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A multidimensional theory of similarity in which the mental representations of stimulus
objects are assumed to be drawn from multivariate normal distributions is described. A
distance-based similarity function is defined and the expected value of similarity is derived.
This theory is the basis for a possible explanation of paradoxical results with highly similar
stimuli regarding the form of the similarity function and the distance metric. A stochastic
approach to multidimensional scaling based on same-different judgments is demonstrated
using artificial and real data sets. The theory of similarity presented is used as a basis for a
Thurstonian extension of Shepard's model of identification performance.  © (988 Academic
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[NTRODUCTION

The goal of this paper is to describe a multidimensioal theory of similarity and
to show how estimates of the model parameters assumed to be involved in making
similarity judgments can be obtained. From the viewpoint of a mathematical
model, mental representations of physical objects (or their analogous in lower
organisms) can be treated as n-dimensional vectors with particular distributional
propertics and multidimensional parameters. Thurstone (1927) provided a
framework for thinking about scaling relative psychological magnitudes by
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specifying the statistical parameters of an internal unidimensional continuum.
Hefner (1958) extended Thurstone’s ideas to the multivariate case in which the
psychological magnitudes are represented as n-dimensional random vectors, where
the values on each dimension have been drawn at random from independent
normal distributions of equal variance. This means that the variances across dimen-
sions are equal, but that the variances for different stimuli may not be. Techniques
to obtain maximum likelihood estimates of the location and variability parameters
of Hefner's model have been developed by Zinnes and MacKay (1983, 1987).
Choice probabilitics are not monotonically related to the distances between the
means of the distributions under the assumptions of the Hefner model, when
variances between stimulus points are unequal. MacKay (1987) has extended the
model to cases in which the psychological variance on each dimension may be
unequal for each stimulus.

Ashby and Perrin (1988) proposed a multidimensional version of signal detection
theory in an attempt to find a common theoretical basis for similarity and recogni-
tion (identification). In this approach, the probability of confusing one stimulus
object with another depends on the degree of overlap of the representational dis-
tributions. For a given momentary value there are particular probabilities that the
variate was drawn at random from either of the two distributions of interest and
the subject’s identification decision will depend on the ratio of these two
probabilities. This model does not involve a distance-based similarity function.

De Soete, Carroll, and DeSarbo (1986) described an unfolding model, the
wandering ideal point (WIP) model, for paired comparisons data. Their model dif-
fers from Hefner's in that the values corresponding to the stimuli are fixed, only the
ideal points have multivariate normal distributions, and the variance-covariance
matrix of the ideal point distribution need not be an identity matrix. In the WIP
model it is assumed that a subject will prefer one stimulus object over another
whenever the momentary Euclidean distance between the preferred stimulus and
the (wandering) ideal point is smaller than the equivalent distance for the non-
preferred stimulus. This model appears to have much in common with a
Thurstonian variant of Torgerson's method of triads (Ennis, Mullen, & Frijters,
1988). In Torgerson’s method of triads, the subject’s task is to decide which of two
stimuli is most like a third preselected stimulus. This third stimulus could be
replaced by the ideal point from the WIP model. The stimuli evoke psychological
magnitudes which arc assumed to be modelled as if they were drawn [rom inde-
pendent normal distributions. In the Thurstonian variant of Torgerson’s method of
triads, P, represents the probability that stimulus 5; will be perceived to be more
similar to S, than S,. If S, is replaced by the subject’s ideal point, then ;7 is the
probability that S, will be preferred to S,. This preference model is more general
than the WIP model because the momentary psychological magnitudes evoked
by the stimuli are not fixed. However, Ennis, Mullen, and Frijters (1988) only
presented the unidimensional model for Torgerson's method of triads.

An attempt to find a multidimensional extension of Torgerson’s method of triads
might usefully begin with a multidimensional model for the duo-trio method (Ennis
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& Mullen, 1986b; Mullen and Ennis, 1987; Mullen, Ennis, de Doncker, & Kapenga,
1988), which is itsell a special case of the Thurstonian variant of Torgerson’s
method of triads. The duo-trio method involves three stimuli, two ol which are
physicochemically identical. The subject’s task is to decide which of two (possibly)
dilferent stimuli is most like a third preselected stimulus. It is assumed that the
momentary psychological magnitudes corresponding to the three stimuli have been
drawn from multivariate normal distributions (two independently drawn from one
distribution, the third from a possibly different distribution). Another tri-stimulus
grouping technique, the triangular method (in which the subject’s task is to select
the most different stimuius), has also been modelled under distributional assump-
tions similar to the duo-trio method (Ennis & Mullen, 1986b, Mullen & Ennis,
1987; Kapenga, de Doncker, Mullen, & Ennis, 1987).

In this paper, we extend the mathematical models developed for grouping
techniques to same-different judgments and identification ‘'performance. This is
accomplished by defining an explicit distance-based similarity function from which
the expected value of similarity for confusable stimuli can be computed. We then
show how the multivariate psychological parameters corresponding to a selection of
hypothetical and real objects can be obtained.

A MULTIDIMENSIONAL THEORY OF SIMILARITY

Assumptions

Consider the case of a single pair of stimulus objects, S, and S,, which give rise
to momentary psychological values of the respective magnitudes x and y where
X' =(X{s X33 Xp)y ¥ = (F1s Y210 Va); X' indicates an n-dimensional row vector
and n is the number of psychological dimensions. The momentary psychological
values are mutually independently distributed with x having density function /(x)
and y having density function f(y). The probability densities 4(x) and A(y) are mul-
tivariate normal distributions with means p, and p, and variance-covariance
matrices V_and V. On the basis of the momentary psychological values, x and y,
the subject decides whether the stimuli are the same or different. Let z=x—y.

Let d represent the momentary distance between x and y perceived by the
subject, where

i 1/
d=[z J:kl*‘] . =l

k=1
. o .
The distance between population means is

" I/
5=[Z J#.-k—#_u-l”} . Bzl

k=1
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Let the similarity of two particular momentary psychological values be g(d). The
form of g specifies the similarity function, or the function relating similarity to
distance. IT the subject invokes a step [unction, g(d) will be 0 or | depending on the
value of d relative to some threshold value. If the subject invokes a continuous
function, then g(d) will be a value that may be different from 0 or 1. If g is con-
tinuous, g(d) should decrease as d increases. Continuous and step functions will be
considered for g.

The Continwous Function

There are many different functional forms which could be proposed for the
function, g Shepard (1987) argued in favor of an exponential decay similarity func-
tion. A flexible function which includes the exponential decay function is

gld)=exp(—d®),  a=0.

In order to satisfy the earlier stated requirement that g(d) should decrease as d
increases, o must be =0 or g(d) would become larger as d became larger. The
particular value for o may be different for different subjects and experimental
conditions, although it is conceivable that « may be a constant.

V is the variance-covariance matrix of the difference between psychological
values, z. p is a vector of dilferences between the means of the momentary
psychaological values, p, and p,.

The probability of declaring two randomly sampled psychological values from
hi(x) and A(y) to be the “same” is the expected value of g (in the absence of response
bias), or

w© ji- J-f exp| —0.5(z—p)V "(z—p)}

f("l» Vr o, }'} = _[ wa (27[ )ml JV| 172

xexpl—d*) dz, dzy---dz,, (1)

—a

where f(p, V, o, 7) represents the expected value of the similarity of the two objects.

Equation (1) can be evaluated numerically for any « and y (which defines the
metric of d), but can be simplified significantly for the case when z=2 and y =2
For this case,

S V)=V ) exp[p' (20" =Dpl, (2)

where

J=V 1421

and I is the identity matrix.
A proof of Eq. (2) is given in the Appendix.
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The Step Function

Conceptually, the step function can be handled in a way similar to that of the
continuous function, except that g(d) is either 0 or 1 depending on the value of d
relative to a threshold value, t.

If g(d)=0.5]sgn{vr—d) + 1}, where sgn is the signum function, then g(d) will be
0 when d> t (stimuli are different) and | when &<t (stimuli are the same).

The formula for calculating f(p, V, 7) is

) pon pot o cxpl—{}.s(z—ll)‘vil(z_")}
j“"’V‘T]:JU J_r"’ ) L (21)"72 |V|I,"2

x0.5{sgn(t —d)+ 1} dz, dz, - dz,. (3)

t may be a fixed value or may be drawn from a particular probability density
function and vary from trial to trial. In the examples given later, however, we
consider 1 to be fixed.

Identification and Categorization Models

Identification and categorization performance models, such as those discussed by
Nosolsky (1986), based on Shepard’s (1957) work, could be extended to deal with
stimuli whose psychological magnitudes may vary from trial to trial by formulating
the models in terms of expected values. For instance, in the case of identification
performance,

bj g(dy)

P(R S,-]=E["—:|.
( "l bo1 b gldy)

where P(R,|S,) is the probability that stimulus S, leads to response R, b, and b,
are response bias parameters, 0 < b, < 1; m is the number of stimuli; and g(d;) is the
similarity function evaluated at d,. According to this formulation of identification
decisions, the subject obtains a distance-based similarity value on each trial for the
stimulus in question (S,) and each of the memory representations of the m stimuli.
The terms in the denominator may not be independent if, for instance, the subject
uses the same momentary psychological magnitude corresponding to S, in deter-
mining each of the d, (k=1, .., m). On the other hand, before obtaining similarity
values [ gld,)] for 5, and each of the m memory representations, the subject may
obtain different psychological magnitudes correspending to S, (i.e., resampling the
stimulus distribution before referring to each memory representation). The model
given by Nosofsky (1986) for categorization can be similarly formulated. These
stochastic extensions of identification and categorization models will require more
study and elaboration and will not be pursued further here.
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EVALUATION OF CONTINUOUS AND STEP SIMILARITY FUNCTIONS

Computing

Equations (1), (2), and (3) were evaluated on a Gould 32/97 computer. Equa-
tions (1) and (3) were handled numerically using an adaptive routine by Genz and
Malik (1980) in the bivariate case. These resulls agreed to third decimal place
accuracy with Monte Carlo simulations of 100,000 trials per estimate.

When n, the number of dimensions, is equal to 2,

V= o} +03 P1O02+P2030, |
P00+ p20504 03 +03

where ! and o3 are the variances of the distributions from which x, and x, were
drawn, respectively; o3 and o are the variances of the distributions from which y,
and y, were drawn, respectively: p, is the correlation coeflicient between the dimen-
sions of h(x) and p, is the correlation coefficient between the dimensions of /i(y).

Similarity Functions and Distance Metrics

Shepard (1987) proposed the basis for a law of generalization involving the
following two ideas: first, that the probability that a response learned to stimulus
S, will be made to stimulus S, is approximately an exponential decay function of the
distance between the stimuli in a space of a certain dimensionality; second, that the
metric used to define this distance will be Euclidean when the psychological dimen-
sions are integral and city-block when they are separable. Shepard noted that the
theory applied only to experiments in which generalization is tested immediately
after a single learning trial with a novel stimulus. Shepard pointed out that with
highly similar stimuli or with delayed test stimuli, the relationship between
similarity and distance was of a Gaussian form and that the distance metric
appeared 1o be Euclidean for cases in which the theory would predict city-block.
The work of Nosofsky (1986) exemplifies this kind of result. Using highly similar
stimui, Nosofsky (1986) discussed identification and classification performance and
used a “Gaussian” function in modelling the relationship between the Euclidean
distance separating the stimulus points and similarity. With regard to Nosofsky's
results, Shepard conjectured that internal noise may make “the otherwise sharply
peaked gradient of generalization ... more nearly Gaussian.”

There were two distances defined earlier under the assumptions for the similarity
model. The distance between momentary trial psychological magnitudes was
represented by d, while the distance between the means of the distributions of psy-
chological magnitudes was 8. Nosofsky and Shepard define the distance between
the poimts representing the stimuli without psychological error and, consequently,
treat distance in a deterministic manner. This concept of distance corresponds
better to & than it does to d, since it is not expected to vary from trial to trial.

When modelling the relationship between & and f(p, V), it is instructive to
consider, for a particular similarity function and metric (x and y), the effect of the
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FiG. 1. Expected value of similarity as a function of the Euclidean distance between the means of the
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Fig. 2. Expected value of similarity as a function of the city-block distance between the means of the
distributions of psychological magnitudes for values of « of 1, 2, and 3 in the similarity function g{d)=
exp( —d?). (a) Means differ on one axis only; (b) means dilfer equally on both axes.
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multidimensional stochastic portion of the model on this relationship. Figures 1, 2a,
and 2b show that for Euclidean and city-block metrics, the relationship between &
and f(p, V) will have a modified Gaussian form for a range of similarity functions
(a=1, 2, or 3). For all of the points in these figures, it was assumed that ¢, =0, =
o= 0,=0.2 (equal variance on all dimensions for all stimuli) and that p, =p,=00
(separable dimension stimuli). [Note that, for these parameters, the relative orien-
tation of the stimulus means to each other will not affect f(p, V) when the similarity
function involves a Euclidean distance metric; but when the city-block metric is
assumed, it will.] These figures suggest, qualitatively consistent with Nosofsky's
findings, that a modified Gaussian function relating f(p, V) and & should be
expected, even if the similarity function is an exponential decay function and the
metric defining o (within-trial distance) is city-block.

Assume that subjects employ an exponential decay similarity function (x=1)
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Fic. 3. Expected value of similarity between pairs of 16 stimuli plotted against the city-block and
Euclidean distances (§) between the means of the distributions of psychological magnitudes. An
exponential decay function has been used to describe the relationship between city-block distance (d)
and within-trial similarity.

MULTIDIMENSIONAL STOCHASTIC THEORY OF SIMILARITY 457

within each trial and that the city-block distance metric is also employed (y=1).
Consider 16 stimuli whose momentary psychological magnitudes can be represented
mentally by independent multivariate normal distributions with means (0, 0),
(0.8, 1.2), (0.3,0.7), (09, L.1), (1.2,06), (0.8, 0.8), (0.1,0.5), (0.3,0.0), (0.7,0.1),
(1.1, 1.0), (0.9,0.6), (0.6,0.6), (0.4,04), (0.2,1.2), (0.9,0.1), (0.7,0.7); variances
(0.2, 0.2) for all stimuli; and correlation coefficients of zero between dimensions for
all stimuli. Imagine that the experimenter knows the location parameters (means)
for each stimulus so that the distance between means (Euclidean and city-block
metrics) can be computed. From Eq. (1) one can obtain the expected similarity
value for each pair of stimuli assuming that =1 and y=1 within each trial. It is
interesting to inquire about the relationship between & (the distance between
population means) and f(p, V) (the expected value of similarity). Figures 3a and 3b
show this relationship for this set of 16 coordinates in two dimensions. Given the
modified Gaussian form of these figures, it seems reasonable, to attempt to fit a
linear function relating In[ f(p, V)] and 52 to the data for both metric forms of 4.
Such a linear regression analysis suggests that the Euclidean metric leads to a it of
the data (r?=.98) which is at least as good as the city-block metric (r? =.95). This
conclusion might also be reached by simple inspection of the figures. Qualitatively,
at least, one can conclude that the distance metric appropriate to the function relat-
ing distance to the expected value of the similarity of pairs of stimuli, evoking
separable dimension representations, may be different from the metric employed by
subjects within individual trials. It is possible, consequently, to reconcile Nosofsky's
findings with those of Shepard’s regarding the form of the metric provided that

Mol=gl=ol=ol10, prp,=0.0,7:20
~ 2.0 g2egls ip = .
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FiG. 4. Expected value of similarity as a function of the Euclidean distance between the means of the
distributions of psychological magnitudes for different values of v when a step judgment function is
assumed.
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Shepard’s theory concerning the similarity function and the metric is applied within
trials for confusable stimuli. Specific comments on Nosofsky (1986) and Shepard
(1986, 1987) have been made (Ennis, 1988a, 1988Db).

The Step Function

Figure 4 shows the relationship between & and f{p, V) for step functions where
¢ is 2.0, 2.5, and 3.0 and where equal variances of 1.0 and correlation coefficients
of 0.0 are assumed. In order to produce self-similarity values (8 =0.0) in the 0.8-0.9
range, © should be between about 2.0 and 3.0 for this case. Although the step lunc-
tion model will make differential predictions for varying values of the stochastic
parameters, it is quite limited compared to the continuous form of g. The only way
to manipulate the rate of decrease ol f(p, V) asa function of & for a given V matrix,
for instance, is to change z. This will also have the effect of changing the predicted
probability of declaring identical objects “same.”

STOCHASTIC MULTIDIMENSIONAL SCALING

Assuming that « and y are given, we have shown how the expected value of
similarity is a function of the difference between the means of the distributions of
psychological magnitudes (p) and the variance-covariance matrix ol the difference
between psychological values (V). It should, therefore, be possible to estimate the
means and variance-covariance matrices of the psychological magnitudes corres-
ponding to a selection of objects. For the case a=2 and y=2, the means and
standard errors for 36 stimuli in two dimensions were sampled at random from dis-
tributions that yielded values of f(p, V) in the range 0.5-1.0. One of the stimuli was
assigned the mean (0, 0). All correlation coefficients were assigned the value 0.0
The matrix of 666 similarity values (all stimulus pairs including self-comparisons)
was obtained by solving Eq.(2) for the selected means and standard errors. A
modified Levenberg—Marquardt (steepest descent) algorithm was used to obtain
multidimensional parameter values for which the difference between the similarities
corresponding to the parameters obtained and the input similarities was minimum
in a least-squares sense. Let a be a vector containing the parameters to be
estimated. These are the estimates of the means and standard errors of the
distributions of interest. From a, it is simple to compute p, and V,, (the means of
differences and variance-covariance matrix of differences for stimuli 5, and S,) and,
consequently, f(p,, V,) can then be computed from Eq. (2). The function to be
minimized is

4(3)=ZZ[Pu_f(Fﬁ- vu]]21 .nrs'v
L |

where P, is the observed probability of declaring S, and S, to be “same.” A key to
solving this problem and avoiding local minima is the generation of good initial
starting values.
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The analysis was initiated with randomly generated values of the means and
assuming that all standard errors were 0.2 and that correlation coefficients were 0.0
The value of 0.2 for the standard errors was chosen because this value yields a sell-
similarity value of about 0.85, which roughly corresponded to the average diagonal
value of the same-different matrix. The parameter values at this minimum were
then used as the starting configuration for a second stage in which all standard
errors were assumed to be equal across dimensions for a particular stimulus, but
may vary across stimuli. The configuration at the minimum from stage 2 was used
as the starting configuration for the final stage in which the standard errors may
vary across both stimuli and dimensions.

The results of this analysis are given in Table 1. This table shows the means and
standard errors of the original configuration of 36 points and their corresponding
estimates. These estimates dilfer only slightly in the third decimal place from the
actual values, supporting the validity of the strategy used to reach the minimum.
The residual sum of squares at this minimum was <0.001. An attempt to estimate
all of the parameters in one stage failed to recover the original configuration. It is
interesting to note that the results reported in Table 1 were obtained without rota-
tion of the estimated configuration and are a mirror image of the original con-
figuration. This orientational uniqueness is a consequence of variance inequality.
The ability to directly interpret the results of a multidimensional scaling analysis
without the arbitrariness introduced by rotation should prove useful in identifying
the dimensions employed by subjects when comparing stimulus objects.

Differences between pairs of identical stimuli obtained from same-different
judgments can be viewed as a consequence of differences in variances on one or
more of the dimensions involved in the decision process. Ashby and Perrin (1988)
have discussed this kind of interpretation of self-similarity. There may also be
differences in self-similarity due to different numbers of psychological dimensions
involved in the judgment. Krumhansl (1978) proposed a spatial density model to
explain differences in self-similarity and asymmetrical similarities. Alternatively, it
may be possible to formulate the effects of spatial density in terms of variance
differences. Psychological magnitudes obtained from means located in a densely
populated region of the space may have been sampled from distributions with
higher variance than those located in a less densely populated area. Consequently,
sell-similarity measured in terms of f(p, V) would be lower in dense regions than in
sparse regions. This hypothesis was supported by a reanalysis of the Rothkopl
(1957) Morse code same-different matrix, as can be seen in Fig. 5.

Using the parameter estimation procedure described earlier for the artificial data
set, means and variances for the Rothkopf data were obtained assuming that =2
and y=2. Solutions in which it was assumed that the variances across dimensions
for a particular stimulus were equal and unequal were obtained. The unequal
variance model gave a slightly lower residual sum of squares than the equal variance
model, but the configurations of means for the stimuli were almost identical. For
convenience in comparing the relative variances of the stimuli, the equal variance
model was used. Figure 5 shows that the size of the standard error for a stimulus

480/32/4-8
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TABLE 1
Actual Means and Standard Errors for 36 Stimuli and
Their Estimates Obtained Using Nonlinear Least-Squares Minimization
Means Standard errors
Dimension | Dimension 2 Dimension | Dimension 2
() (2) (n (2) (n (2) (1 {2)
0.000 0.000 0.000 0.000 0.152 0.154 0.253 0.251
—0.046 —0.046 —0.235 0.234 0.182 0.184 0.240 0.238
0.059 0.059 0.149 —0.149 0.190 0.192 0.150 0.148
0.361 0.361 0.105 —0.105 0.679 0.680 0.236 0235
—0.102 ~0.103 —0.039 0.039 0.213 0215 0.382 0.381
0.000 0.000 —0.224 0.224 0.216 0.218 0.240 0.238
—0.041 —0.041 —0.113 0.113 0.238 0.240 0.211 0.209
—0.093 —0.094 —0.100 0.100 0.237 0.238 0.425 0.424
—0.314 -0314 0.117 —-0.117 0.227 0.229 0.162 0.160
—0405 —0.406 0.296 —0.295 0.286 0.288 0,173 0.170
0.144 0.144 0.101 —0.100 0.160 0,162 0.392 0.390
—-0.023 —0.023 0.142 —0.142 0.231 0.233 0.152 0.149
—0.194 —0.194 0.1l —0.111 0.150 0.153 0.170 0.168
—0.106 —0.106 —0.119 0.119 0.158 0.160 0.179 0.177
—0.281 —(.282 —0.250 0.250 0.150 0.153 0.177 0.174
0.146 0.147 —0.096 0.096 0.298 0.300 0.151 0.149
0.140 0.141 0278 —-0277 0.155 0.157 0.154 0.151
0.521 0.521 —0.138 0.138 0.150 0.153 0.217 0.215
0.095 0.096 —0.035 0.035 0.465 0.467 0.235 0.233
0.108 0.108 —0.047 0.047 0.168 0.170 0.164 0.162
—0.179 —0.179 —0.405 0405 0.588 0.590 0.186 0.183
—{0.047 —0.047 0.022 —0.022 0.330 0.332 0.272 0.271
—0.142 —0.143 0.032 —0.032 0.224 0.226 0.254 0.252
—0.099 —0.100 0.072 —0.072 0.155 0.158 0.181 0.179
—-0.077 -0.77 —0.034 0.034 0.150 0.152 0.620 0.619
0.124 0.124 0.206 —0.206 0.267 0.268 0.151 0.149
0.270 0.271 —0.154 0.154 0.155 0.158 0.210 0.208
—0.268 —0.269 0218 —0.218 0.210 0.212 0.266 0.262
0.205 0.206 0012 —0.012 0.161 0.164 0.695 0.693
0.282 0.282 —0.261 0.261 0.172 0.175 0.160 0.158
0.369 0.369 0.023 —0.023 0,171 0.174 0.152 0.150
—0.025 —0.025 0.013 —-0.013 0.559 0.561 0.156 0.154
-0.329 -0.329 0.068 —0.068 0.238 0.240 0.293 0.291
—-0.127 —0.128 0.151 —0.150 0.179 0.182 0.181 0.179
—-0.101 —0.101 —0.09 0.090 0.167 0.169 0.157 0.155
—0.368 —0.368 0207 —0.207 0.162 0.165 0.160 0,158
Note. Actual values are designated (1) and estimates (2).
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Fig. 5. The standard error on either dimension for 36 Morse code signals plotted in relation to the
average Euclidean distance between each stimulus mean and Lhe 35 other stimulus means.

distribution is related to the degree to which that stimulus is isolated from the other
stimuli in the set under study (measured by the average Euclidean distance between
a stimulus and all the other stimuli). Shepard (1963) had applied nonmetric multi-
dimensional scaling to the same Rothkopl matrix and obtained a configuration of
perceived Morse code signals. The configuration of means obtained using stochastic
multidimensional scaling was quite similar to Shepard’s configuration and would
certainly have led to the same interpretation of the dimensions (number of signal
components and the dots/dashes ratio). This result is not that surprising for this
malrix because many of the same-dilferent judgment probabilities were less than 0.5
suggesting, in the absence of response bias, that many pairs of signals were not
highly confusable. Notwithstanding these comments, this data set proved useful in
showing that some stimuli may be more precisely perceived than others and that
this precision may depend on the location of a stimulus relative to the others in the
data set. Variance differences between stimuli may explain differences in self-
similarity. It would be interesting to analyse a matrix of same-different judgments
obtained from more highly confusable objects than the Morse code signals.

When =2 and y=2 it is possible to estimate the parameters of a sample
problem rapidly without the need to use the much slower numerical methods to
evaluate Eq. (1). To include & and y as parameters to be estimated is possible, but
would require extensive numerical evaluation of Eq. (1), leading to a several
hundred-fold increase in computation time, depending on the desired accuracy of
the numerical analysis. A closed form for the special case a=2, y=2 is given in
Eq.(2) and it would be very useful to have a similar algebraic form when a=1,
= 1. This is important because the city-block metric and the exponential decay
function may be universally inherent in similarity judgments and identification deci-
sions with separable dimension stimuli.

In considering the similarity function, g, we have restricted ourselves to a par-
ticular form, exp( —d*). If g were defined as any monotonically decreasing function
of d, then it can be seen that nonmetric multidimensional scaling would be a special
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case of the more general approach described here, but in which variances are
assumed to be zero.

CONCLUSION

A multidimensional model of similarity has be described which involves a
distance-based similarity function and an assumed distribution of momentary
psychological magnitudes from which the distance is derived. Evaluation of the
same—different judgment model shows that it is possible to produce a modified
Gaussian function relating similarity to the distance between the means of the dis-
tributions of psychological magnitudes even if the within-trial similarity function is
an exponential decay function. Nosofsky's findings regarding the form of the metric
(Euclidean) for a particular set of confusable stimuli is consistent with Shepard’s
theory that the appropriate metric is city-block for separable stimuli, provided
Shepard's theory is applied at the individual trial level.

Using a nonlinear least-squares procedure, it is shown how the parameters of a
sample problem may be estimated from a matrix of hypothetical same-different
judgments. Because of uniqueness introduced by unequal variances, where such
variances exist, the multidimensional scaling analysis yields a solution configuration
that does not require rotation to interpret the psychological dimensions used by the
subject. Assuming that the judgment function is any monotonically decreasing func-
tion of the distance between the momentary within-trial psychological magnitudes,
the stochastic multidimensional scaling procedure described in this paper is a
general case which includes deterministic approaches, such as nonmetric multi-
dimensional scaling, as special cases.

APPENDIX

The momentary psychological values are x and y where X = (X, Xgg e Xph ¥ =
(P1s P2y« ¥a)i X' indicates an n-dimensional row vector and » is the number of
sensory dimensions. The momentary psychological values are mutually independ-
ently distributed with x having density function /(x) and y having density function
h(y). The probability densities i(x) and A(y) are multivariate normal distributions
with means p, and p,, where p= (ft 1, fioy s ) and pl = (s Byzy oo Hynhs and
variance—covariance matrices V, and V.

On the basis of the momentary psychological values, x and y, the subject decides
whether the stimuli are the same or different.

Let z=x—y and d represent the momentary distance between x and y perceived

by the subject, where

MULTIDIMENSIONAL STOCHASTIC THEORY OF SIMILARITY 463

V is the variance—covariance matrix of the difference between psychological values,
z. p is a vector of differences between the means of the momentary psychological

values, p, and p,.
The expected value of similarity, in the absence of response bias, is SV, o )
In an individual trial, similarity is defined as g(d), where

gld)=exp(—d™)

-on(-[ £ ]

=G(z),
_ e g = exp{ —05(z—p)'V 'z—p)}
f[ll- V, o, t)’*JA r,-f 'n--.J—'r (ZR)"/IIVP’IZ
xexp(—d“}dz,dz;---dé" "

j.-,m J: J‘v’ exp{ _Olf;:;]:fgflv‘('f_;(ZAF)}

x Glz)dz, dzy - dz,,
Consider the case when y=2, a=2,
y=2, a=2—G(z)=exp[ —(z'z)].
Since (z—p)' V '(z—p)=z'V 'z—2'V 'p—p'V 'z+p'V 7'y, then
S, V)= (2r) 22 V|72

<[ JU I exp[ —05(zdz—zb—bz+p'V'n)]dz, - dz,,

d_m

where J=V~'4+2I and b=V 'n. V7' 1, and ss' are symmetric; thus J is
symmetric.
Define the following:

4, are the n distinct eigenvalues of J (since J is symmetric),
Y, are the eigenvectors,
C=(V,, . V) and,
for any x, D¥=(c;); ¢y =4 ¢y =0, i# ]
V., ... ¥V, form an orthonormal basis; therefore
C 'JC=Dand C"TCT,
£J2=7'CC~'JCC 'z
=zCDC 'z
=(z’CD"?)(D'*C"z).
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Let
t=D'">C"z—D "*C"b
¢ =2CD"?—p'CD "2
For each z, there exists a I; such that dr;=4,dz;: thus
dt, --~dr,,=(Ali_l---i,,l”l:isl---dz,,
=|D|'"* dz, --- dz,
=|J|"?dz,---dz,.
fiw V)=@n)~ "2 V|23
x| [ o |" expl—05(t+wV " p—bIb) diy -,

= (2r) " V|2 3]~ exp[ - 0.5(n'V ' —bIb)]

o

XL exp(—lfﬂ)dl,){ 7 exp(—3/2) dr3) -+

s

xJ exp( —12/2) dt,)

=(|V13])" " exp[w(2d ' —1)nl,
where
J=V '+2L
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