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Model comparison

What is the ‘deviance’?

e For a likelihood p(y|#), we define the deviance as

D(0) = —2log p(y|0) (1)

e In WIinBUGS the quantity deviance is automatically calculated, where 0 are
the parameters that appear in the stated sampling distribution of y

e The full normalising constants for p(y|6) are included in deviance

e .g. for Binomial data y[il dbin(thetali] ,n[i]), the deviance is

~2 | > 4ilogbi + (n; —y:) 10g(1 — 6;) + log

ri



DIC slides 2006

Use of mean deviance as measure of fit

e Dempster (1974) suggested plotting posterior distribution of deviance D =
—2log p(y|0)

e Many authors suggested using posterior mean deviance D = IE[D] as a mea-
sure of fit

e Invariant to parameterisation of 6
e Robust, generally converges well
e But more complex models will fit the data better and so will have smaller D

e Need to have some measure of ‘model complexity’ to trade off against D
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Bayesian measures of model dimensionality (Spiegelhalter et al, 2002)

E9|y[d@(y7 97 g(y))]
= Ey,[-2109p(y|0)] + 2109 p(y|d(y)).

PD

If we take § = E[f|y], then

pp = “posterior mean deviance - deviance of posterior means’ .

In normal linear hierarchical models:

pp = tr(H)
where Hy = y. Hence H is the 'hat’ matrix which projects data onto fitted values.

Thus pp = > hiy = ) leverages.

In general, justification depends on asymptotic normality of posterior distribution.
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Bayesian model comparison using DIC

Natural way to compare models is to use criterion based on trade-off between
the fit of the data to the model and the corresponding complexity of the model

Spiegelhalter et al (2002) proposed a Bayesian model comparison criterion
based on this principle:

Deviance Information Criterion, DIC = ‘goodness of fit' 4+ ‘complexity’
They measure fit via the deviance
D(0) = —2log L(datalf)
Complexity measured by estimate of the ‘effective number of parameters’:
pp = Ey,[D] — D(Ey,[0])
= D —D(0);

i.e. posterior mean deviance minus deviance evaluated at the posterior mean
of the parameters

The DIC is then defined analagously to AIC as
DIC D(0) + 2pp
= D+ pp
Models with smaller DIC are better supported by the data
DIC can be monitored in WinBUGS from Inference/DIC menu
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These quantities are easy to compute in an MCMC run

Aiming for Akaike-like, cross-validatory, behaviour based on ability to make
short-term predictions of a repeat set of similar data.

Not a function of the marginal likelihood of the data, so not aiming for Bayes
factor behaviour.

Do not believe there is any ‘true’ model.
pp is not invariant to reparameterisation (subject of much criticism).
pp C€an be negative!

Alternative to pp suggested



pv-
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an alternative measure of complexity

Suppose have non-hierarchical model with weak prior

Then
D(0) ~ D(0) + x7 :

so that EE(D(9)) ~ D(0) + I (leading to pp ~ I as shown above), and
Var(D(0)) ~ 21.

Thus with negligible prior information, half the variance of the deviance is an
estimate of the number of free parameters in the model

This estimate generally turns out to be remarkably robust and accurate
Invariant to parameterisation

This might suggest using py = Var(D)/2 as an estimate of the effective num-
ber of parameters in a model in more general situations: this was originally
tried in a working paper by Spiegelhalter et al (1997), and has since been
suggested by Gelman et al (2004).



e \Working through distribution theory for simple Normal random-effects model
with I groups suggests

pv =~ pp(2 —pp/I)
, but many assumptions

e SO may expect py to be larger than pp when there is moderate shrinkage.



Schools example - Gelman et al
Exam results in 8 schools

Model D PD Var(D) pPv DIC

Common effect 55.62 1.00 1.41 0.99 56.62
Fixed effects 56.85 7.99 3.98 7.92 64.77
Random effects 55.16 2.92 2.31 2.67 58.08

In this case give similar results, even though considerable shrinkage.
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Seeds example

Random-effects logistic regression of I = 21 binomial observations, with 3 covari-
ates

Dbar Dhat pD DIC
r 100.0 87.6  12.4  112.4
pp = 12.4

3 are regression coefficients, so estimated dimensionality of 21 random effects is
0.4.

node mean sd 2.5% median 97.5), start sample
deviance 100.0 6.428 89.19 99.45 113.8 1001 10000

Hence py = Var(D)/2 = 20.7 parameters: 17.7 is estimated dimensionality of 21
random effects. Seems rather high.

pp(2 —pp/I) = 17.5, which is not a very good approximation to py
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Which plug-in estimate to use in pp?

e pp iS not invariant to reparameterisation, i.e. which estimate is used in D('é)

e WIinBUGS currently uses posterior mean of stochastic parents of 6, ie. if
there are stochastic nodes ¢ such that 6 = f(v), then D(0) = D(f(v))

e pp can be negative if posterior of ¢ is very non-normal and so f(1) does not
provide a very good estimate of 6.

e Also can get negative pp if non-log-concave sampling distribution and strong
prior-data conflict
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Example

o If § ~ UJ[0, 1], then ¢ = 0% is beta(a~1, 1).

Suppose we observe r = 1 successes out of n = 2 Bernoulli trials, so that
r ~ Bin[f, n]

Consider putting prior on 1 = 0, #° and 02°, each equivalent to uniform prior
on 6

Hence 0 = ¢/ ¢ ~ Beta(l/a, 1)

e Also consider logit(8) ~ N(0,2) (implies 6 ~ U(0,1)).

r <- 1; n<- 2 al[1l<-1 ; a[2] <- 5; a[3] <- 20
for (i in 1:3){
a.inv[il<- 1/ali]
thetali] <- pow(psilil, a.inv[i])
psilil ~ dbeta(a.inv[i] , 1)
}
ri<- r; r2<-r ; r3 <-r
rl ~ dbin(thetall],n)
r2 ~ dbin(thetal[2],n)
r3 ~ dbin(thetal3],n)
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Dbar pD  pV
Uniform 1.94 0.56 0.30
a=5 1.94 0.41 0.30
a=20 1.94 -0.39 0.30
logit 1.88 0.49 0.21

DIC

2.50
2.35
1.55
2.36
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Mean deviances (Dbar) and posteriors for all §'s are the same, but using 1 as a

plug-in is clearly a bad idea.
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Posterior distributions whose means are plugged in

psif1] sample: GOOOO

nsi[2] sample:; BOOOO
300
20001
1D.D—JL
0.0r :
oo na

nsi[3] sample:; GBOOO0
160.0F
100.0F
50.0F t
nog

-025 00 025 048 074

psi[4] sample: BOOOO

n4r
nar
n2r
01r
nog

13



DIC slides 2006

What should we do about it?

e It would be better if WinBUGS used the posterior mean of the ‘direct param-
eters' (eg those that appear in the WinBUGS distribution syntax) to give a
'plug-in’ deviance, rather than the posterior means of the stochastic parents.

e Users are free to calculate this themselves: could dump out posterior means
of ‘direct’ parameters in likelihood, then calculate deviance outside WinBUGS
or by reading posterior means in as data and checking deviance in node info

e Lesson: need to be careful with highly non-linear models, where posterior
means may not lead to good predictive estimates

e Same problem arises with mixture models

14
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DIC is allowed to be negative - not a problem!

e A probability density p(y|@) can be greater than 1 if has a small standard
deviation

e Hence a deviance can be negative, and a DIC negative
e Only differences in DIC are important: its absolute size is irrelevant
e Suppose observe data (-0.01, 0.01)

e Unknown mean (uniform prior), want to choose between three models with
c = 0.001,0.01,0.1.

Dbar Dhat pD DIC
yl 177.005 176.046 0.959 177.964
y2 -11.780 -12.740 0.961 -10.819
y3 -4.423 -5.513 1.090 -3.332

e Each correctly estimates the number of unknown parameters.

e The middle model (¢ = 0.01) has the smallest DIC, which is negative.

15



DIC slides 2006

Why won’t DIC work with mixture likelihoods?

e WIinBUGS currently ‘greys out’ DIC if the likelihood depends on any discrete
parameters

e SO cannot be used for mixture likelihoods
e Not clear what estimate to plug in for class membership indicator — mode~?

e If mixture is represented marginally (ie not using an explicit indicator for class
membership), could use 6 but could be taking mean of bimodal distribution
and get poor estimate

e Celeux et al (2003) have made many suggestions

e Can still be used if prior (random effects) is a mixture

16
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But what is the ‘likelihood’ in a hierarchical model?

O

I

Y1 YN |

The importance of ‘focus’.

17
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e Consider hierarchical model

p(y,0,v) = p(y|0)p(0|y)p(y)
p(y) = /@ p(y|0)p(6)do = /W p(yl)p(e)de

depending on whether ‘focus’ is © or V.
e The likelihood might be p(y|8) or p(y|v) depending on focus of analysis

e Prediction is not well-defined in a hierarchical model without stating the
focus, which is what remains fixed when making predictions (See later)

18
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What about alternatives for model comparison?

e DIC
DIC = D(6) + 2pp

o AIC

AIC = —2log p(y[¢) + 2py
where p, is the number of hyperparameters

e BIC

BIC = —2log p(y|¥) + py logn
An approximation to —2logp(y), where

p(y) = /@ p(y]0)p(8)do = [u p(yl)p(e)de

Depends on objective of analysis Vaida and Blanchard (2005) develop ‘conditional’
AIC for when focus is random effects - this counts parameters using the ‘hat’
matrix dimensionality p = tr(H), and so is restricted to normal linear models.

19



DIC slides 2006

e Interested in predicting Y'P with 0’s fixed?
— DIC:

— log p(Y"P|0) estimated by log p(y|0),
— penalised by 2pp

— AIC:
— integrate out 0’'s

— log p(Y"®P|¢p) estimated by log p(y|¢),
— penalised by 2k

e Interested in predicting Y marginally
— Bayes Factors:
— integrate out 6's and v L L
— log p(Y"P) estimated by log p(y), "
— NnoO penalty

e Interested in predicting Y'™P with « fixed? @
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example

Suppose the three levels of our model concerned classes within schools within
a country

Then if we were interested in predicting results of future classes in those
actual schools, then © is the focus and deviance-based methods such as DIC
are appropriate;

If we were interested in predicting results of future schools in that coun-
try, then W is the focus and marginal-likelihood methods such as AIC are
appropriate;

If we were interested in predicting results for a new country, then no param-
eters are in focus and Bayes factors are appropriate to compare models.

This suggests that Bayes factors may in many circumstances be inappropriate
measures by which to compare models
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