
 1

Gary King’s Electoral Responsiveness and Partisan Bias Model
8 October 2009

ρ = Electoral Responsiveness

λ1 , λ2 , … , λJ are the Partisan Bias parameters

si = Total number of seats available at election i=1, … , n

Sij = Random Variable = number of Seats allocated to party j after election i

sij = Observed realization of Sij -- Number of seats held by party j after election i

νij = Vote share party j in election i

Model of Responsiveness and Partisan Bias

Expected Proportion of Seats for Party j =
j

k

λ ρ
j

J
λ ρ

k
k=1

e ν

e ν

The seat allocation is assumed to be a multinomial:

1) (Si1 , Si2 , … , SiJi) ~ iJi1 i2 i

i

i

ss si
i1 i2 iJ

i1 i2 iJ

s !
π π ...π

s !s ! ... s !

2) where
j

i

k

λ ρ
ij j

ij J
λ ρi

k
k=1

E(S) e ν
π =

s
e ν





The Likelihood function is:

3) iJi1 i2 i

i

i

ss si
1 2 J i1 i2 iJ

1 i1 i2 iJ

s !
L(ρ, λ , λ , ... , λ | s,) π π ...π

s !s ! ... s !

n

i






The natural log of the Likelihood function is (after dropping constant terms):

4)
i i

k ik

J Jn
λ ν

1 2 J ij j ij
i=1 j=1 k=1

(ρ, λ , λ , ... , λ | s,) s λ +ρ (ν) nnL n n e    
   

  
    

The Posterior distribution is:

 2

5) 1 2 J 1 2 J 1 2 Jξ(ρ, λ , λ , ... , λ | s,) L(ρ, λ , λ , ... , λ | s,)ξ()ξ(λ)ξ(λ)...ξ(λ)  

Taking the natural log of the Posterior:

6) i i

k ik

1 2 J

J Jn
λ ν

ij j ij 1 2 J
i=1 j=1 k=1

ξ(ρ, λ , λ , ... , λ | s,)

 s λ +ρ (ν) ξ(ρ)+ ξ(λ)+ ξ(λ)+...+ ξ(λ)n

n

n n e n n n n







  
   

  
  



     

Now, consider the effect of uninformative prior distributions for the parameters. For

example, suppose:

2 2

jξ(λ) N(0, σ), with 1000 

then

7)
2
j

j 2

λ
ξ(λ) = - (2π)

2σ
n n   

Throwing away the constant the real contribution to 1 2 Jξ(ρ, λ , λ , ... , λ | s,)n  is simply

2
j

2

λ

2σ
 which vanishes for large σ2. Consequently, the standard MLE using

1 2 J(ρ, λ , λ , ... , λ | s,)nL  is essentially the same as the solution for

1 2 Jξ(ρ, λ , λ , ... , λ | s,)n  . Namely, it is easier to simply use a classical equation solver

with numerical derivatives to solve 1 2 Jξ(ρ, λ , λ , ... , λ | s,)n  rather than Gibbs or

Metropolis-Hastings.

 3

KING_ENGLAND_ROYCE.ODC

model
 {

 # PRIORS
 bias[1]<-0
 for (k in 2 : K) { bias[k] ~ dnorm(0,0.00001)} # vague priors
 # Loop around elections:
 rho ~ dexp(1)

 # LIKELIHOOD
 for (i in 1 : I) { # loop around elections

 # Multinomial model
 X[i,1:K] ~ dmulti(p[i,1:K] , n[i])
 n[i] <- sum(X[i,])
 for (k in 1:K) { # loop around parties
 p[i,k] <- phi[i,k] / sum(phi[i,])
 log(phi[i,k]) <- bias[k] + rho*log(V[i,k])

 }
 }
 }

 }

Data
list(I = 12, K = 3,
 X = structure(.Data = c(
300, 315, 12,
325, 295, 9,
345, 277, 8,
365, 258, 7,
304, 317, 9,
253, 364, 13,
330, 288, 12,
297, 301, 37,
277, 319, 39,
339, 269, 27,
397, 209, 45,
376, 229, 45
), .Dim = c(12, 3)),
V = structure(.Data = c(
.4341994, .4610934, .1047072,
.4797144, .4877813, .0325043,
.4974225, .4635792, .0389983,
.4935235, .4384425, .0680339,
.4339797, .4413256, .1246946,
.4187992, .4803503, .1008505,
.4637579, .430723, .1055191,
.3788168, .3715876, .2495956,
.3584408, .3925122, .249047,
.4387356, .3693695, .1918949,
.4242528, .2757294, .3000178,
.423, .308, .269), .Dim = c(12, 3))

 4

)

Inits

list(bias = c(NA, 0, 0),
 rho = 0)

 5

KING_ENGLAND_ROYCE_2.ODC

model
{

 # PRIORS
 bias[1]<-0
 for (k in 2 : K) { bias[k] ~ dnorm(0,0.00001)} # vague priors
 rho ~ dnorm(0,.0001)I(0,)

 # LIKELIHOOD
 for (i in 1 : I) # loop around elections
 {

 # Multinomial model
 X[i,1:K] ~ dmulti(p[i,1:K] , n[i])
 n[i] <- sum(X[i,])
 for (k in 1:K) # loop around parties
 {
 p[i,k] <- phi[i,k] / sum(phi[i,])
 log(phi[i,k]) <- bias[k] + rho*log(V[i,k])
 }
 }
 }

Data
list(I = 12, K = 3,
 X = structure(.Data = c(
300, 315, 12,
325, 295, 9,
345, 277, 8,
365, 258, 7,
304, 317, 9,
253, 364, 13,
330, 288, 12,
297, 301, 37,
277, 319, 39,
339, 269, 27,
397, 209, 45,
376, 229, 45
), .Dim = c(12, 3)),
V = structure(.Data = c(
.4341994, .4610934, .1047072,
.4797144, .4877813, .0325043,
.4974225, .4635792, .0389983,
.4935235, .4384425, .0680339,
.4339797, .4413256, .1246946,
.4187992, .4803503, .1008505,
.4637579, .430723, .1055191,
.3788168, .3715876, .2495956,
.3584408, .3925122, .249047,
.4387356, .3693695, .1918949,
.4242528, .2757294, .3000178,
.423, .308, .269), .Dim = c(12, 3))
)

 6

Inits

list(bias = c(NA, 0, 0),
 rho = 0)

 7

king_england_royce_bayes_2.r

king_england_royce.r -- King 1990 likelihood estimation, england
By Royce Carroll and Keith Poole May 2005. Revised July 2006;
November 2009.

rm(list=ls(all=TRUE))
library(MASS)

&&&
FUNCTION CALLED BY OPTIM(...) Below

*** Calculate Log-Likelihood ***

fr <- function(rho){
rho_0 <- rho[1]
lambda[1] <- 0.0
lambda[2] <- rho[2]
lambda[3] <- rho[3]

i <- 1
logL <- 0.0
while (i <= nelection) {
 rhox <- rho_0
 k <- 1
 logterm <- 0.0
 while (k <= nparty) {

Calculate constant term

 logterm <- logterm + exp(lambda[k] + rhox*log(TT[i,k]))
 k <- k + 1
 }
 j <- 1
 while (j <= nparty){

Calculate Row

 logL <- logL + T[i,j]*(lambda[j] + rhox*log(TT[i,j]) -
log(logterm))
 j <- j + 1
 }
 i <- i + 1
 }
#return(-logL)

Multiply Likelihood Distribution by Prior 1.0*exp(1.0*rhox) -- When
the logs are taken this simply becomes rhox and is subtracted from
the Likelihood function. Note that the priors on the lambdas are
normals with variance = 100,000 so they wash out!

return(-logL-rhox)
}

 8

&&&
&&&&&&&&&

SEATS

T <-
matrix(scan("C:/bayes_beach/england_seats.txt",0),ncol=3,byrow=TRUE)

nrow <- length(T[,1])
ncol <- length(T[1,])

Set Parameter Values

nparty <- ncol
nelection <- nrow

rho <- NULL
rhomax <- NULL
ncounts <- NULL
xhessian <- NULL

lambda <- rep(0,nparty)

lambda[1] <- 0.0
lambda[2] <- -0.05
lambda[3] <- -1.6

size <- NULL

VOTE SHARES

TT <-
matrix(scan("C:/bayes_beach/england_vote_shares.txt",0),ncol=3,byrow=TR
UE)

*** Calculate Log-Likelihood ***

#rho_0 <- 1.14
rho[1] <- 1.10
&&&&
rho[2] <- -.05
rho[3] <- -1.6
nparam <- 3

DO MAXIMUM LIKELIHOOD MAXIMIZATION HERE

model <- optim(c(0.00,.005,0.0),fr,hessian=TRUE)

Log-Likelihood (inverse -- optim minimizes!!)

 9

logLmax <- model$value

Parameter Estimates

rhomax <- model$par

convergence an integer code.
0 indicates successful convergence.

nconverge <- model$convergence

counts
A two-element integer vector giving the number of calls to
fn and gr respectively.
ncounts <- model$counts

xhessian <- model$hessian

Perform Eigenvalue-Eigenvector Decomposition of Hessian Matrix

ev <- eigen(xhessian)

The Two Lines Below Put the Eigenvalues in a
Diagonal Matrix -- The first one creates an
identity matrix and the second command puts
the singular values on the diagonal

Lambda <- diag(nparam)
diag(Lambda) <- ev$val

Compute U*LAMBDA*U' for check below

XX <- ev$vec %*% Lambda %*% t(ev$vec)

Compute Fit of decomposition -- This is just the sum of squared
error -- Note that ssesvd should be zero!

i <- 0
j <- 0
sseeig <- 0
while (i < nparam) {
 i <- i + 1
 j <- 0
 while (j < nparam) {
 j <- j + 1
 sseeig <- sseeig + (xhessian[i,j] - XX[i,j])**2
 }
}

LambdaInv <- diag(nparam)
diag(LambdaInv) <- 1/ev$val

Compute U*[(LAMBDA)-1]*U' for check below

XXInv <- ev$vec %*% LambdaInv %*% t(ev$vec)

results <- rep(0,nparam*4)

 10

dim(results) <- c(nparam,4)

results[,1] <- rhomax
results[,2] <- sqrt(diag(XXInv))
results[,3] <- rhomax/sqrt(diag(XXInv))
results[,4] <- pt(-abs(results[,3]),nrow-nparam-1)*2

