
1

POLI 272 Bayesian Methods

Homework #1 Answers

1. Exercise 1.4 Bayesian Computation With R

Problem 4 Chapter 1 -- Bayesian Computation With R

Remove all objects just to be safe

rm(list=ls(all=TRUE))

Note -- qnorm(...) is used in the function. Definitions:

#qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) -- qnorm gives the quantile
function

#Arguments
#x,q vector of quantiles.
#p vector of probabilities.
#n number of observations. If length(n) > 1, the length is taken to be the number required.
#mean vector of means.
#sd vector of standard deviations.
#log, log.p logical; if TRUE, probabilities p are given as log(p).
#lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

binomial.conf.interval=function(y,n)
{
z=qnorm(.95)
phat=y/n
se=sqrt((phat*(1-phat))/n)
return(c(phat-z*se,phat+z*se))
}
ntrial <- 20
n <- 20

confinterval1 <- rep(0,2*ntrial)
dim(confinterval1) <- c(ntrial,2)
confinterval2 <- rep(0,2*ntrial)
dim(confinterval2) <- c(ntrial,2)

#Arguments
#n number of observations. If length(n) > 1, the length is taken to be the number required.
#size number of trials (zero or more).
#prob probability of success on each trial.
#rbinom(n, size, prob)

Part (b) of the Problem

ptrue <- 0.5

kcover1 <- 0
i <- 1
while (i <= ntrial) {
yarg <- rbinom(1, n, ptrue)
confinterval1[i,] <- binomial.conf.interval(yarg,n)
if (confinterval1[i,1] < ptrue & ptrue < confinterval1[i,2])
 {
 kcover1 = kcover1 + 1
 }
i <- i + 1
}

Part (c) of the Problem

2

ptrue <- 0.05

kcover2 <- 0
i <- 1
while (i <= ntrial) {
yarg <- rbinom(1, n, ptrue)
confinterval2[i,] <- binomial.conf.interval(yarg,n)
if (confinterval2[i,1] < ptrue & ptrue < confinterval2[i,2])
 {
 kcover2 = kcover2 + 1
 }
i <- i + 1
}

b) > confinterval1
 [,1] [,2]
 [1,] 0.53145266 0.8685473
 [2,] 0.41981531 0.7801847
 [3,] 0.31609977 0.6839002
 [4,] 0.47457037 0.8254296
 [5,] 0.36702159 0.7329784
 [6,] 0.17457037 0.5254296
 [7,] 0.53145266 0.8685473
 [8,] 0.41981531 0.7801847
 [9,] 0.31609977 0.6839002
[10,] 0.26702159 0.6329784
[11,] 0.09073773 0.4092623
[12,] 0.36702159 0.7329784
[13,] 0.21981531 0.5801847
[14,] 0.31609977 0.6839002
[15,] 0.41981531 0.7801847
[16,] 0.53145266 0.8685473
[17,] 0.17457037 0.5254296
[18,] 0.17457037 0.5254296
[19,] 0.31609977 0.6839002
[20,] 0.41981531 0.7801847

Or 16/20 = 0.8

c) > confinterval2
 [,1] [,2]
 [1,] -0.03016025 0.1301603
 [2,] -0.01034014 0.2103401
 [3,] -0.03016025 0.1301603
 [4,] -0.03016025 0.1301603
 [5,] 0.00000000 0.0000000
 [6,] -0.03016025 0.1301603
 [7,] 0.01866897 0.2813310
 [8,] 0.00000000 0.0000000
 [9,] -0.03016025 0.1301603

3

[10,] 0.00000000 0.0000000
[11,] -0.03016025 0.1301603
[12,] -0.03016025 0.1301603
[13,] 0.00000000 0.0000000
[14,] 0.00000000 0.0000000
[15,] 0.01866897 0.2813310
[16,] 0.00000000 0.0000000
[17,] 0.00000000 0.0000000
[18,] -0.03016025 0.1301603
[19,] 0.05287982 0.3471202
[20,] -0.01034014 0.2103401

Or 12/20 = 0.6

2. Exercise 1.5 Bayesian Computation With R

I Combined Problems 2 and 3 into one R program (a bit over
the top on my part!):

Problem 5 Chapter 1 -- Bayesian Computation With R

Remove all objects just to be safe

rm(list=ls(all=TRUE))
library(gdata)

Note -- qnorm(...) is used in the function. Definitions:

#qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) -- qnorm gives the quantile
function

#Arguments
#x,q vector of quantiles.
#p vector of probabilities.
#n number of observations. If length(n) > 1, the length is taken to be the number required.
#mean vector of means.
#sd vector of standard deviations.
#log, log.p logical; if TRUE, probabilities p are given as log(p).
#lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X >
x].

Confidence Interval for Proportion (Large Sample)

binomial.conf.interval=function(y,n)
{
z=qnorm(.95)
phat=y/n
se=sqrt((phat*(1-phat))/n)
return(c(phat-z*se,phat+z*se))
}

Confidence Interval for Proportion (Quadratic)

binomial.conf.interval.quadratic=function(y,n)
{
z <- qnorm(.95)
phat <- y/n
zsquare2 <- (z*z)/n

4

lowerc <- ((2*phat + zsquare2) - sqrt((-2*phat-zsquare2)^2 -
4*(1+zsquare2)*phat*phat))/(2*(1+zsquare2))
upperc <- ((2*phat + zsquare2) + sqrt((-2*phat-zsquare2)^2 -
4*(1+zsquare2)*phat*phat))/(2*(1+zsquare2))
return(c(lowerc,upperc))
}

Confidence Interval for Proportion Using Large Sample Formula

confidence.interval.mc=function(n,p,m)
{
kcover1 <- 0
i <- 1
while (i <= m) {
confinterval1 <- rep(0,2)
dim(confinterval1) <- c(1,2)
yarg <- rbinom(1, n, p)
confinterval1 <- binomial.conf.interval(yarg,n)
if (confinterval1[1] < p & p < confinterval1[2])
 {
 kcover1 = kcover1 + 1
 }
i <- i + 1
}
return(kcover1)
}

Confidence Interval for Proportion Using Quadratic Formula

confidence.interval.quadratic=function(n,p,m)
{
kcover1 <- 0
i <- 1
while (i <= m) {
confinterval1 <- rep(0,2)
dim(confinterval1) <- c(1,2)
yarg <- rbinom(1, n, p)
confinterval1 <- binomial.conf.interval.quadratic(yarg,n)
if (confinterval1[1] < p & p < confinterval1[2])
 {
 kcover1 = kcover1 + 1
 }
i <- i + 1
}
return(kcover1)
}

############### MAIN PROGRAM ################

confintervalresults <- rep(0,45)
dim(confintervalresults) <- c(9,5)

n <- 10
p <- 0.05
m <- 1000

kcovertest <- confidence.interval.mc(n,p,m)
kcovertest2 <- confidence.interval.quadratic(n,p,m)
confintervalresults[1,1] <- n
confintervalresults[1,2] <- p
confintervalresults[1,3] <- m
confintervalresults[1,4] <- kcovertest
confintervalresults[1,5] <- kcovertest2
n <- 10
p <- 0.25
m <- 1000

5

kcovertest <- confidence.interval.mc(n,p,m)
kcovertest2 <- confidence.interval.quadratic(n,p,m)
confintervalresults[2,1] <- n
confintervalresults[2,2] <- p
confintervalresults[2,3] <- m
confintervalresults[2,4] <- kcovertest
confintervalresults[2,5] <- kcovertest2
n <- 10
p <- 0.50
m <- 1000

kcovertest <- confidence.interval.mc(n,p,m)
kcovertest2 <- confidence.interval.quadratic(n,p,m)
confintervalresults[3,1] <- n
confintervalresults[3,2] <- p
confintervalresults[3,3] <- m
confintervalresults[3,4] <- kcovertest
confintervalresults[3,5] <- kcovertest2

n <- 25
p <- 0.05
m <- 1000

kcovertest <- confidence.interval.mc(n,p,m)
kcovertest2 <- confidence.interval.quadratic(n,p,m)
confintervalresults[4,1] <- n
confintervalresults[4,2] <- p
confintervalresults[4,3] <- m
confintervalresults[4,4] <- kcovertest
confintervalresults[4,5] <- kcovertest2
n <- 25
p <- 0.25
m <- 1000

kcovertest <- confidence.interval.mc(n,p,m)
kcovertest2 <- confidence.interval.quadratic(n,p,m)
confintervalresults[5,1] <- n
confintervalresults[5,2] <- p
confintervalresults[5,3] <- m
confintervalresults[5,4] <- kcovertest
confintervalresults[5,5] <- kcovertest2
n <- 25
p <- 0.50
m <- 1000

kcovertest <- confidence.interval.mc(n,p,m)
kcovertest2 <- confidence.interval.quadratic(n,p,m)
confintervalresults[6,1] <- n
confintervalresults[6,2] <- p
confintervalresults[6,3] <- m
confintervalresults[6,4] <- kcovertest
confintervalresults[6,5] <- kcovertest2

n <- 100
p <- 0.05
m <- 1000

kcovertest <- confidence.interval.mc(n,p,m)
kcovertest2 <- confidence.interval.quadratic(n,p,m)
confintervalresults[7,1] <- n
confintervalresults[7,2] <- p
confintervalresults[7,3] <- m
confintervalresults[7,4] <- kcovertest
confintervalresults[7,5] <- kcovertest2
n <- 100
p <- 0.25
m <- 1000

kcovertest <- confidence.interval.mc(n,p,m)

6

kcovertest2 <- confidence.interval.quadratic(n,p,m)
confintervalresults[8,1] <- n
confintervalresults[8,2] <- p
confintervalresults[8,3] <- m
confintervalresults[8,4] <- kcovertest
confintervalresults[8,5] <- kcovertest2
n <- 100
p <- 0.50
m <- 1000

kcovertest <- confidence.interval.mc(n,p,m)
kcovertest2 <- confidence.interval.quadratic(n,p,m)
confintervalresults[9,1] <- n
confintervalresults[9,2] <- p
confintervalresults[9,3] <- m
confintervalresults[9,4] <- kcovertest
confintervalresults[9,5] <- kcovertest2

write.table(confintervalresults,"c:/docs_Bayesian_statistics/problem_chap_1_5.txt")
write.fwf(x=format(as.data.frame(confintervalresults),digits=5,width=10,
 scientific=FALSE),colnames=FALSE,"c:/docs_Bayesian_statistics/problem_chap_1_5B.txt")
write.fwf(x=format(as.table(confintervalresults),digits=5,width=10,
 scientific=FALSE),colnames=FALSE, "c:/docs_Bayesian_statistics/problem_chap_1_5A.txt")

3. Exercise 1.5 with exact Confidence Limits

 N P MC draws # covered
 CLT Exact
 10 0.05 1000 383 917
 10 0.25 1000 926 860
 10 0.50 1000 908 906
 25 0.05 1000 714 965
 25 0.25 1000 873 897
 25 0.50 1000 890 893
 100 0.05 1000 865 881
 100 0.25 1000 917 930
 100 0.50 1000 919 907

