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CONJUGATE PRIOR DISTRIBUTIONS 

1.  Sampling From a Bernoulli Distribution:  The joint 

distribution of the sample (“Likelihood Function”) is 

proportional to a Binomial Distribution. When multiplied by 

a Beta Prior Distribution it yields a Beta Posterior 

Distribution: 
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2.  Sampling From a Poisson Distribution:  The joint 

distribution of the sample (“Likelihood Function”) 

multiplied by a Gamma Prior Distribution yield a Gamma 

Posterior Distribution: 
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3.  Sampling From a Normal Distribution:  Normal Joint 

Distribution of the Sample (“Likelihood Function”) and 
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Normal Prior Distribution yield a Normal Posterior 

Distribution: 
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Let the prior be a Normal with mean π and variance ν2: 
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Which is proportional to a Normal distribution with mean 

1µ and variance 2
1ν  where: 
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4.  Sampling From an Exponential Distribution:  Exponential 

Joint Distribution of the Sample (“Likelihood Function”) 

times a Gamma Prior Distribution yields a Gamma Posterior 

Distribution: 
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