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ρ = Electoral Responsiveness 
 
λ1 , λ2 , … , λJ  are the Partisan Bias parameters 
 
si = Total number of seats available at election i=1, … , n 
 
Sij = Random Variable = number of Seats allocated to party j after election i 
 
sij = Observed realization of Sij -- Number of seats held by party j after election i 
 
νij = Vote share party j in election i 
 

Model of Responsiveness and Partisan Bias 
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The seat allocation is assumed to be a multinomial: 
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The Likelihood function is: 
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The natural log of the Likelihood function is (after dropping constant terms): 
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The Posterior distribution is: 
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Taking the natural log of the Posterior: 
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Now, consider the effect of uninformative prior distributions for the parameters.  For 

example, suppose: 
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jξ(λ ) N(0, σ ), with 1000    
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Throwing away the constant the real contribution to 1 2 Jξ(ρ, λ , λ , ... , λ | s, )n   is simply 
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  which vanishes for large σ2.  Consequently, the standard MLE using 

1 2 J(ρ, λ , λ , ... , λ | s, )nL   is essentially the same as the solution for 

1 2 Jξ(ρ, λ , λ , ... , λ | s, )n  .  Namely, it is easier to simply use a classical equation solver 

with numerical derivatives to solve 1 2 Jξ(ρ, λ , λ , ... , λ | s, )n   rather than Gibbs or 

Metropolis-Hastings. 
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KING_ENGLAND_ROYCE.ODC 

model 
 { 
   
 #  PRIORS 
   bias[1]<-0 
   for (k in 2 : K) { bias[k] ~ dnorm(0,0.00001)} # vague priors 
   # Loop around elections: 
   rho ~ dexp(1) 
    
  # LIKELIHOOD  
   for (i in 1 : I) {     # loop around elections 
  
      # Multinomial model 
         X[i,1:K] ~ dmulti( p[i,1:K] , n[i]) 
         n[i] <- sum(X[i,]) 
         for (k in 1:K) {     # loop around parties 
            p[i,k]        <-  phi[i,k] / sum(phi[i,]) 
            log(phi[i,k]) <- bias[k] + rho*log(V[i,k])  
 
           } 
    }   
  } 
  
 }   
  
Data 
list( I   = 12,   K   = 3, 
 X = structure(.Data = c( 
300, 315, 12, 
325, 295, 9, 
345, 277, 8, 
365, 258, 7, 
304, 317, 9, 
253, 364, 13, 
330, 288, 12, 
297, 301, 37, 
277, 319, 39, 
339, 269, 27, 
397, 209, 45, 
376, 229, 45 
), .Dim = c(12, 3)), 
V = structure(.Data = c( 
.4341994, .4610934, .1047072, 
.4797144, .4877813, .0325043, 
.4974225, .4635792, .0389983, 
.4935235, .4384425, .0680339, 
.4339797, .4413256, .1246946, 
.4187992, .4803503, .1008505, 
.4637579, .430723, .1055191, 
.3788168, .3715876, .2495956, 
.3584408, .3925122, .249047, 
.4387356, .3693695, .1918949, 
.4242528, .2757294, .3000178, 
.423, .308, .269), .Dim = c(12, 3)) 
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) 
         
        
Inits 
 
list(bias = c(NA, 0, 0), 
     rho =  0) 
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KING_ENGLAND_ROYCE_2.ODC 

model 
{ 
   
 #  PRIORS 
   bias[1]<-0 
   for (k in 2 : K) { bias[k] ~ dnorm(0,0.00001)} # vague priors 
   rho ~ dnorm(0,.0001)I(0,) 
    
  # LIKELIHOOD  
   for (i in 1 : I)    # loop around elections 
   {     
  
      # Multinomial model 
         X[i,1:K] ~ dmulti( p[i,1:K] , n[i]) 
         n[i] <- sum(X[i,]) 
         for (k in 1:K)    # loop around parties  
            {     
            p[i,k]        <-  phi[i,k] / sum(phi[i,]) 
            log(phi[i,k]) <- bias[k] + rho*log(V[i,k])  
           } 
      }   
  } 
   
Data 
list( I   = 12,   K   = 3, 
 X = structure(.Data = c( 
300, 315, 12, 
325, 295, 9, 
345, 277, 8, 
365, 258, 7, 
304, 317, 9, 
253, 364, 13, 
330, 288, 12, 
297, 301, 37, 
277, 319, 39, 
339, 269, 27, 
397, 209, 45, 
376, 229, 45 
), .Dim = c(12, 3)), 
V = structure(.Data = c( 
.4341994, .4610934, .1047072, 
.4797144, .4877813, .0325043, 
.4974225, .4635792, .0389983, 
.4935235, .4384425, .0680339, 
.4339797, .4413256, .1246946, 
.4187992, .4803503, .1008505, 
.4637579, .430723, .1055191, 
.3788168, .3715876, .2495956, 
.3584408, .3925122, .249047, 
.4387356, .3693695, .1918949, 
.4242528, .2757294, .3000178, 
.423, .308, .269), .Dim = c(12, 3)) 
) 
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Inits 
 
list(bias = c(NA, 0, 0), 
     rho =  0) 
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king_england_royce_bayes_2.r 

# 
# king_england_royce.r -- King 1990 likelihood estimation, england 
# By Royce Carroll and Keith Poole May 2005. Revised July 2006; 
November 2009. 
# 
# 
rm(list=ls(all=TRUE)) 
library(MASS) 
# 
#  &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
#    FUNCTION CALLED BY OPTIM(...) Below 
# 
# *** Calculate Log-Likelihood *** 
# ***************************************** 
fr <- function(rho){ 
rho_0 <- rho[1] 
lambda[1] <- 0.0 
lambda[2] <- rho[2] 
lambda[3] <- rho[3] 
# 
i <- 1 
logL <- 0.0 
while (i <= nelection) { 
   rhox <- rho_0  
   k <- 1 
   logterm <- 0.0 
   while (k <= nparty) { 
# 
#  Calculate constant term 
# 
       logterm <- logterm + exp(lambda[k] + rhox*log(TT[i,k])) 
       k <- k + 1 
       } 
   j <- 1 
   while (j <= nparty){ 
# 
#  Calculate Row 
# 
       logL <- logL + T[i,j]*(lambda[j] + rhox*log(TT[i,j]) - 
log(logterm)) 
       j <- j + 1 
       } 
   i <- i + 1 
   } 
#return(-logL) 
# 
#  Multiply Likelihood Distribution by Prior 1.0*exp(1.0*rhox) -- When 
#   the logs are taken this simply becomes rhox and is subtracted from 
#   the Likelihood function.  Note that the priors on the lambdas are 
#   normals with variance = 100,000 so they wash out! 
# 
return(-logL-rhox) 
} 
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# 
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&& 
# 
#  SEATS 
# 
T <- 
matrix(scan("C:/bayes_beach/england_seats.txt",0),ncol=3,byrow=TRUE) 
# 
# 
nrow <- length(T[,1]) 
ncol <- length(T[1,]) 
# 
#  Set Parameter Values 
# 
nparty <- ncol 
nelection <- nrow 
# 
# 
rho <- NULL 
rhomax <- NULL 
ncounts <- NULL 
xhessian <- NULL 
# 
lambda <- rep(0,nparty) 
# 
lambda[1] <- 0.0 
lambda[2] <- -0.05 
lambda[3] <- -1.6 
# 
size <- NULL 
# 
# 
#  VOTE SHARES 
# 
TT <- 
matrix(scan("C:/bayes_beach/england_vote_shares.txt",0),ncol=3,byrow=TR
UE) 
# 
# 
# *** Calculate Log-Likelihood *** 
# 
#rho_0 <- 1.14 
rho[1] <- 1.10 
# &&&& 
rho[2] <- -.05 
rho[3] <- -1.6 
nparam <- 3 
# 
# ******************************************* 
#  DO MAXIMUM LIKELIHOOD MAXIMIZATION HERE 
# ******************************************* 
# 
model <- optim(c(0.00,.005,0.0),fr,hessian=TRUE) 
# 
#  Log-Likelihood (inverse -- optim minimizes!!) 
# 
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logLmax <- model$value 
# 
#  Parameter Estimates 
# 
rhomax <- model$par 
# 
# convergence an integer code.  
#     0 indicates successful convergence.  
# 
nconverge <- model$convergence 
# 
# counts  
#  A two-element integer vector giving the number of calls to  
#    fn and gr respectively.  
ncounts <- model$counts 
# 
xhessian <- model$hessian 
# 
#  Perform Eigenvalue-Eigenvector Decomposition of Hessian Matrix 
# 
ev <- eigen(xhessian) 
# 
#  The Two Lines Below Put the Eigenvalues in a 
#    Diagonal Matrix -- The first one creates an  
#    identity matrix and the second command puts 
#    the singular values on the diagonal 
# 
Lambda <- diag(nparam) 
diag(Lambda) <- ev$val 
# 
#  Compute U*LAMBDA*U' for check below 
# 
XX <- ev$vec %*% Lambda %*% t(ev$vec) 
# 
# Compute Fit of decomposition -- This is just the sum of squared 
#  error -- Note that ssesvd should be zero! 
# 
i <- 0 
j <- 0 
sseeig <- 0 
while (i < nparam) { 
  i <- i + 1 
  j <- 0 
  while (j < nparam) { 
     j <- j + 1 
     sseeig <- sseeig + (xhessian[i,j] - XX[i,j])**2 
  } 
} 
# 
LambdaInv <- diag(nparam) 
diag(LambdaInv) <- 1/ev$val 
# 
#  Compute U*[(LAMBDA)-1]*U' for check below 
# 
XXInv <- ev$vec %*% LambdaInv %*% t(ev$vec) 
# 
results <- rep(0,nparam*4) 
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dim(results) <- c(nparam,4) 
# 
results[,1] <- rhomax 
results[,2] <- sqrt(diag(XXInv)) 
results[,3] <- rhomax/sqrt(diag(XXInv)) 
results[,4] <- pt(-abs(results[,3]),nrow-nparam-1)*2 
# 
 


