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Figure 2.2  Perfect Spatial Voting in One Dimension 

 

            -1---------0--------+1 

Legislators  X1  X2  X3  X4  X5  X6  

Cutpoints      Z1  Z2  Z3  Z4  Z5    

____________________________________ 

     1       Y   N   N   N   N   N   

     2       Y   Y   N   N   N   N   

     3       Y   Y   Y   N   N   N   

     4       Y   Y   Y   Y   N   N   

          5       Y   Y   Y   Y   Y   N   

     ____________________________________  

 

Figure 2.3  Recovering the Legislator Points 

 

                 Roll Calls 

Legislators  1   3   5   4   2  
________________________________ 

   Five      N   Y   N   N   N  

   Six       N   Y   Y   N   N  

   Four      N   Y   N   Y   N  

   One       Y   N   N   Y   Y  

   Two       N   N   N   Y   Y  

        Three     N   N   N   Y   N  

     _______________________________ 
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   Agreement Scores                 Squared Distances 

1.0                            .00 

 .8  1.0                       .04  .00 

 .8   .6  1.0                  .04  .16  .00 

 .2   .0   .4  1.0             .64 1.00  .36  .00 

 .4   .2   .6   .8  1.0        .36  .64  .16  .04  .00 

 .6   .4   .8   .6   .8  1.0   .16  .36  .04  .16  .04  .00 

 

     Double-Centered Matrix        Legislator Points 

   .09                                  X5 =  .3   

   .15  .25                             X6 =  .5   

   .03  .05  .01                        X4 =  .1   

  -.15 -.25 -.05  .25                   X1 = -.5   

  -.09 -.15 -.03  .15  .09              X2 = -.3   

  -.03 -.05 -.01  .05  .03  .01         X3 = -.1   
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Appendix:  Proof that if Voting Is Perfect in One Dimension, then the First 

Eigenvector Extracted from the Double-Centered Transformed Agreement Score 

Matrix has the Same Rank Ordering as the True Data 

 

Notation and Definitions 

Let the true ideal points of the p legislators be denoted as 1X , 2X ,  …, pX .  

Without loss of generality, let the ordering of the true ideal points of the legislators on the 

dimension from left to right be: 

1X  ≤ 2X  ≤ 3X  ≤ …≤ pX  

Let q be the number of non-unanimous roll call votes with q > 0 and let the 

cutting point for the jth roll call be Zj.  Voting is perfect.  That is, all legislators are sincere 

voters, and all legislators to the left of a cutting point vote for the same alternative and all 

legislators to right of a cutting point vote for the opposite alternative.  For example, if all 

legislators to the left of Zj vote “Nay”, then all legislators to the right of Zj vote “Yea”.  

Without loss of generality we can assume that every legislator to the left of Zj votes 

“Yea” and every legislator to the right of Zj votes “Nay”.  That is, the “polarity” of the 

roll call does not affect the analysis below. 

Let k1 be the number of cutting points between legislators 1 and 2, k2 be the 

number of cutting points between legislators 2 and 3, and so on, with kp-1 being the 

number of cutting points between legislators p-1 and p.  Hence 

p-1

i
i=1

q = k  > 0∑                                                     (A2.1) 
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 The agreement score between two legislators is the simple proportion of roll calls 

in which they vote for the same outcome.  Hence the agreement score between legislators 

1 and 2 is simply 1q - k
q

, because 1 and 2 agree on all roll calls except for those with 

cutting points between them.  Similarly, the agreement score between legislators 1 and 3 

is 1 2q - k  - k
q

 and the agreement score between legislators 2 and 3 is 2q - k
q

.  In general, 

for two legislators Xa and Xb where a≠b, the agreement score is: 

b-1

i
i=a

ab

q - k
A  = 

q

∑
                              (A2.2) 

The agreement scores can be treated as Euclidean distances by simply subtracting them 

from 1.  That is: 

b-1 b-1

i i
i=a i=a

ab ab

q - k k
d  = 1 - A  = 1 -  = 

q q

∑ ∑
                                (A2.3) 

 These definitions allow me to state the following theorem: 

Theorem:  If Voting Is Perfect in One Dimension, then the First Eigenvector 

Extracted from the Double-Centered p by p Matrix of Squared Distances from 

Equation (A2.3) Has at Least the Same Weak Monotone Rank Ordering as the 

Legislators. 

 

Proof:  The d’s computed from equation (A2.3) satisfy the three axioms of distance:  they 

are non-negative because by (A2.2) 0 ≤ Aab ≤ 1 so that 0 ≤ dab ≤ 1; they are symmetric, 
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dab = dba ; and they satisfy the triangle inequality.  To see this, consider any triplet of 

points Xa < Xb < Xc.  The distances are: 

b-1

i
i=a

ab

k
d  =  

q

∑
   and   

c-1

i
i=b

bc

k
d  =  

q

∑
   and   

c-1

i
i=a

ac

k
d  =  

q

∑
 

Hence  

dac = dab + dbc                                  (A2.4) 

Because all the triangle inequalities are equalities, in Euclidean geometry this implies 

that Xa, Xb, and Xc all lie on a straight line (Borg and Groenen, 1997, ch. 18). 

 Because all the triangle inequalities are equalities and all triplets of points lie on a 

straight line, the distances computed from (A2.2) can be directly written as distances 

between points: 

b-1

i
i=a

ab a b

k
d  =   = |X  - X |

q

∑
                         (A2.5) 

where daa = 0.  The p by p matrix of squared distances is: 

D =

2 2
2 1 p 1

2 2
1 2 p 2

2 2
1 p 2 p

0 (X  - X ) . . . (X  - X )
(X  - X ) 0 . . . (X  - X )

. . . .
 

. . . .

. . . .
(X  - X ) (X  - X ) . . . 0

 
 
 
 
 
 
 
 
  

              (A2.6) 

To recover the X’s, simply double-center D and perform an eigenvalue-

eigenvector decomposition.  The first eigenvector is the solution.  To see this: 

Let the mean of the jth column of D be 

p p
2 2
ij i

2 2i=1 i=1
. j j j

d X
d  =  = X  -2X X + 

p p

∑ ∑
. 
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Let the mean of the ith row of D be 

p p
2 2
ij j

j=1 j=12 2
i. i i

d X
d  = = X  -2X X + 

p p

∑ ∑
. 

Let the mean of the matrix D be 

p p p p
2 2 2
ij j i

i 1 j=1 j=12 2 i=1
.. 2

d X X
d  = =  -2X  + 

p p p
=
∑∑ ∑ ∑

. 

Where 

p

i
i=1

X
X = 

p

∑
is the mean of the Xi. 

 The matrix D is double-centered as follows:  from each element subtract the row 

mean, subtract the column mean, add the matrix mean, and divide by –2; that is,  

 
  

 
2 2 2 2
ij .j i. ..

ij i j

(d  - d  - d  + d )
y  =  = (X  - X)(X  - X)

2−
 

 
This produces the p by p symmetric positive semidefinite matrix Y: 

Y =

1

2

1 2 p

p

X  X
X  X

.
 X  X X  X . . . X  X

.

.
X  X

− 
 − 
 

 − − −   
 
 
 

−  

                     (A2.7) 

Because Y is symmetric with a rank of one, its eigenvalue-eigenvector decomposition is 

simply: 

Y =

1

2

1 1 2 p

p

u
u
.

u u . . . u
.
.

u

 
 
 
 

 λ   
 
 
 
  

                           (A2.8) 

Hence the solution is 
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11

22

1

pp

uX  X
uX  X
..

 =  
..
..

uX  X

−   
   −   
   

λ   
   
   
   

−      

 

Because, without loss of generality, the origin can be placed at zero, that is, X = 0 , the 

solution can also be written as: 

1 1

2 2

1

p p

X u
X u
. .

 =  
. .
. .

X u

   
   
   
   

λ   
   
   
   
      

                             (A2.9) 

The points from (A2.9) exactly reproduce the distances in (A2.4), the agreement scores in 

(A2.2), and the original roll call votes.  In addition, note that the mirror image of the 

points in (A2.9) (a multiplication by -1) also exactly reproduces the original roll call 

votes.  Furthermore, for any pair of true legislator ideal points aX  and bX  with one or 

more midpoints between them, aX  < Zj < bX , the recovered legislator ideal points must 

have the same ordering, Xa < Xb.  If there are no midpoints between aX  and bX  -- that 

is, their roll call voting pattern is identical -- then the recovered legislator ideal points are 

identical; Xa = Xb.  Hence, if there are cutting points between every pair of adjacent 

legislators, that is, ki ≥ 1 for i=1, …, p-1, then the rank ordering of the recovered ideal 

points is the same as the true rank ordering.  If some of the ki = 0, then the recovered 

ideal points have a weak monotone transformation of the true rank ordering (in other 

words there are ties, some legislators have the same recovered ideal points).    
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 This completes the proof.  QED. 

Discussion 

 Note that an interval-level set of points is recovered.  But this is an artifact of the 

distribution of cutting points.  For example, if k1 > k2 , then d12  > d23 even if the true 

coordinates 1X , 2X , 3X  were evenly spaced.  With perfect one-dimensional voting, the 

legislator configuration is identified only up to a weak monotone transformation of the 

true rank ordering.  

 The rank ordering can also be recovered directly from the matrix Y given in 

(A2.7) without performing an eigenvalue-eigenvector decomposition.  Note that, with the 

origin at zero, the diagonal elements of Y are simply the legislator coordinates squared.  

The rank ordering can be recovered by taking the square root of the first diagonal element 

and then dividing through the first row of the matrix.  Note that this sets X1 > 0 and the 

remaining points are identified vis a vis X1. 

 Within the field of psychometrics the basic result of this theorem is well known.  

In Guttman scaling a perfect simplex is essentially the same as a perfect roll call matrix in 

one dimension.  However, a perfect simplex has a natural polarity – for example, the 

“Yeas” are always on the same side of the cutting points.  The theorem above is very 

similar to Schonemann’s (1970) solution for the perfect simplex problem.  His solution 

builds upon Guttman’s (1954) analysis of the problem.  To my knowledge, no one has 

stated the result in the form that I did above.  Namely, as the solution to a roll call voting 

problem. 
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1. Compute the p by p agreement score matrix 

2. Convert the agreement score matrix into a matrix of squared distances 

3. Double-center the matrix of squared distances 

4. Perform an eigenvalue-eigenvector decomposition of the Double-

centered transformed agreement score matrix.  The first eigenvector is 

the solution. 
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Figure 2.4  The Effect of the Number of Cutting points 

 

   Agreement Scores             

1.000                           

 .875 1.000                     

 .875  .750 1.000               

 .125  .000  .250 1.000         

 .625  .500  .750  .500 1.000   

 .750  .625  .875  .375  .875 1.000  

    Squared Distances 

 0.000000 

 0.015625  0.000000 

 0.015625  0.062525  0.000000 

 0.765625  1.000000  0.562500  0.000000 

 0.140625  0.250000  0.062500  0.250000  0.000000 

 0.062525  0.140625  0.015625  0.390625  0.015625  0.000000 

 

     Double-Centered Matrix    

 0.062500 

 0.093750  0.140625  

 0.031250  0.046875  0.015625  

-0.156250 -0.234375 -0.078125  0.390625  

-0.031250 -0.046875 -0.015625  0.078125  0.015625  

 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

            Legislator Points 

                X5 =  .250 

                X6 =  .375 

                X4 =  .125 

                X1 = -.625 

                X2 = -.125 

                X3 =  .000 
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Figure 2.5  Interest Group Ratings in One Dimension 

 

            Liberal                   Conservative 

            -1-----------------0----------------+1 

Legislators ADA X1  X2  X3  X4  X5  X6  X7 ... Xp-1 Xp 

Cutpoints             Z1      Z2  Z3  Z4 ...Z20   

 

 

Figure 2.6  Unfolded Interest Group Ratings 

 

            Liberal                    Conservative 

            -1-----------------0----------------+1 

Legislators  X3  X1 ADA X2  X4  X5  X6  X7 ... Xp-1 Xp 

Cutpoints      Z1         Z2  Z3  Z4  Z5 ... Z20   
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Relationship Between Simple Quadratic Utility Model and the 

Simple IRT Model 

 In the quadratic utility model, the utility of the ith legislator for the Yea and Nay 

alternatives is simply the negative of the squared distance from the legislator’s ideal point 

to the outcomes: 

Uiy = - 2
i jy(X  - O )  and Uin = - 2

i jn(X  - O )  

In the spatial voting model, if Uiy > Uin the legislator votes Yea.  Stated another way, if 

the difference, Uiy - Uin , is positive, the legislator votes Yea.  Algebraically: 

Uiy - Uin =  - 2
i jy(X  - O ) + 2

i jn(X  - O )  = 2 2
i jy jy i jn jn2X O  - O  -2X O  + O  = 

2 2
i jy jn jy jn j i j2X (O  - O ) - (O  - O ) = 2 (X  - Z )γ             (2.5)  

where j jy jn = (O  - O )γ  and 2Zj = (Ojy + Ojn).  With perfect voting the legislator and the 

chosen outcome are on the same side of the midpoint.  Hence: 

if 2γj (Xi – Zj) > 0 Vote Yea 
                                   (2.6) 

if 2γj (Xi – Zj) < 0 Vote Nay 
 
If Ojy  > Ojn this decision rule simplifies to: 

if Xi – Zj > 0 Vote Yea 
      

if Xi – Zj < 0 Vote Nay 
 
The corresponding formulation for the Rasch model is: 

if βjXi - αj > 0 correct answer 
      (2.7) 

if βjXi - αj < 0 wrong answer 
 

where βj is the item discrimination parameter and αj is the difficulty parameter.  If the 

test question is clearly stated so that there is no ambiguity, then by convention βj = 1.  A 
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poorly constructed and ambiguous question would have a βj near 0.  αj is simply the level 

of difficulty on the latent dimension.   

 Let Yij be the ith individual’s response (1 = correct; 0 = incorrect) to the jth 

question (item).  Rasch (1960) showed that for the one parameter IRT model that 

individual and question parameters can be separately estimated if the errors in the 

responses are independent.  That is, the individual and question parameters “can be 

distinguished and estimated separately” (van Schuur, 2003).  To see this, assume that: 

1 1
1

i j

i j

(X )

ij i j j (X )
eP(Y | X , , )

e

−α

−α= α β = =
+

  

Note that this is the standard logit probability formula. 

 Now, let m be another index for the number of questions (items).  Consider the 

ratio: 

1
11 0 1

0 1 1
11

i j

i j i m i j
m j

i mi m

i j i m

(X )

(X ) (X ) (X )
( )ij im

(X )(X )
ij im

(X ) (X )

e
eP(Y Y ) e e e

P(Y Y ) ee
ee

−α

−α −α −α
α −α

−α−α

−α −α

   
   += ∩ = +   = = =

= ∩ =   
   ++   

 

Taking the natural log yields: 

 αm – αj 

Which is independent of individual i. 
 


