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HOMEWORK 6 ANSWERS 
 
5.1a)  biasprob 
   [1] 0.7263436 
 
b) Using m=100000 I get: 
 
 acceptrate 
    [1] 3534 
    probthetagt0 
    [1] 0.7328806 
 
c)  probthetasirgt0 
    [1] 0.73406 
 
R Code: 
# 
# Chapter 5 -- Bayesian Computation With R 
#                Problem 5.1 
# 
#  Remove all objects just to be safe 
# 
rm(list=ls(all=TRUE)) 
# 
library(LearnBayes) 
# 
#  Set up log function for problem -- In this case the log of 
#    the product of product of success probabilites expressed 
#    in logit-type form and a Normal Prior with mean 0 and sigma=0.25 
# 
#  g(theta|y) ~ [exp(y*theta)/(1 + exp(theta))**n]*exp[-(theta - mu)/2*Sigma^2] 
# 
#      where theta = log[p/(1-p)] => p = exp(theta)/(1 + exp(theta)) 
# 
logf <- function(theta,parameters) 
{ 
   y <- parameters[1] 
   n <- parameters[2] 
   mu <- parameters[3] 
   sigma <- parameters[4] 
# 
#  log of posterior 
# 
   logposterior <- y*theta-n*log(1+exp(theta))-((theta-mu)^2)/(2*sigma^2) 
   return(logposterior) 
} 
# 
#  laplace is part of the LearnBayes Library -- It finds the mode of the 
#     log poserior density.  At the mode it uses a Taylor Series approximation 
#     and the posterior density is approximated by a multivariate normal 
#     density with mean Theta and VCOV equal to the Inverse numerical Hession 
# 
#  Note that the second argment is the best guess about the value of theta -- 
#    theta is the **only** variable here!  Since the data indicate that theta >0 
#    we start laplace there to find the mode   
# 
parameters <- c(5, 5, 0, 0.25) 
# 
fit <- laplace(logf,0,parameters) 
# 
#  fit 
# $mode 
# [1] 0.1449219 
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# 
# $var -- Note this is the variance, not the standard deviation 
#         [,1] 
# [1,] 0.057993 
# 
# $int 
# [1] -3.789343 
# 
# $converge 
# [1] TRUE 
# 
#  So this gives a Normal(0.1449219, 0.057993) 
# &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
#  Part (a):  Using the pnorm(x,mean,sd) function in R we get: 
# 
biasprob <- 1 - pnorm(0,mean=fit$mode,sd=sqrt(fit$var)) 
#  What this computes is the probability **above** zero for a N(0.1449219, 0.057993) 
# 
# biasprob 
# [1] 0.7263436 
# 
# &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
#  Part (b): Rejection Sampling 
# 
#  Need to sample theta from a function p(theta) such that the ratio of  
#     the posterior and the sampling function is less than 1:  
# 
#                 g(theta|y)/[c*p(theta)] < 1 where c is some normalizing constant 
# 
#  Then draw a uniform random number using runif(x) in R.  If 
# 
#                 runif(x) <= g(theta|y)/[c*p(theta)] then accept theta 
# 
#   so (1) draw theta from p(theta) 
#      (2) compute value of g(theta|y)/[c*p(theta)] 
#      (3) draw uniform random number and accept theta if runif(x) <= 
g(theta|y)/[c*p(theta)] 
# 
#   Note the logic -- the closer the ratio is to one the likelier the acceptance rate.  
What 
#        this does with a huge number of draws is that it results in a set of thetas that 
#        will approximate the posterior distribution.  This will always work provided the 
#        p(theta) distribution is ***always above** g(theta|y) 
# 
#   Simple solution here is to set p(theta) = N(0, sd=.25), namely the prior in the 
problem. 
#        This **guarantees** that the ratio is less than one 
# 
rejectsample <- function(m) 
{ 
  theta <- rnorm(m,mean=0,sd=.25) 
  ratiogoverp <- exp(5*theta)/(1+exp(theta))^5   # This is just the posterior/prior from 
p. 111 
  return(theta[runif(m) < ratiogoverp]) 
} 
m <- 100000 
partb <- rejectsample(m) 
acceptrate <- length(partb) 
probthetagt0 <- mean(partb > 0) 
#  acceptrate 
# [1] 350                               # This is a really low acceptance rate but it 
works 
#  probthetagt0 
# [1] 0.7657143 
# 
#  Here is a run with m=100,000 
#  acceptrate 
# [1] 3633 
#  probthetagt0 
# [1] 0.7263969 
# 
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# &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
#  part (c): Sampling Importance Resampling (SIR) algorithm 
# 
#     Similar to (b) but there are four steps: 
#   (1) Sample from the proposal density, in our case N(0, sd=0.25), j=1,...m times 
#   (2) Compute weights -- posterior/proposal -- w(theta_j) = g(theta_j|y)/p(theta_j) 
#   (3) Convert the weights to probabilities -- p_j = w(theta_j)/SUM_j=1,m[w(theta_j)]  -
-  
#           Note that this produces m probabilities 
#   (4) Use R sample command to draw a sample of the theta_j's with replacement -- The 
logic here 
#       is that the likelihood of a theta_j being drawn is its ***relative** weight in 
the 
#       vector of "prob" that is passed to sample.  The larger its weight **relative** to 
#       the other weights the more often it is drawn. 
# 
# sample(x, size, replace = FALSE, prob = NULL) -- the defaults 
# 
# Arguments for sample function 
# x        Either a (numeric, complex, character or logical) vector of more than one 
element  
#          from which to choose, or a positive integer. 
# size     positive integer giving the number of items to choose. 
# replace  Should sampling be with replacement? TRUE or FALSE 
# prob     A vector of probability weights for obtaining the elements of the vector being 
sampled.   
#          They need not sum to one, but they should be nonnegative and not all zero.  
# 
m <- 10000 
thetasir <- rnorm(m, mean=0, sd=0.25) 
ratiopostprob <- exp(5*thetasir)/(1+exp(thetasir))^5  # ratio of posterior/proposal 
probweights <- ratiopostprob/sum(ratiopostprob) 
theta.post <- sample(thetasir, size=100000, replace=TRUE, prob=probweights) 
probthetasirgt0 <- mean(theta.post > 0) 
# 
#  probthetasirgt0 
#  [1] 0.7298 
# 
#  Here is a run with m=100,000 
#  probthetasirgt0 
#  [1] 0.72714 
# 
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5.2a) 
> theta.interval 
[1] 0.07989705 0.93260295 
> eta.interval 
[1] 0.5199636 0.7176031 
 

b) There are a variety of ways you could have programmed 
this.  Here is what I did: 

 
# POL 272 Bayesian Methods 
# Assignment 5.2 
# Chapter 5, Exercise 2 of Bayesian Computation with R 
# 
rm(list=ls(all=TRUE)) 
library(LearnBayes) 
# 
#  Part (a) 
# 
mylogpost<-function(eta,data){ 
       theta <- exp(eta)/(1+exp(eta)) 
       logpost <- data[1]*log(2+theta)+data[2]*log(1-theta)+data[3]*log(theta) 
       return(logpost) 
 } 
# 
data <- NULL 
data[1] <- 125 
data[2] <- 39 
data[3] <- 35 
#out<-laplace(mylogpost,mode=1,par=c(125,39,35)) 
out<-laplace(mylogpost,mode=1,data) 
# 
# out 
# $mode 
# [1] 0.50625 
# $var 
#         [,1] 
# [1,] 0.047318 
# $int 
# [1] 65.32634 
# $converge 
# [1] TRUE 
# 
mu<-out$mode 
sd<-sqrt(out$var) 
# 
theta.interval <- mu + c(-1.96, 1.96)*sd 
# 
# theta.interval 
# [1] 0.07989705 0.93260295 
# 
eta.interval <- exp(theta.interval)/(1+exp(theta.interval)) 
# 
# eta.interval 
# [1] 0.5199636 0.7176031 
# 
# 
#  Part (b) 
# 
#  We are supposed to use a t-distribution with mean and varance from 
#    the laplace output above with a small number of degrees of freedom 
#    He covers this on pages 99 - 100 
# 
tparameters <- list(mu = 0.50625, var = 0.047318, df = 4) 
# 
#  function to compute log(posterior) - log(proposal) -- we use this 
#    to find the scaling constant "c" -- see Problem_Chap_5_1.r -- this 
#    means that our t-distribution will always be **above** the posterior 
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#    used in Part (a) above 
# 
mylogpostdiff <- function(eta,tparameters){ 
       theta <- exp(eta)/(1+exp(eta)) 
       logpostx <- 125*log(2+theta)+39*log(1-theta)+35*log(theta) 
#       diff <- logpostx - 
dmt(eta,mean=c(tparameters$mu),S=tparameters$var,df=tparameters$df,log=TRUE) 
       diff <- mylogpost(eta,data) - 
dmt(eta,mean=c(tparameters$mu),S=tparameters$var,df=tparameters$df,log=TRUE) 
       return(diff) 
} 
# Now use laplace to maximize log(posterior) - log(proposal) 
# 
fmax <- laplace(mylogpostdiff,.5,tparameters) 
dmax <- mylogpostdiff(fmax$mode,tparameters) 
thetatest <- rejectsampling(mylogpost, tparameters, dmax, 10000, data) 

 


