Gary King’s Electoral Responsiveness and Partisan Bias Model
8 October 2009

p = Electoral Responsiveness

A, A2, ..., Ay are the Partisan Bias parameters

s; = Total number of seats available at election i=1, ... ,n

Sij = Random Variable = number of Seats allocated to party j after election 1

sij = Observed realization of S;j -- Number of seats held by party j after election i
vij = Vote share party j in election i

Model of Responsiveness and Partisan Bias

eV
Expected Proportion of Seats for Party j = J—J

M y,P
2
k=1

The seat allocation is assumed to be a multinomial:

s.!

it Sil Si Sis;
1) (Sil , S, e, Siji) ~ —' ' 'n“‘ni;...nﬂi
Silsy! sy
ES,) eV
ij J

2) where ;= =
Si Z A §,P
e vy
k=1
The Likelihood function is:

n

s/! _ o
3) L(p5 >\’17 >\'25 SR >\'_]| S, V) ZH—IS'niSllln?;“'nisJ:‘
i,

i1 Sylsy,! ... s,

The natural log of the Likelihood function is (after dropping constant terms):

i=1 j=1

n Ji Ji
4) InL(p, Ay Ky s Mgl s, V)= DD s, {xﬁpzn(vﬁ)—zn(ZeW“”vik ﬂ
k=1

The Posterior distribution is:

5) &> My Mgy s Myl s, VY Llp, Ay Ay s Ay 8, VIG(P)E(A)DE(R,)--E(A,)
Taking the natural log of the Posterior:
e, Ay Mgy o s]S, V) =
6) n J J;
D sy {x itpin(vy)—/n (Z gt Mie H + INE(P)FINER) HNEL, I+ +ME(X,)
k=1

=1 j=1
Now, consider the effect of uninformative prior distributions for the parameters. For

example, suppose:

&) ~N(0, %), with o =1000
then

7) &) =-(2n0) -

2
7‘j
262

Throwing away the constant the real contribution to /n&(p, A, A, ... , A,| s, v) is simply

2
i
20

- which vanishes for large o°. Consequently, the standard MLE using

nL(p, A, Ay, ..., Ay| s, V) is essentially the same as the solution for
&, A, Ay, ..., Ay|'s, v). Namely, it is easier to simply use a classical equation solver
with numerical derivatives to solve /n&(p, A,, A,, ... , A, s, v) rather than Gibbs or

Metropolis-Hastings.

KING_ENGLAND_ROYCE.ODC

model

{

PRIORS

bias[1]<-0

for (k in 2 : K) { bias[k] ~ dnorm(0,0.00001)} # vague priors
Loop around elections:

rho ~ dexp(1)

LIKELIHOOD
for (i in1 : 1) { # loop around elections

Multinomial model
X[i,1:K] ~ dmulti(p[i,1:K] , n[i]D)
n[i] <- sum(X[i,1)

for (k in 1:K) { # loop around parties
pLi.K] <- phi[i,k] 7 sum(phi[i,])
log(phi[i,k]) <- bias[k] + rho*log(V[i,k])
}
}
}
}
Data
list(1 =12, K =3,

X = structure(.Data = c(
300, 315, 12,
325, 295, 9,
345, 277, 8,
365, 258, 7,
304, 317, 9,
253, 364, 13,
330, 288, 12,
297, 301, 37,
277, 319, 39,
339, 269, 27,
397, 209, 45,
376, 229, 45
), -Dim = c(12, 3)),
V = structure(.Data = c(
-4341994, -4610934, .1047072,
4797144, .4877813, .0325043,
-4974225, -4635792, -0389983,
-4935235, .4384425, -0680339,
-4339797, -4413256, -1246946,
.4187992, -4803503, -1008505,
-4637579, .430723, -1055191,
.3788168, -3715876, -2495956,
-3584408, -3925122, .249047,
-4387356, -3693695, -1918949,
.4242528, .2757294, -3000178,
.423, .308, .269), .Dim = c(12, 3))

Inits

list(bias = c(NA, 0, 0),
rho = 0)

KING_ENGLAND_ROYCE_2.0DC

model

PRIORS
bias[1]<-0
for (k in 2 : K) { bias[k] ~ dnorm(0,0.00001)} # vague priors
rho ~ dnorm(0, .0001)1(0,)

LIKELIHOOD
for (i in1 : 1) # loop around elections

{

Multinomial model
X[i,1:K] ~ dmulti(p[i,1:K] , n[i]D)
nLi] <- sum(X[i,1)
for (k in 1:K) # loop around parties

{
pLi.k] <- phi[i,k] 7 sum(phi[i,])
log(phi[i,k]) <- bias[k] + rho*log(V[i,k])
3
s
Data
list(1 =12, K = 3,

X = structure(.Data = c(
300, 315, 12,
325, 295, 9,
345, 277, 8,
365, 258, 7,
304, 317, 9,
253, 364, 13,
330, 288, 12,
297, 301, 37,
277, 319, 39,
339, 269, 27,
397, 209, 45,
376, 229, 45
), -Dim = c(12, 3)),
V = structure(.Data = c(
-4341994, -4610934, -1047072,
4797144, .4877813, .0325043,
.4974225, -4635792, .0389983,
-4935235, .4384425, -0680339,
.4339797, -4413256, -1246946,
-4187992, -4803503, -1008505,
-4637579, -430723, -1055191,
.3788168, .3715876, .2495956,
-3584408, .3925122, .249047,
-4387356, -3693695, -1918949,
.4242528, .2757294, -3000178,
.423, .308, .269), .Dim = c(12, 3))

Inits

list(bias = c(NA, 0, 0),
rho = 0)

king_england_royce bayes 2.r

H*

king_england_royce.r -- King 1990 likelihood estimation, england
By Royce Carroll and Keith Poole May 2005. Revised July 2006;
November 2009.

H H#*

rm(list=Is(al I=TRUE))
library(MASS)

8888885888858 8886888888868888688588886888E8&EEEESEEEEEEEEE&&E&&EE
FUNCTION CALLED BY OPTIM(...) Below

HHHH*

*** Calculate Log-Likelihood ***
AEAEAAAXAXAAAAAAXAAAAXAAAXAAAAAAAXAAAAAAAXAAAXAXAAXK
fr <- function(rho){
rho 0 <- rho[1]
lambda[1] <- 0.0
lambda[2] <- rho[2]
lambda[3] <- rho[3]
#
i <-1
logL <- 0.0
while (1 <= nelection) {
rhox <- rho_ 0O
k <-1
logterm <- 0.0
while (k <= nparty) {

#
Calculate constant term
#
logterm <- logterm + exp(lambda[k] + rhox*log(TT[i,k]))
k <- k+1
}
Jj<-1
while (J <= nparty){
#
Calculate Row
#
logL <- logL + TLi,jl*(lambda[j] + rhox*log(TT[i,.j1) -
log(logterm))
J<-j3+1
}

i<-1+1

}
#return(-loglL)
Multiply Likelihood Distribution by Prior 1.0*exp(1.0*rhox) -- When
the logs are taken this simply becomes rhox and is subtracted from
the Likelihood function. Note that the priors on the lambdas are
normals with variance = 100,000 so they wash out!

eturn(-logL-rhox)

s HHFBHHH

#

8888888888888 88EEEEEEEEEEEEEEEEEELEEEEEEEEEEEEEEELEEEEEEEEEEELEEE&EEEES
8&8&88&8888E&

#

SEATS

#

T <-
matrix(scan('C:/bayes_beach/england_seats.txt",0),ncol=3,byrow=TRUE)
#

#

nrow <- length(T[,1])
ncol <- length(T[1,.])

#

Set Parameter Values
#

nparty <- ncol
nelection <- nrow

#

#

rho <- NULL

rhomax <- NULL

ncounts <- NULL
Xhessian <- NULL

#

lambda <- rep(0,nparty)
#

lambda[1] <- 0.0
lambda[2] <- -0.05
lambda[3] <- -1.6

#

size <- NULL

#

#

VOTE SHARES

#

TT <-
matrix(scan(''C:/bayes_beach/england _vote shares.txt",0),ncol=3,byrow=TR
UE)

#

#

*** Calculate Log-Likelihood ***
#

#rho 0 <- 1.14

rho[1] <- 1.10

&8&&&

rho[2] <- -.05

rho[3] <- -1.6

nparam <- 3

#

EEAEXEAXEAXAXAXAXAXAXAAXAXAAXAXAAXAXAAAXAAAAAXAAAXAAAXAAAX)X

DO MAXIMUM LIKELIHOOD MAXIMIZATION HERE

AR R o S R e R R S R R R AR A R A R A R R AR R R e e R R R

#
model <- optim(c(0.00,.005,0.0),fr,hessian=TRUE)
#
Log-Likelihood (inverse -- optim minimizes!!)
#

logLmax <- model$value

#

Parameter Estimates

#

rhomax <- model$par

#

convergence an integer code.

0 indicates successful convergence.
#

nconverge <- model$convergence

#

counts

A two-element integer vector giving the number of calls to
fn and gr respectively.

ncounts <- model$counts

#

xhessian <- model$hessian

#

Perform Eigenvalue-Eigenvector Decomposition of Hessian Matrix
#
ev <- eigen(xhessian)

H*

The Two Lines Below Put the Eigenvalues in a
Diagonal Matrix -- The first one creates an
identity matrix and the second command puts
the singular values on the diagonal

#

Lambda <- diag(nparam)
diag(Lambda) <- ev$val
#

Compute U*LAMBDA*U" for check below
#
XX <- ev$vec %*% Lambda %*% t(ev$vec)

#
Compute Fit of decomposition -- This is just the sum of squared
error -- Note that ssesvd should be zero!
#
i <-0
Jj<-0
sseeig <- 0
while (i < nparam) {
i <-1+1
j<-0
while (J < nparam) {
J<-j3+1
sseeig <- sseeig + (xXhessian[i,j] - XX[i,j])**2
3
3
#

Lambdalnv <- diag(nparam)
diag(Lambdalnv) <- 1/ev$val

#

Compute U*[(LAMBDA)-1]*U" for check below
#

XXInv <- ev$vec %*% Lambdalnv %*% t(ev$vec)
#

results <- rep(0,nparam*4)

dim(results) <- c(nparam,4)

#

results[,1] <- rhomax

results[,2] <- sgrt(diag(XXInv))

results[,3] <- rhomax/sqrt(diag(XXInv))

results[,4] <- pt(-abs(results[,3]),nrow-nparam-1)*2
#

10

