(thetaly)/[c*p(theta)]
(3) draw uniform random number and accept theta if runif(x) <=
(thetaly)/[c*p(theta)]

Note the logic -- the closer the ratio is to one the likelier the acceptance rate.
hat
this does with a huge number of draws is that it results in a set of thetas that
will approximate the posterior distribution. This will always work provided the
p(theta) distribution is ***always above** g(thetaly)

Simple solution here is to set p(theta) = N(O, sd=.25), namely the prior in the
roblem.
This **guarantees** that the ratio is less than one

ejectsample <- function(m)

A HHFTHBFHRFEHR=HHOHFHFHFHFHHFF TR HR RO F TR

theta <- rnorm(m,mean=0,sd=.25)

ratiogoverp <- exp(6*theta)/(1l+exp(theta))”5 # This is just the posterior/prior from
p- 111

return(theta[runif(m) < ratiogoverp])

3

m <- 100000

partb <- rejectsample(m)

acceptrate <- length(partb)

probthetagtO0 <- mean(partb > 0)

acceptrate

[1] 350 # This is a really low acceptance rate but it
works

probthetagtO

[1] 0.7657143

Here is a run with m=100,000
acceptrate

[1] 3633

probthetagtO

[1] 0.7263969

HHIFHHEHEHEHRR

RRLR/LR/RBRELLLRLRLRLLLZLRLLZEIRELLLELZLRLILZLRLLILZRLLILLZLRLLZLRRLLILRELLILRRLLLRRLLLIRLRLLLRRLILZLZIRXLXRLL

part (c): Sampling Importance Resampling (SIR) algorithm

Similar to (b) but there are four steps:
(1) Sample from the proposal density, in our case N(O, sd=0.25), j=1,...m times
(2) Compute weights -- posterior/proposal -- w(theta_j) = g(theta_j|y)/p(theta_j)
(3) Convert the weights to probabilities -- p_j = w(theta_j)/SUM_j=1,m[w(theta_j)] -

Note that this produces m probabilities
(4) Use R sample command to draw a sample of the theta_j"s with replacement -- The
ogic here
is that the likelihood of a theta_j being drawn is its ***relative** weight in

>
[

vector of "prob"™ that is passed to sample. The larger its weight **relative** to
the other weights the more often it is drawn.

sample(x, size, replace = FALSE, prob = NULL) -- the defaults

HOHFHHH = H FHFHHERR

Arguments for sample function
X Either a (numeric, complex, character or logical) vector of more than one
lement
from which to choose, or a positive integer.
size positive integer giving the number of items to choose.
replace Should sampling be with replacement? TRUE or FALSE
prob A vector of probability weights for obtaining the elements of the vector being
sampled
They need not sum to one, but they should be nonnegative and not all zero.
#
m <- 10000

thetasir <- rnorm(m, mean=0, sd=0.25)

ratiopostprob <- exp(5*thetasir)/(l+exp(thetasir))”5 # ratio of posterior/proposal
probweights <- ratiopostprob/sum(ratiopostprob)

theta.post <- sample(thetasir, size=100000, replace=TRUE, prob=probweights)
probthetasirgtO <- mean(theta.post > 0)

probthetasirgtO
[1] 0.7298

Here is a run with m=100,000
probthetasirgtO
[1] 0.72714

HHIFEHFHEHHR

5.2a)

> theta. interval

[1] 0.07989705 0.93260295
> eta.interval

[1] 0.5199636 0.7176031

b) There are a variety of ways you could have programmed
this. Here is what 1 did:

POL 272 Bayesian Methods

Assignment 5.2

Chapter 5, Exercise 2 of Bayesian Computation with R
#

rm(list=1s(alI=TRUE))

library(LearnBayes)

#

Part (a)
#

my logpost<-function(eta,data){
theta <- exp(eta)/(1l+exp(eta))
logpost <- data[l]*log(2+theta)+data[2]*log(1l-theta)+data[3]*log(theta)
return(logpost)
}

#

data <- NULL

data[1] <- 125

data[2] <- 39

data[3] <- 35
#out<-laplace(mylogpost,mode=1,par=c(125,39,35))
out<-laplace(mylogpost,mode=1,data)

out
$mode
[1] 0.50625
$var
[.1]

[1,] 0.047318
$int

[1] 65.32634
$converge

[1] TRUE

HHIFEHHEHRHFH R

mu<-out$mode
sd<-sqrt(out$var)
#

theta.interval <- mu + c(-1.96, 1.96)*sd

#

theta.interval

[1] 0.07989705 0.93260295

#

eta.interval <- exp(theta.interval)/(1l+exp(theta.interval))

#

eta.interval

[1] 0.5199636 0.7176031

#

#

Part (b)

#

We are supposed to use a t-distribution with mean and varance from
the laplace output above with a small number of degrees of freedom
He covers this on pages 99 - 100

#

tparameters <- list(mu = 0.50625, var = 0.047318, df = 4)

#

function to compute log(posterior) - log(proposal) -- we use this

to find the scaling constant "'c" -- see Problem_Chap 5 1.r -- this
#

means that our t-distribution will always be **above** the posterior

used in Part (a) above
#
mylogpostdiff <- function(eta,tparameters){
theta <- exp(eta)/(1l+exp(eta))
logpostx <- 125*log(2+theta)+39*log(l-theta)+35*log(theta)
diff <- logpostx -
dmt(eta,mean=c(tparameters$mu),S=tparameters$var,df=tparameters$df, log=TRUE)
diff <- mylogpost(eta,data) -
dmt(eta,mean=c(tparameters$mu),S=tparameters$var ,df=tparameters$df, 1o0g=TRUE)
return(diff)
3

Now use laplace to maximize log(posterior) - log(proposal)

#

fmax <- laplace(mylogpostdiff, .5, tparameters)

dmax <- mylogpostdiff(fmax$mode, tparameters)

thetatest <- rejectsampling(mylogpost, tparameters, dmax, 10000, data)

