Figure 2.2 Perfect Spatial Voting in One Dimension
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Leg islators X1 Xo X3 X4 X5 Xg

Cutpoints 2, 2o 23 Z4 Zs
1 Y N N N N N
2 Y Y N N N N
3 Y Y Y N N N
4 Y Y Y Y N N
5 Y Y Y Y Y N

Figure 2.3 Recovering the Legislator Points

Roll Calls
Legislators 1 3 5 4 2

Five N Y N N N
Six N Y Y N N
Four N Y N Y N
One Y N N Y Y
Two N N N Y Y
Three N N N Y N
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Appendix: Proof that if Voting Is Perfect in One Dimension, then the First
Eigenvector Extracted from the Double-Centered Transformed Agreement Score

Matrix has the Same Rank Ordering as the True Data

Notation and Definitions

Let the true ideal points of the p legislators be denoted as X,, X,, ..., X,.
Without loss of generality, let the ordering of the true ideal points of the legislators on the

dimension from left to right be:
X, <X, <X, <. X,

Let g be the number of non-unanimous roll call votes with q > 0 and let the
cutting point for the j™ roll call be Z;. Voting is perfect. That is, all legislators are sincere
voters, and all legislators to the left of a cutting point vote for the same alternative and all
legislators to right of a cutting point vote for the opposite alternative. For example, if all
legislators to the left of Z; vote “Nay”, then all legislators to the right of Z; vote “Yea”.
Without loss of generality we can assume that every legislator to the left of Z; votes
“Yea” and every legislator to the right of Z; votes “Nay”. That is, the “polarity” of the
roll call does not affect the analysis below.

Let k; be the number of cutting points between legislators 1 and 2, k, be the
number of cutting points between legislators 2 and 3, and so on, with kp.1 being the

number of cutting points between legislators p-1 and p. Hence

-1

q=>k >0 (A2.1)
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The agreement score between two legislators is the simple proportion of roll calls

in which they vote for the same outcome. Hence the agreement score between legislators

1and 2 is simply

q-k , because 1 and 2 agree on all roll calls except for those with
q
cutting points between them. Similarly, the agreement score between legislators 1 and 3

q'kl K q'k

is 2 and the agreement score between legislators 2 and 3 is 2. In general,
q
for two legislators X, and X, where a=b, the agreement score is:
b-1
q- Zki
A, = L (A2.2)

The agreement scores can be treated as Euclidean distances by simply subtracting them

from 1. Thatis:

b-1 b-1
q- ki ki
d,=1-A,=1-—= = &= (A2.3)
q q

These definitions allow me to state the following theorem:
Theorem: If Voting Is Perfect in One Dimension, then the First Eigenvector
Extracted from the Double-Centered p by p Matrix of Squared Distances from
Equation (A2.3) Has at Least the Same Weak Monotone Rank Ordering as the

Legislators.

Proof: The d’s computed from equation (A2.3) satisfy the three axioms of distance: they

are non-negative because by (A2.2) 0 < Agp < 150 that 0 < dgy, < 1; they are symmetric,



dap = dpa ; and they satisfy the triangle inequality. To see this, consider any triplet of

points X, < X, < Xc. The distances are:

d, = = and d, = ‘= and d, = =2

q q “ q
Hence
Oac = dap + dic (A2.4)

Because all the triangle inequalities are equalities, in Euclidean geometry this implies

that X,, Xp, and X. all lie on a straight line (Borg and Groenen, 1997, ch. 18).

Because all the triangle inequalities are equalities and all triplets of points lie on a

straight line, the distances computed from (A2.2) can be directly written as distances

between points:

K
dy, = 'aq =X, - X, | (A2.5)

g

where d,, = 0. The p by p matrix of squared distances is:

0 (X, =X)L (X - X))
(Xl'xz)2 0 I (xp'xz)2

D= ' ' ' ' (A2.6)

(XX (K- X)E .0

To recover the X’s, simply double-center D and perform an eigenvalue-
eigenvector decomposition. The first eigenvector is the solution. To see this:

C 2 C 2

Zdu in

Let the mean of the j column of D be d? = =— = X? -2X X + =
p p



p p
P p b
224 22X > Xz
Let the mean of the matrix D be d*> = =212 = =L ox? 4+ =L
p p p
p
Xi
Where X = =L js the mean of the X;.
p

The matrix D is double-centered as follows: from each element subtract the row

mean, subtract the column mean, add the matrix mean, and divide by —2; that is,

y - (@ -di-di rd)
ij )

= (X; - X)(X; - X)

This produces the p by p symmetric positive semidefinite matrix Y:

_Xl_
X, -

X X

Y= X=X X=X . X - X] (A2.7)

X, - X

Because Y is symmetric with a rank of one, its eigenvalue-eigenvector decomposition is

simply:

Y = Mlup U, Uy (A2.8)

Hence the solution is



X, - X] [u, |

X, - X u,
- \/7:

X, - )_(_ U, |

Because, without loss of generality, the origin can be placed at zero, that is, X =0, the

solution can also be written as:

= | (A2.9)

X Uy

The points from (A2.9) exactly reproduce the distances in (A2.4), the agreement scores in
(A2.2), and the original roll call votes. In addition, note that the mirror image of the

points in (A2.9) (a multiplication by -1) also exactly reproduces the original roll call

votes. Furthermore, for any pair of true legislator ideal points X, and X, with one or
more midpoints between them, X < Z; < X, , the recovered legislator ideal points must

have the same ordering, X, < Xp. If there are no midpoints between X, and X, -- that

i, their roll call voting pattern is identical -- then the recovered legislator ideal points are
identical; X; = X,. Hence, if there are cutting points between every pair of adjacent
legislators, that is, k; > 1 for i=1, ..., p-1, then the rank ordering of the recovered ideal
points is the same as the true rank ordering. If some of the k; = 0, then the recovered
ideal points have a weak monotone transformation of the true rank ordering (in other

words there are ties, some legislators have the same recovered ideal points).



This completes the proof. QED.
Discussion
Note that an interval-level set of points is recovered. But this is an artifact of the

distribution of cutting points. For example, if k; >k, , then di» > dy3 even if the true
coordinates X, X,, X, were evenly spaced. With perfect one-dimensional voting, the

legislator configuration is identified only up to a weak monotone transformation of the
true rank ordering.

The rank ordering can also be recovered directly from the matrix Y given in
(A2.7) without performing an eigenvalue-eigenvector decomposition. Note that, with the
origin at zero, the diagonal elements of Y are simply the legislator coordinates squared.
The rank ordering can be recovered by taking the square root of the first diagonal element
and then dividing through the first row of the matrix. Note that this sets X; > 0 and the
remaining points are identified vis a vis Xj.

Within the field of psychometrics the basic result of this theorem is well known.
In Guttman scaling a perfect simplex is essentially the same as a perfect roll call matrix in
one dimension. However, a perfect simplex has a natural polarity — for example, the
“Yeas” are always on the same side of the cutting points. The theorem above is very
similar to Schonemann’s (1970) solution for the perfect simplex problem. His solution
builds upon Guttman’s (1954) analysis of the problem. To my knowledge, no one has
stated the result in the form that | did above. Namely, as the solution to a roll call voting

problem.



Compute the p by p agreement score matrix

Convert the agreement score matrix into a matrix of squared distances
Double-center the matrix of squared distances

Perform an eigenvalue-eigenvector decomposition of the Double-
centered transformed agreement score matrix. The first eigenvector is

the solution.



Figure 2.4 The Effect of the Number of Cutting points
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Figure 2.5 Interest Group Ratings in One Dimension

Liberal Conservative

Pl o +1
Legislators ADA X1 X X3 X4 Xz X X7 ... Xp_l Xp
CUtpO ints Z1 Zo 23 Z4s ...Zp

Figure 2.6 Unfolded Interest Group Ratings

Liberal Conservative

S o +1
Leg islators X3 Xy ADA Xo X4 X5 Xg X7 ... Xp_l Xp
CUtpO ints Z1 Zo 23 Za Zs ... Zpy
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Relationship Between Simple Quadratic Utility Model and the
Simple IRT Model
In the quadratic utility model, the utility of the i"" legislator for the Yea and Nay

alternatives is simply the negative of the squared distance from the legislator’s ideal point
to the outcomes:
Uy =-(X; - 0,)? and Ujp = -(X; - O,,)°

In the spatial voting model, if Ui, > U;, the legislator votes Yea. Stated another way, if
the difference, Uiy - Uin , is positive, the legislator votes Yea. Algebraically:
Uy -Uin= -(X; - 0,)° +(X, -0,,)" = 2X,0,, - 0% -2X,0,, + 0%, =

2X,(0y, - Oy,) - (Ofy - OJ?n) =2y,(X; -Z)) (2.5)
where y; = (O,, - O;,) and 2Z; = (Ojy + Ojn). With perfect voting the legislator and the

chosen outcome are on the same side of the midpoint. Hence:
if 2y; (Xi — Z;) > 0 Vote Yea
(2.6)
if 2y; (X; — Z;) <0 Vote Nay
If Ojy > Oy, this decision rule simplifies to:
if Xi—Z;>0 Vote Yea
if Xi — Z; <0 Vote Nay
The corresponding formulation for the Rasch model is:
if B;Xi - o > 0 correct answer

(2.7)
if B;X; - aj < 0 wrong answer

where B; is the item discrimination parameter and o, is the difficulty parameter. If the

test question is clearly stated so that there is no ambiguity, then by convention ; = 1. A
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poorly constructed and ambiguous question would have a 3j near 0. «; is simply the level
of difficulty on the latent dimension.

Let Yj; be the ith individual’s response (1 = correct; 0 = incorrect) to the jth
question (item). Rasch (1960) showed that for the one parameter IRT model that
individual and question parameters can be separately estimated if the errors in the
responses are independent. That is, the individual and question parameters “can be
distinguished and estimated separately” (van Schuur, 2003). To see this, assume that:

e(xi -a;)

P(YI =l| Xi,(x., : =1)=—__a_
j i 1+ e(X. i)
Note that this is the standard logit probability formula.
Now, let m be another index for the number of questions (items). Consider the

ratio:

i) 1
P(Y;=1nY,,=0) |1+ et |:1+ elimen) :| i) (@m-0;)

= — — e
P(YIJ =0nN Yim = 1) 1 e(Xi_am) e(xi —0p)
14 7 || 14 gimom)

Taking the natural log yields:
Om — (XJ

Which is independent of individual i.
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