
 1

HOMEWORK 6 ANSWERS

5.1a) biasprob
 [1] 0.7263436

b) Using m=100000 I get:

 acceptrate
 [1] 3534
 probthetagt0
 [1] 0.7328806

c) probthetasirgt0
 [1] 0.73406

R Code:

Chapter 5 -- Bayesian Computation With R
Problem 5.1

Remove all objects just to be safe

rm(list=ls(all=TRUE))

library(LearnBayes)

Set up log function for problem -- In this case the log of
the product of product of success probabilites expressed
in logit-type form and a Normal Prior with mean 0 and sigma=0.25

g(theta|y) ~ [exp(y*theta)/(1 + exp(theta))**n]*exp[-(theta - mu)/2*Sigma^2]

where theta = log[p/(1-p)] => p = exp(theta)/(1 + exp(theta))

logf <- function(theta,parameters)
{
 y <- parameters[1]
 n <- parameters[2]
 mu <- parameters[3]
 sigma <- parameters[4]

log of posterior

 logposterior <- y*theta-n*log(1+exp(theta))-((theta-mu)^2)/(2*sigma^2)
 return(logposterior)
}

laplace is part of the LearnBayes Library -- It finds the mode of the
log poserior density. At the mode it uses a Taylor Series approximation
and the posterior density is approximated by a multivariate normal
density with mean Theta and VCOV equal to the Inverse numerical Hession

Note that the second argment is the best guess about the value of theta --
theta is the **only** variable here! Since the data indicate that theta >0
we start laplace there to find the mode

parameters <- c(5, 5, 0, 0.25)

fit <- laplace(logf,0,parameters)

fit
$mode
[1] 0.1449219

 2

$var -- Note this is the variance, not the standard deviation
[,1]
[1,] 0.057993

$int
[1] -3.789343

$converge
[1] TRUE

So this gives a Normal(0.1449219, 0.057993)
&&&
Part (a): Using the pnorm(x,mean,sd) function in R we get:

biasprob <- 1 - pnorm(0,mean=fit$mode,sd=sqrt(fit$var))
What this computes is the probability **above** zero for a N(0.1449219, 0.057993)

biasprob
[1] 0.7263436

&&
Part (b): Rejection Sampling

Need to sample theta from a function p(theta) such that the ratio of
the posterior and the sampling function is less than 1:

g(theta|y)/[c*p(theta)] < 1 where c is some normalizing constant

Then draw a uniform random number using runif(x) in R. If

runif(x) <= g(theta|y)/[c*p(theta)] then accept theta

so (1) draw theta from p(theta)
(2) compute value of g(theta|y)/[c*p(theta)]
(3) draw uniform random number and accept theta if runif(x) <=
g(theta|y)/[c*p(theta)]

Note the logic -- the closer the ratio is to one the likelier the acceptance rate.
What
this does with a huge number of draws is that it results in a set of thetas that
will approximate the posterior distribution. This will always work provided the
p(theta) distribution is ***always above** g(theta|y)

Simple solution here is to set p(theta) = N(0, sd=.25), namely the prior in the
problem.
This **guarantees** that the ratio is less than one

rejectsample <- function(m)
{
 theta <- rnorm(m,mean=0,sd=.25)
 ratiogoverp <- exp(5*theta)/(1+exp(theta))^5 # This is just the posterior/prior from
p. 111
 return(theta[runif(m) < ratiogoverp])
}
m <- 100000
partb <- rejectsample(m)
acceptrate <- length(partb)
probthetagt0 <- mean(partb > 0)
acceptrate
[1] 350 # This is a really low acceptance rate but it
works
probthetagt0
[1] 0.7657143

Here is a run with m=100,000
acceptrate
[1] 3633
probthetagt0
[1] 0.7263969

 3

&&&
part (c): Sampling Importance Resampling (SIR) algorithm

Similar to (b) but there are four steps:
(1) Sample from the proposal density, in our case N(0, sd=0.25), j=1,...m times
(2) Compute weights -- posterior/proposal -- w(theta_j) = g(theta_j|y)/p(theta_j)
(3) Convert the weights to probabilities -- p_j = w(theta_j)/SUM_j=1,m[w(theta_j)] -
-
Note that this produces m probabilities
(4) Use R sample command to draw a sample of the theta_j's with replacement -- The
logic here
is that the likelihood of a theta_j being drawn is its ***relative** weight in
the
vector of "prob" that is passed to sample. The larger its weight **relative** to
the other weights the more often it is drawn.

sample(x, size, replace = FALSE, prob = NULL) -- the defaults

Arguments for sample function
x Either a (numeric, complex, character or logical) vector of more than one
element
from which to choose, or a positive integer.
size positive integer giving the number of items to choose.
replace Should sampling be with replacement? TRUE or FALSE
prob A vector of probability weights for obtaining the elements of the vector being
sampled.
They need not sum to one, but they should be nonnegative and not all zero.

m <- 10000
thetasir <- rnorm(m, mean=0, sd=0.25)
ratiopostprob <- exp(5*thetasir)/(1+exp(thetasir))^5 # ratio of posterior/proposal
probweights <- ratiopostprob/sum(ratiopostprob)
theta.post <- sample(thetasir, size=100000, replace=TRUE, prob=probweights)
probthetasirgt0 <- mean(theta.post > 0)

probthetasirgt0
[1] 0.7298

Here is a run with m=100,000
probthetasirgt0
[1] 0.72714

 4

5.2a)
> theta.interval
[1] 0.07989705 0.93260295
> eta.interval
[1] 0.5199636 0.7176031

b) There are a variety of ways you could have programmed
this. Here is what I did:

POL 272 Bayesian Methods
Assignment 5.2
Chapter 5, Exercise 2 of Bayesian Computation with R

rm(list=ls(all=TRUE))
library(LearnBayes)

Part (a)

mylogpost<-function(eta,data){
 theta <- exp(eta)/(1+exp(eta))
 logpost <- data[1]*log(2+theta)+data[2]*log(1-theta)+data[3]*log(theta)
 return(logpost)
 }

data <- NULL
data[1] <- 125
data[2] <- 39
data[3] <- 35
#out<-laplace(mylogpost,mode=1,par=c(125,39,35))
out<-laplace(mylogpost,mode=1,data)

out
$mode
[1] 0.50625
$var
[,1]
[1,] 0.047318
$int
[1] 65.32634
$converge
[1] TRUE

mu<-out$mode
sd<-sqrt(out$var)

theta.interval <- mu + c(-1.96, 1.96)*sd

theta.interval
[1] 0.07989705 0.93260295

eta.interval <- exp(theta.interval)/(1+exp(theta.interval))

eta.interval
[1] 0.5199636 0.7176031

Part (b)

We are supposed to use a t-distribution with mean and varance from
the laplace output above with a small number of degrees of freedom
He covers this on pages 99 - 100

tparameters <- list(mu = 0.50625, var = 0.047318, df = 4)

function to compute log(posterior) - log(proposal) -- we use this
to find the scaling constant "c" -- see Problem_Chap_5_1.r -- this
means that our t-distribution will always be **above** the posterior

 5

used in Part (a) above

mylogpostdiff <- function(eta,tparameters){
 theta <- exp(eta)/(1+exp(eta))
 logpostx <- 125*log(2+theta)+39*log(1-theta)+35*log(theta)
diff <- logpostx -
dmt(eta,mean=c(tparameters$mu),S=tparameters$var,df=tparameters$df,log=TRUE)
 diff <- mylogpost(eta,data) -
dmt(eta,mean=c(tparameters$mu),S=tparameters$var,df=tparameters$df,log=TRUE)
 return(diff)
}
Now use laplace to maximize log(posterior) - log(proposal)

fmax <- laplace(mylogpostdiff,.5,tparameters)
dmax <- mylogpostdiff(fmax$mode,tparameters)
thetatest <- rejectsampling(mylogpost, tparameters, dmax, 10000, data)

