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ABSTRACT
Nonmetric multidimensional scaling is a technique for finding a
geometric representation of a proximity matrix using only the ordinal
properties of the measures of proximity. A general model for finding such
geometric representations is presented, and it is shown that current methods
are special cases of the general model. It is also shown how the general
model may be applied to conditional proximity matrices, a form of data

not formerly amenable to such analysis,






A GENERAL MODEL FOR NONMETRIC MULTIDIMENSIONAL SCALING

There are many ways of approaching the problem of finding a geometric
representation of a given data matrix. If the data can be interpreted as
distances between points or as scalar products of vectors, and these
measures are at the level of a ratio scale, then the traditional approach
of factor analysis provides a means for recovering a configuration of
points satisfying these distances. It is seldom, however, that ratio scale
measurements are achieved without rather arbitrary assumptions. Consequently,
in recent years much effort has been expended ir attempts to find ways of
recovering a geometric representation of a data matrix using only the
ordinal properties of the data. This kind of approsach, reéered to here as
nonmetric multidimensional scaling, had its origin in the work of Shepard
(1962a, 1962b) and has been extended by Kruskal (1964a, 1964b) and Lingoes
{1965a, 1965b, 1566). It is the intent of this paper to present a general
model for nonmetric multidimensional scaling which incorporates each of
the current methods as special cases. With the aid of the general model
it is possible to compare these methods and to see how nonmetric multidi-
mensional scaling may be extended to conditional proximity matrices, a kind
of data not previously amenable to such analysis.

For the sake of clarity we shall adopt the following definitions and
notational conventions. Let X = {xl, Xg, wvey X : be a set of p vecters
{or points) in a space of n dimensions. The set X will be called a con™ rurza-
tion. To denote a coordinate of a given vector we shall use double sub-
scripts; thus X, = (Xil’ Xipr rees X Y. In general the indices i and ]

in

will be used to denote points and the index k to denote dimensions. The



distance between tw points X and xj will be denoted dij' For the purposes

of this paper only Euclidean distances will be considered, hence,

? 2

(1) d; = kzl x5y = %507 -

The purpose of nonmetric multidimensional scaling is to represent
stimuli or individuals as a configuration of points in a space in such a
way that some or all of the interpoint distances are monotonically related
to measures of proximity among the stimuli or individuals. Hence the basic
data for any scaling technique is a proximity matrix § = [5;3]‘ There -
seems to be a wide range of measures that can be interpreted as proximities.
For example, one might use correlations, judgments of similarity (Atteneave,
1950), confusions among competing responses (Dawes & Kramer, 1966) references
between journals (Coombs, 1964), and preferential choice data, to name just
a few. From the point of view of the model it is unimportant whether inter-
point distances are a decreasing function of the proximities as in the case
of similarities or an increasing function as in the case of dissimilarities. i
For convenience we shall assumz for the remainder of this paper that if

sgh < sij‘ then we shall want to find points xg, Xy X and xj such

gh ij°
Following Coombs (1964) we may distinguish rour kinds of proximity
matrices by means of tw? dichotomie;: complete--conditional, and diagonal--
off diagonal. If any two entries '~ S may be meaningfully compared, then S
is said to be a complete proximity matrix. If meaningful comparisons may

be made only within rows of S, then S is said to be a sunditional proximity



matrix. For example, a correlation matrix is a complete proximity matrix.
Given any two correlations we can meaningfully state which is the greater
or whether thev are equal. However, if for each row of the matrix we

rank ordered the columns according to the magnitude of the correlations,
say, giving the highest correlation the smallest rank and the élgebraically
smallest correlation the largest rank, then the matrix obtained by replacing
the correlations with their ranks is a conditional proximity matrix.

Meaningful comparisons between entries can no longer be made across rows

but only within rows.
Let X be a set of points partitioned into two disjoint subsets

Xl = {xl, e, xr} and X2 = {xr+1, ey xp}. In Figure 1 we have sche-

matically represented a general proximity matrix., The submatrices A and D

are characterized by the fact that their entries are proximities between

points of the 3&8m€ set, 7.e., the entries of A are a function of distances

between points in X5 and the entries of D reflect distances between points

in X,. Such matrices will be calléd diagonal proximity matrices. The

proximities in matrices B and C represent distances between points drawn f
I

E

from different sets. The matrices will be called off-diagonal proximity

matrices.
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Fig. 1. A general proximity matrix consisting of diagonal
matrices A and D and off-diagonal matrices B and C.

By combining these two dichotomies we obtain four kinds of proximity
matrices. A complete diagonal proximit, matrix contains proximities of
pairs of points drawn from the same set and these proximities are comparable
over the entire matrix. Examples of this kind of proximity matrix would
include correlation matrices and judgments of similarity obtained by the
method of paired comparisons. Since the entries of a complete diagonal
proximity matrix are to be interpreted as some monotonic function of the
distances between corresponding pairs of points, they must be symmetric,

i.e., since d.., = d.,., it must be the case that s.. = 5...
, ij ji ij ji

Hence for
convenience this kind of proximity macrix will be culled simply a symmetric
proximity matrizx.

A conditiconal diagonal proximity matrix contains proximities of pairs

of points drawn from the same set but these proximities are comparable only

within rows of the matrix. This type of data is obtained, for example, when



one has a subject rank order a set of stimuli with respect to their
similarity to a standard using, in turn, each of the stimuli in the set
as the standard.

A conditional off-diagonal proximity matrix contains proximities of |
pairs of points drawn from different sets, and these proximities are %\y}\éff
comparable only within rows of the matrix. This kind of data arises, for 5
example, when individuals (points of one set) indicate their preferences ‘
for objects (points from another set).

Finally a ccmylete off-diagonal proximity matriz contains proximitles
of pairs of points drawn from different sets, and these proximities are
comparable only within rows of the matrix. This kind of data arises, for
example, when individuals (points of one set} indicate their preferences
for objects (points from another set).

Finally a complete off-diagonal proximity matrix contains proximities
of pairs of points drawn from different sets, and these proximities are
comparable over the entire matrix. This kind of data is very rare, and
therefore, will not be discussed further.

The fourfold classification of proximity matrices permits the placing
of current scaling methods within a general framework. The techniques of
Shepard (1562a, 1962b), Kruskal (1964a, 1964b), and lingoes (1965b) are
limited solely te symmetric proximity matrices--a very strong clzse oF Zata,
The method to be presented later in this paper as well as the worr cf
Lingoes (1566) extends nonmetric multidimensional scaling to the much woiner

but more common, conditional proximity matrices (both diagonal and off-diagonal).



THE GENERAL MODEL

It is useful to begin the presentation of a general model for non-

metric multidimensional scaling techniques by first developing some

cal facts. Let x, and X4 be arbitrary but fixed points in n-space.

point x lying on the line passing through these points may be described

parametrically by the equation,

(2) x = (1 - A)xp + xg
or alternately as
(3) X = X+ A(xl - xo).

In this last representation, the point Xq may be interpreted as a base point,

the term Xy - Xp as a direction, and X as a distance. Thus if A

we may say that x is at a distance X in the direction of X from Xg-

geometri-

A

> 0,

Likecwise

if X < 0, then x is at a distance |x, from Xy in the direction away from

X

-1/2

Fig. 2. Positions of the poeint x = x_, + x(x;, - x,)
. 0 1 0
for various values of i.

Equation (3) is particularly neipful in stating, conceptually,

iterative methods used for calculating a configuration of points to

1 The observations are illustrated for several values of X in Figure 2.

the

fit a
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given proximity matrix. Suppose we are given the following items: a

set of proximities Sij’ a set of distances 6ij which are monotonically

related to the proximities and which represent distances between points

in a configuration that adequately represent the data (the distances 6ij

will henceforth be called appropriate distances ), and an arbitrary configura-
tion of points X. For each pair xi,xj e X we may calculate the distance

dij' If X is an appropriate configuration in the sense that its distances

are monotoniczlly related to the 5ij’ then the distances dij should be very
close to or exactly the same as the appropriate distances. Generally, however,
the monotonicity criterion will not be satisfied so that the points of X

will have to be moved so as to improve the match between dij and 6ij'

g, .
Consider the ratio 3;1-. 1f di' is too large, that is the points X and
13 P ’
X, are too far apart, then Eil < 1. On the other hand, if di' is too
J s i3 J
small, EE; > 1. These facts suggest that to calculate a new position for
ij 61.
the points X, we need only substitute (1 - E—l) for » in equation (3),
ij
that is
6ij
4 = . - —_— . - 1.
(4) X * 0t ( 1 d. . (XJ xl)
13
The point x ir <cuation (4) represents a new estimate of the position of
point X,. oo "3t the distance of the point x from x, is proportional
to the discr-svur iy between d,. and 6... If d.. = 6.., then x = x_.
ij ij i} 1j i
As dij becomes laTger relative to 6ij’ X approaches more and more closely

the point xj. As dij becomes smaller relative to 6ij’ x moves farther and

farther away from xj.



For convenience let us adopt the convention

5. .
(5) A =1--d—1l.

ij i
We have seen from the above discussion that given a point X;, we
can get an estimate of a new position for Xs by applying equation (4) for
each point xj. To arrive at a new position for X; using estimates from all

the points xj we simply take a weighted vector sum of each estimate, that

is,

(6)

Hd
1]
"
=
+
]
"~

. lij(xj - xi),

j
where o is the weighting constant. Subsequently o will be called the step
size.

A general method, then, for calculating a configuration of points that
satisfies a given proximity matrix consists of resolutions to the following
problems: (a) selecting an appropriate initial configuration X,, (b) esti-
mating the appropriate distances between points from the proximities measures,
that is, finding a function f such that 6ij = f(sij), {c¢) determining an
appropriate constant o so that with repeated applications of (6) the
successive configurations Xl, Xz, e Xt converge, and finallv, (d)
constructing some measure of goodness of fit of th¢ configuration to the

data,



EXAMPLES OF THE GENERAL METHOD

It is instructive to compare this general method with the approaches
of Shepard, Kruskal and Lingoes. We shall show in the following sections
that each of the methods previously proposed may be seen as a special case
of the above general outline and that each differs from the others only in
the particular resolutions chosen for the four problems mentioned above.

Shepard's method, being the first to appear in the literature (1962a,
1962b) is now largely of historical interest. Its principal value here will
be as a contrast to the methods of Kruskal and Lingoes. The first step is

to standardize the proximity measures so that for all i and j, 0 <s.,. <1.

ij
This introduces no difficulties since the only property of the proximity
measures that will be used in calculating a configuration of points to
represent them will be their order relations. A configuration X with associated
distances dij will represent a perfect fit to the data, if when the proximities
sij and the distances dij are ranked iow to high, the rank assigned sij is

the same as the rank assigned dij' If X fails to fit the data, there will

be, of course, some discrepancies in the two rank orders. Let s(dij) denote

that proximity measure having the same rank as dij' Rather than attempting

to estimate the appropriate distances 6ij’ Shepard turns the problem around

and attempts to estimate the function f from distances to proximities by a
comparison of the proximity measures, The guantity s, . - >'cC .0 "amounte
in effect to a comparison of each proximity measure with its corresponding

distarnice after the scale of distance has been subjected to a nonlinear trans-

formation that renders the distribution of distances identical with the dis-
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tribution of proximity measures” (p. 134) . With this exception, Shepard's

formula can be seen as essentially the same as that given as equation (6],

s.. - s(d,.)
7 "i*"i.”‘lE (lld. == ] Oy ) +jE183"

The factor E Bj was introduced to reduce the dimensicnality of the solu-
j=1

tionz. In general its contribution to the estimation of new coordinates for
the point x, is much less than the other factor in the equation (7) and
hence it can be ignored for present purposes. The parameter @ is an empiricaily
determined constant which serves to speed convergence.
As an initial configuration, Shepard suggested using a p - 1
dimensional simplex. After sufficient repeated applications of equation (7},
the resulting configuration could be rotated to principal axes and an
estimate of the appropriate dimensionality of the configuration obtained

from this rotation. To evaluate the goodness of fit of the configuration

to the data Shepard suggested the following measure.

2
[s.. - s(d..)]
(9) _ 3=l i=js1 1)

1 E(%-l)

Clearly when a perfect fit is achieved Sij = s(él.) for all 1 and j,

hence S1 = {.

2 Actually 1 2 (xj - xi) where @y >> Si.




Kruskal's (1964a) approach to the scaling problem is essentially the
same as that of Shepard, but it does have the desirable difference that
Kruskal provides a rationale for many of the steps that Shepard had
evolved on an intuitive basis. Whereas Shepard sought some monotonic function
to relate sij and dij’ Kruskal suggests calculating a best fitfing monotonic
function in a least squares sense. In particular, his method seeks values

-

d.. such that
1)

is1 j=is1 1)
is a minimum. He defines the following terms:

2

>

(10) S* = (d.. - d..)
121 j=§+1 S

(11) e 5§ &,
i=1 j=i+1 1]

(12) s. =1/5% .

This last term, SZ’ was called by Kruskal the stress of a configuration.
Stress serves two functions in Kruskal's method. First it provides a

measure of the goodness of fit of the configuration to the data. It is easy
to see that 52 approaches zero as the dij's approach the éi'|5 in much

the same way that S1 approached zero as the configuration approached s better
Tit in Shepard's method. However, unlike the calculations for Sl’ Kruskal
uses only the dij's in calculating stress. This seems a much more reasonable
procedure since we cannot be sure of the arithmetic properties of the sij's
having only required that they be measured on an ordinal scale. The second

function provided by S, is its use in deciding how points should be moved

2
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in calculating successive iterations. Kruskal suggests using the
"method of steepest descent" in attempting to minimize S, as a function of
the coordinates X for each point X in the configuration. This is done

by calculating the negative gradient for each coordinate, i.e., finding

3S
. 2 foreach i=1,2, ...,p, k=1,2, ..., n. It is straight-
*ik
forward to show3
' d,
(13) B2 1 E (1 EFJL) (%53 = X540
° Ty /ST =l ij

Therefore a new estimate for the Point x. may be obtained by
1

-~

A d. .
2 E ij
[ - - - -
(14) xi = xi + T 5y {1 dij (xj xi)

where @, is a constant introduced to speed convergence. It is clear from
equation (14) that Kruskal's iterative procedure is essentially that given
in equation (6) differing only in the step size.

Kruskal's method differs from Shepard's in one other respect; in esti-
mating the appropriate dimensionality of the configuration, Kruskal
attempts solutions in n, n-1, n-2, etc. dimensions until the best stress

value that can be obtained in a given number of dimensions becomes intolerably

3 \ . . .
In this derivative T* has been treated as a constant function of xik'

Given the general definition proposed by Kruskal thi- is not a
necessity. But in the actual operation of his nvggram he normalizes his con-
figuration after each iteration so that

L
{ x., =1 and E x., = 0.
j=1 k=1 LK js] ik

Under these constraints

T* = § E dr. = %- E E E (X?k - 2x.kx.k + x?k
=1 j=1 M =1 k=1 k=1 Y 1k J
n n p LIS
= E Z X?k - r ) X1k E X = % L X5 =1
i=] k=1 * k=1 i=1 ** j=1 i=1 k=] *

justifying the derivative.



high. The appropriate dimensionality of the configuration ﬁan be esti-
mated by looking at the pattern of stress values obtained from different
dimensions.

As for the initial configuration problem, Kruskal states that any
configuration may be used.

The method developed by Lingoes (1965a), while proceeding from a quite
different rational, is very similar in form to that of Kruskal. Given a
configuration of points one may obtain a new configuration by the following

formula

\ '—lf
(15) Xk = D L cijxjk

1

where cij is given by

{(16) c.. =
1- Hii if 1 # 3.

dx*.
it is understood in (16) that dll = 0. The values d;. are Lingoes' esti-
i1
mates of the appropriate distance aij. They are obtained by a procedure

called the principal of rank images wherein the distances dij are them-

seives Toruuted so that as a set of numbers they are ranked from low to high.
Giver i1ni: v+~ utztion the mumber d;j is that number given the same rank

as S .. v.1T saic2ssive lterations the distances di' converge on the values

d;j thereby approximating a monotonic function of the proximities P Again

the rationale is the same as previous methods, only the function chosen to

estimate 6ij differs.
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To put equation (15) into a form more closely representing those

given above we apply (16) so that

1k | ot a5
x!. = = 1 - X + (1 * E X,
ik p L_j'_'l d.lj jk =1 dij ik
i#i
AT R R
= - X - . X + X + X.
21 ik i=1 jk dij ik 551 dij ik
J#i J#i
>,
Using the fact that dll = 0, hence
ii
E d;. E d;J
L x,, = X.1,
j=1 935 9k 52 4y
j#i
we get
1 E - d;.
X!, == X.p = =L (x,, - X ]]
ik p =1 | jk dij jk ik
1 g r d’.'l‘.
= E J=l xlk + ( 1 - ——;Ldij (xJk - xlk)]
or alternatively,
d*.
- 1§ 4]
(17} xio= X ¥ ) [( 1 -~ T [xj - xi)] .
j=1 1]

We have thus reduced (15) to the same form as (6) wi.h a step size of
1

5"

Lingoes' criterion for goodness of fit is similar to Kruskal's



@.. - dr)°
i=1 j=is1 1)1
(18) S3 = .
¥ 7 &2
i=l j=is1 )
Assuming d;j = &ij for each i and j (which, of course, will not be true
in general), then S3 = %—Sg.

Lingoes has a unique approach to estimating the initial configuration
and its dimensionality. If the proximities are ranked from smallest to
largest, then the first dimension of the configuration may be approximated
by the distance represented by the largest rank. To get successive orthogonal
dimensions one assumes "that all distances are identical and equal to
p(p - 1)/2, the largest possible distance. Now all that remains to be
done is to form the ratios of the given ranks to the largest rank, calculate
the c-matrix [i.e., the matrix whose entries are cij (see expression (16)
above)], and solve for the eigenvalues and eigenvectors of C" (p. 7).
Except for the vector with the largest root, the remaining eigenvectors may
be used as a starting configuration. Lingoes suggests that starting with this
configuration will escape problems of local minima to which Shepard's and
Kruskal's methods are subject, but no proof is offered. Moreover, it is
not clear from his discussion why the c-matrix so constructed can be rea-
sonably considered a matrix of scalar products.

The above discussion has shown how similar existing methods of nonmetric
multidimensional scaling are. The differences lie in their resolutions of

the problems of estimating an initial configuration, choosing an appropriate
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step size to speed convergence, and estimating the function which meno-
tonically relates distances to proximity measures. Despite much experience
with each of these algorithms, there is as yet no proofs available for
the convergence of these procedures. Undoubtedly all these programs are
subject to problems of local minima, that is, there exist configurations
which cannot be improved upon by small movements of the points, but which
have poorer fits to the data than other configurations. This is particularly
true, for example, when all points are given the same coordinates. In such
a case 82 = S3 = 0. At present the best approach to the problem of local
minima is to attempt several solutions from different startir_ configurations.
It is worth mentioning that there is another possible approach to the
problem of estimating a reasonable starting configuration and its appro-
priate dimensionality that has not been suggested by the methods discussed
above. Coombs and Kao (1960) conjectured that if one correlates all
pairs of rows of an off-diagonal proximity matrix, the eigenvectors of the
resulting correlation matrix will provide an approximation to the configura-
tion of points represented by the matrix., In their conjecture they indi-
cated that this configuration should overestimate the appropriate dimen-
sionality of the data by one dimension. Ross and Cliff (1964) proved a
similar theorem for a correlation matrix obtaine” uy correlating squared
distances. Their result indicates that the appropriate dimensionality of
the configuration will be overestimated by two dimensions. The author
has experimented with a numper ol :m.irical and artificial examples and

has found that estimating an initial configuration from the eigenvectors of



of the correlation matrix is a satisfactory point for analyzing both

diagonal and off-diagonal proximity matrices. If one uses those eigen-

values which account for 99% of the trace of the correlation matrix (which

is, of course the number of rows in the proximity matrix), the method generally
overestimates the appropriate dimensionality of the configuration by at

most one or two dimensions, and, on occasion, the estimated number of

dimensions is correct.
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A GENERAL METHOD FOR CONDITIONAL PROXIMITY MATRICES

The methods so far discussed have been concerned with analyzing
symmetric proximity matrices. We now consider the case of data described
by a conditional diagonal proximity matrix or even more generally by an
off-diagonal conditional proximity matrix. The approach is essentially
the same as that given for the symmetric case in the sense that equation (6)
is used for calculating successive configurations. It differs, however,
in the method by which the appropriate distances éij are estimated. Since
the entries in a conditional proximity matrix may only be compared meaning-
fully by rows, it is necessary to find a best fitting monotonic function
relating distances in the configuration with proximities for each row
separately. Let &ij be the value corresponding to dij obtained by fitting

- : -th - .
a monotonic function to the i~ row of ihe proximity matrix. A new con-

figuration X' may be calculated from X by the formula
g dij

19 X! = x, + — % 1 - —~|({x. - x.) ,

() oot a i=1( dij)(J i)

where ¢q is a constant and q is the number of columns in the data matrix
(in the case of an off-diagonal proximity matrix q may be different from p)
or else is p depending on whether X, represents a column or a row in the

matrix. A measure of goodness of fit analogous t~ Kruskal's stress may

be defined by

/E, NCIIRG

- - 1]
(20) g - 1=41 ;—a

4 Il

i=1 j=1




bk
I

By fitting a function to each row separately we have added degrees of"
freedom to the data and therefore ensured that the configuration's fit
to the data will appear better than that which might be obtained with

symmetric proximities. Whereas 52 < .01 would be judged as a very good

fit with symmetric data, S, must be approximately .001 for conditional

4

diagonal proximity matrices and approximately .0001 for conditional off-
diagonal matrices before a good fit to the data has been achieved.
A word should be said about the parameter @,. Experience has shown

that when o, = 1, convergence is much too slow. On the other hand, no

3

good rule for calculating a, has been formulated from the inspection of

3

many matrices subjected to the algorithm, In practice it has been found
to be satisfactory if the value of o, is gradually increased from iteration

to iteration until the rate of decrease of S, begins to fall off. As sub-

4

sequent iterations are calculated a, is kept as large as possible without

3

allowing S4 to increase.
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AN OQUTLINE OF THE GENERAL ALGORITHM

The general algorithm which has been programmed for the IBM 7030
has the following outline.

1. The data matrix is read in along with relevant parameters des-
cribing the data and options to be taken by the program.

2. If a starting configuration is to be supplied, it is read in.
Otherwise the program calculates the initial configuration using the correla-
tional approach described on pages 16 & 17 above. In the case of an off-
diagonal matrix the coordinates of the column points are estimated by
setting them equal to those of the row points to which they are closest as
suggested4 by the data matrix.

3., Distances from each row point to each column point are calculated

using the Euclidean formula

n
dij = kzl (xik - Xjk) .
4. For each row point the best fitting monotonic function is calculated

for distances to the column pointss.

5. The quantity S4 is calculated to evaluate the configuration, If
sufficiently low, the procedure is terminated. Otherwise the program continues.
6. A new configuration is calculated using ('") and the program returns
to step 3.
If the program exceeds a preset number of iterations or convergence

becomes too slow, calculations are terminated, the configuration is rotated

The word "suggested" is used intentionally since we ar> in the awkward
position of comparing proximity measures across rows.

For an efficient algorithm to calculate the best fitting monotonic func-
tion see Kruskal (1964b, p. 127).
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