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ABSTRACT 

 

 In this paper we show how to apply Bayesian methods to 

noisy ratio scale distances for both the classical similarities 

problem as well as the unfolding problem.  We show that Bayesian 

methods produce essentially the same point estimates as the 

classical methods developed by the Psychometricians in the 1950s 

and 1960s but the Bayesian methods are superior in that they 

provide more accurate measures of uncertainty in the data.   

Identification is non-trivial for this class of problems 

because only distances are observed so that a configuration of 

points that reproduces the distances is only identified up to a 

choice of origin and a rotation.  This can be solved by fixing 

some of the coordinates of the points but if too many points are 

held fixed then the correct posterior distribution will not be 

searched with MCMC methods.  The approach we take is to find the 

optimal solution using ―hill climbing‖ methods such as Nedler-

Mead and Powell.  The configuration of points from the 

optimizers is then used to identify the Bayesian posterior.  

Consequently, we are then able to get a complete picture of the 

parameters of interest using standard MCMC methods.   
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1. Introduction 

In this paper we take a fresh look at the classical 

similarities and unfolding problems from the Psychometrics 

literature using Bayesian methods.  Because these problems have 

been studied for 50 years or more, the solutions are known and 

various data sets have been used to calibrate a succession of 

statistical methods.  Both problems can easily be handled with 

frequentist or Bayesian models but Markov chain Monte Carlo 

(MCMC) methods must be properly constrained to yield meaningful 

results.   

The analysis of ratio scale similarities data by 

psychometricians in the 1930s through the 1960s led to the 

development of multidimensional scaling methods (MDS).  The 

psychometricians solved the general problem of representing 

relational or distance data in a spatial or geometric map where 

the points represented the stimuli and the distances between the 

points in the geometric map reproduced the observed 

distance/relational data.  The ratio scale similarities problem 

was solved by Torgerson (1952, 1958) which in turn built upon 

work done by pschometricians in the 1930s [Eckart and Young, 

(1936); Young and Householder (1938)].   

In the unfolding problem there are two sets of points – one 

representing individuals and one representing stimuli.  The 

observed distance/relational data are regarded as expressing the 
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preferences of individuals; namely, the closer a stimulus point 

is to an individual point the more the individual prefers that 

stimulus.  The unfolding problem for ratio scale data (the 

―metric unfolding problem‖) was first solved by Schönemann 

(1970). 

We first discuss the similarities problem and then we turn to 

the unfolding problem.  Because our Bayesian framework is 

essentially the same for both problems, we spend more time 

detailing our solution for the similarities problem because the 

mathematical exposition is simpler.  However, the unfolding 

problem is of greater interest because most public opinion 

survey data sets include a set of relational data questions in 

some form (―where would you place George Bush‖; ―On a scale of 

zero to 10, how would you rate John Kerry?‖; etc.).   

We begin with a discussion of Torgerson’s solution to the 

similarities problem and then we discuss the nature of the 

constraints necessary for identification.  Namely, given only 

distances, a configuration of points is defined up to a choice 

of origin and a rotation of the configuration as a whole.  The 

unfolding problem has the same set of constraints. 

There are two levels of constraints.  In two dimensions only 

three constraints are necessary to identify the global minimum 

(if least squares) or global maximum (if Log-Likelihood) for 

both similarities and unfolding.  We show this using analytical 
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and numerical Hessians.  However, there are reflections of the 

global minimum/maximum that are identical in every respect.  In 

two dimensions there are always four solutions that have full 

rank Hessians.  In one dimension there are always two solutions. 

We then proceed to a discussion of a Bayesian approach to the 

similarities and unfolding problems.  Given the above result, 

additional constraints are needed to isolate the correct 

posterior distribution.  We show a simple solution to the 

problem using a combination of classical hill climbing methods 

(Nedler and Mead, 1965; Powell, 1973) with a constrained form of 

MCMC. 

 

2.  Classical Metric Scaling 

Torgerson’s solution to the similarities problem is quite 

elegant.  First, transform the observed 

similarities/dissimilarities into squared distances.  (For 

example, if the matrix is a Pearson correlation matrix subtract 

all the entries from 1 and square the result.)  Next, double-

center the matrix of squared distances by subtracting from each 

entry in the matrix the mean of the row, the mean of the column, 

adding the mean of the matrix, and then dividing by -2.  This 

has the effect of removing the squared terms from the matrix 

leaving just the cross-product matrix (Gower, 1966).  Finally, 
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perform an eigenvalue-eigenvector decomposition to solve for the 

coordinates.   

The statistical properties of Torgerson’s solution are 

unclear.  This is due to the fact that 

similarities/dissimilarities data cannot be negative and the 

derivatives are not everywhere continuous.  For example, denote 

the observed dissimilarity (distance) as 
*

jmd  where 

*

jmd  = jmd  + jm                     (1) 

Where j and m are both indices for the stimuli; i.e., j=1,…,q; 

m=1,…,q.  Let Zjk be the j
th
 stimulus coordinate on the k

th
 

dimension, k=1,…,s, where s is the number of dimensions.  Let 
jmd  

be the Euclidean distance between stimulus j and stimulus m in 

the s-dimensional space: 

    
2

1

 = (  -  )
s

jm jk mk

k

d Z Z


                         (2) 

and 

* 2 = (0, )jm jm jmd d N                (3) 

or 

 *

2
1

1

2

1

2 2

2

1
  

(2 )

s

jm jk mk

k

d Z Z

jm e








 
   
 
 



 

The joint probability distribution of the sample is:  
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  f(D*|Zjk) =

 

 *

2
1

2
1

1
2

1
j=1 m=j+1 2 2

1
 

2

s

jm jk mk

k

d Z Zq q

e






 
   
 
 



            (4) 

Where D* is the q by q matrix of observed dissimilarities.  

Following DeGroot (1986, p. 317), if we regard f(D*|Zjk) as a 

function of the parameters for given values of the 
*

jmd then it is 

a likelihood function; that is 

L*(Zjk|D
*) =

 
1

2*

2
1 1 1

1

2

q(q-1)/2

2 2

2

1

(2 )

q q s

jm jk mk

j m j k

d Z Z

e






   

 
   
 
 

  

(5) 

Taking the log of the right hand side and dropping the 

unnecessary constants yields a standard squared error loss 

function: 

   
2

1 1
22

* *

1 1 1 1 1

q q q qs

jm jk mk jm jm

j m j k j m j

n d Z Z d d
 

      

 
       

 
 

        (6) 

The first derivatives of (6) are quite unusual as they are 

sums of line equations.  Namely, they can be written as: 

 
*

2 1  -  
q

jm

jk mk

m jjk jm

dn
Z Z

Z d





    
        
                       (7) 

 Gleason (1967) points out that all the multidimensional 

scaling methods then in use for similarities problems (Shepard, 

1962a,b; Kruskal, 1964a,b; Lingoes, 1965; Guttman, 1968) 
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employed some variant of equation (7).  The problem with the use 

of equation (7) is the ratio 

*

jm

jm

d

d
 which is undefined when Zj = Zm 

so that djm = 0.  In practice this is not a problem but it and 

the fact that distances cannot be negative means that the 

statistical properties are not clear and that the assumption 

about the error, equation (3), is dicey at best.  Nevertheless, 

finding Z’s that minimize (or maximize as in equation (6)) the 

squared error loss function is relatively easy.   

We now turn to a more realistic model of the data.  We 

assume that the observed distances,
*

jmd , are drawn from the log-

normal distribution because distances are inherently positive: 

* 2ln( ) (ln( ), )jm jmd N d                 (8) 

That is 

 
2

*

2

1
ln( ) ln( )

* 2

1

2 *2

1
( )  

(2 )

jm jmd d

jm

jm

f d e

d





 
  
 

 

Hence our likelihood function is: 

L*(Zjk|D
*)=

   
1

2*

2
1 1 1

1
ln ln1

2

q(q-1)/2 *
1 12 2

2

1 1

(2 )

q q s

jm jk mk

j m j k

d Z Zq q

j m j jm

e
d







   

  
       

  

  

   
  
 
 (9) 
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To implement our Bayesian model we use simple normal prior 

distributions for the stimuli coordinates:   

   ξ(Zjk) = 

2

22
1

2 2

1

(2 )

jkZ

e 





                      (10) 

and a simple uniform prior for the variance term: 

2 1
( ) ,  0< c < b

c
                            (11) 

where, empirically, b is no greater than 2. 

 Hence, our posterior distribution is: 

ξ(Zjk|D
*)   

1
* 2

11 12 1 21

1 1

( | ) ( ) ( )... ( ) ( )... ( ) ( )
q q

jm jm jm s qs

j m j

f Z d Z Z Z Z Z      


  

  (12) 

Taking the log of the right hand side and dropping the 

unnecessary constants: 

   
2

1
2

2 *

2
1 1 1

2

2
1 1

( 1) / 2 1
ln( ) ln ln

2 2

1
                                                          ln( ) = 

2

q q s

jm jk mk

j m j k

q s

jk

j k

q q
n d Z Z

Z c

 






   

 

  
      

  
  

 
  

 

  



  

    
1 2

2 * 2

2 2
1 1 1 1

( 1) / 2 1 1
ln( ) ln ln ln( )

2 2 2

q q q s

jm jm jk

j m j j k

q q
d d Z c

 



    

 
     

 
    (13) 

We follow standard practice of using vague priors and set 

κ=100.  In the Appendix we show the first and second derivatives 
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for (13).  In our estimation work we check the solutions with 

both numerical and analytical first and second derivatives. 

 Before turning to an example of similarities scaling we 

first discuss the identification problem inherent in 

similarities and unfolding data.  We then resume our analysis 

with the appropriate set of constraints. 

3. The Problem of Constraints 

 Assume that our dissimilarities data are squared distances 

between pairs of stimuli.  Our q by q symmetric matrix of data 

has q(q-1)/2 unique entries (we ignore the diagonal of zeroes).  

Suppose there is an exact solution; that is, a set of q points 

in s dimensions that exactly reproduces the squared distances.  

Clearly, given that we only observe the distances, it does not 

matter what origin or rotation around that origin we select as 

long as the configuration of points vis a vis one another is not 

altered.   

 With q points in s dimensions we have to solve for q*s 

parameters.  However, we can set any point to the origin – 

(0,0,…,0) – so this leaves us with q*s – s= (q-1)*s parameters.  

To pin down the configuration we need to set the rotation.  In 

general a rigid rotation of a configuration is determined by s-1 

angles from the origin.  For example, in two dimensions the 

general form of the rotation matrix is: 
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cos sin
 0 2

sin cos

 
 

 

 
    

 
              

However, note that given a specific θ we have four rotation 

matrices: 

1

cos sin

sin cos

 

 

 
   

 
 

2

cos sin

sin cos

 

 

 
   

 
 

3

cos sin

sin cos

 

 

 
   

  
 

4

cos sin

sin cos

 

 

  
   

 
 

Or 

*
1 0

 where =
0 1

 
     

 
                    (14) 

That is, given a specific θ, there are 2
s
 sign flips 

corresponding to the s columns of the rotation matrix.  With 

s=2, suppose that we have a solution Z  such that it reproduces 

our matrix of squared distances, D.  Then there are three more 

solutions corresponding to the above rotation matrices that also 

exactly reproduce D.  In general, in s dimensions, if we have a 

solution Z  that exactly reproduces the matrix of squared 

distances then there an additional 2
s
-1 solutions that exactly 

reproduce D.   

 This identification problem is very similar to that 

discussed by Rivers (2003).  He discusses the identification of 

the classical maximum likelihood factor analysis problem and 
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shows the number of restrictions necessary to get identification 

(these include fixing the origin and sign flips).  However, his 

main concern is the identification of the multidimensional IRT 

model where the data are indicators and he shows that fixing s+1 

points (or s(s+1) parameters) fully identifies the model.  Our 

result is different because we assume that we observe (noisy) 

ratio scale data.  Identification is simpler in this setting. 

4.  A Bayesian MDS Model 

To illustrate our approach to similarities scaling, we use 

agreement scores computed between members of the U.S. 90
th
 (1967-

68) Senate.  We chose the 90th Senate because it is well known 

that voting was two dimensional during this period (Poole and 

Rosenthal, 1997).  Given q roll call votes, the agreement score 

is the number of times a pair of senators vote the same way 

(Yea, Yea or Nay, Nay) divided by the number of times that they 

both voted on the same roll calls and multiplied by 100.  The 

agreement scores range from 0 to 100 with 100 indicating 

identical voting records.  Table 1 shows a few Senators and 

their agreement scores.   



 

12 
 

 

Table 1:  Agreement Scores for 90th Senate (Partial) 

JOHNSON (D-Pres)     100  61  50  52  65  70  37 ... 

SPARKMAN (D-AL)       61 100  89  50  65  85  65 ... 

HILL (D-AL)           50  89 100  53  62  78  69 ... 

GRUENING (D-AK)       52  50  53 100  76  58  43 ... 

BARTLETT (D-AK)       65  65  62  76 100  70  47 ... 

HAYDEN (D-AZ)         70  85  78  58  70 100  57 ... 

FANNIN (R-AZ)         37  65  69  43  47  57 100 ... 

 

We convert the agreement scores to distances by subtracting 

them from 100 and dividing by 50.  This is a convenient 

normalization because the estimated coordinates are usually in 

the unit hypersphere.  Note that we include President Lyndon 

Johnson in the matrix by using Congressional Quarterly’s 

presidential support roll calls.  That is, CQ indicates on a 

fair number of roll calls whether a Yea/Nay is a vote in favor 

of the President’s position.  Hence, the President can be 

treated as a Senator.  He just does not vote as often. 

To fix the origin we set Senator Hill (D-AL) at the origin 

and we fix President Johnson’s second dimension coordinate at 
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zero.  We use the Nedler-Mead (1965) amoeba method and the 

Powell (1973) method to obtain 1001 solutions from random 

starts.  The best solution and its reflections are shown in 

Figure 1.  The tokens in the plots indicate the political party 

of the member -- "D" for northern Democrat, "S" for southern 

Democrat, and "R" for Republican.  We computed both numerical 

and analytical first and second derivatives for the optimal 

solution to show that the Hessian was full rank (i.e., negative-

definite; see Appendix A2). 
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Figure 1:  Best 90th Senate Configuration and its Reflections 

 

 Of the 1001 solutions for the Bayes posterior, only 3 were 

the solution (and its reflections) shown in Figure 1.  The log-

likelihood was about -3100.0.  The value for σ
2
 was 0.1104.  The 

extreme non-linearity of the log-normal likelihood function 

meant that a large number of modes were found by the optimizers.  
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Many of these were quite close together in terms of log-

likelihood.   

 

5.  Applying MCMC to Similarities Data 

 

 In two dimensions three constraints are enough to pin down 

four identical posteriors corresponding to the sign flips.  This 

is enough so that an optimizer can find modes.  However, three 

constraints are not enough for the use of MCMC methods because 

the reflections will cause the chains to settle in around 0.0 

for all the parameters.  Clearly, if MCMC methods are to be 

applied to this problem enough constraints must be imposed to 

remove the reflections.  Four loss functions are layered over 

the hyperplane of the parameters.  One must be isolated so that 

its properties can be analyzed.   

 For small similarities problems we found that in addition 

to the origin and one fixed coordinate simply adding three sign 

constraints to the three fixed coordinates isolated a single 

posterior.  That is, keep the three constraints used to find the 

modes and then restrict three coordinates to be 

positive/negative.  This works well and it is easy to implement 

in WinBUGS by using the I(,0) or I(0,) operators. 
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 For larger problems like the 90
th
 Senate agreement scores we 

retain the origin and one fixed coordinate and then solve for 

the sign flips by computing simple correlations dimension by 

dimension between coordinates from each draw in the chain (a 

configuration of points) and the coordinates from the optimizer 

solution.  This adds four additional constraints corresponding 

to the sign flips.   

Figure 2 shows the results for the 90
th
 Senate (we adjusted 

the coordinates to -1 to +1 for presentation purposes).  We ran 

our chain out to 110,000 and treated the first 10,000 draws as 

burn-in.  The configuration is the mean of draws 10,001 to 

110,000.  The configuration is very similar to that shown in 

Figure 1.  The variance term is very precisely estimated with a 

standard deviation of 0.0026.  The standard deviations around 

the points range from about 0.08 to 0.18 with the largest being 

0.25.  Additionally, we assessed convergence using the Geweke, 

Heidelberger-Welch and Raftery and Lewis diagnostics. According 

to these diagnostics, the posteriors for all parameters meet all 

criteria for convergence.  Note that fixing three coordinates 

has the effect of "transmitting" the uncertainty associated with 

those coordinates to other points.  There is no solution for 

this.  It is just inherent in the problem. 
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Figure 2:  90th Senate Using 6 Constraints and Vague Priors  

 
 Our approach has the advantage of isolating one posterior 

distribution and then analyzing it with standard MCMC methods.  

However, we could simply fix the origin and let the chain wander 

through the (q-1)*s dimensional hyperplane and post-process the 

results by rotating each configuration in the chain back to a 

target configuration.  This approach is very similar to that 
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advocated by Oh and Raftery (2001) and Hoff, Raftery, and 

Handcock (2002).  We prefer our approach because it is 

computationally simpler and can be implemented in publicly 

available software such as WinBUGS and JAGS.  However, for the 

unfolding problem we found that a variant of the rotation method 

to work the best. In Appendix A1 we show our WinBUGS script for 

the 90
th
 Senate.  We used informed priors derived from the 

Nedler-Mead configuration to stabilize the sampler in WinBUGS.   

We now turn to a discussion of how to apply our approach to 

the unfolding problem. 

 

6.  A Bayesian Multidimensional Unfolding Model 

 

In the unfolding problem we have two sets of points – one 

for individuals and one for stimuli  We are given only the noisy 

ratio scale distances between the two sets and not the distances 

within each set.  Specifically, denote the observed distance as 

*

ijd  where 

*

ijd  = ijd  + ij                     (15) 

Where n is the number of individuals, i=1,…,n, and Xik is the i
th
 

individual coordinate on the k
th
 dimension.  As before let Zjk be 

the j
th
 stimulus coordinate on the k

th
 dimension, k=1,…,s, where s 
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is the number of dimensions.  Let 
ijd  be the Euclidean distance 

between individual i and stimulus j in the s-dimensional space: 

    
2

1

 = (  -  )
s

ij ik jk

k

d X Z


                     (16) 

As before, we assume that the observed distances,
*

ijd , are 

drawn from the log-normal distribution: 

* 2ln( ) (ln( ), )ij ijd N d                 

Which produces the likelihood function: 

L*(Xik,Zjk|D
*)=

   
2*

2
1 1 1

1
ln ln

2

nq *
1 12 2

2

1 1

(2 )

qn s

ij ik jk

i j k

d X Zqn

i j ij

e
d





  

  
    
  

  

 

  
  
 
 (17) 

We use simple normal prior distributions for the individual 

and stimuli coordinates:   

   ξ(Xik) = 

2

22

1

2 2

1

(2 )

ikX

e 





            

   ξ(Zjk) = 

2

22
1

2 2

1

(2 )

jkZ

e 





                

and a simple uniform prior for the variance term: 

2 1
( ) ,  0 < c < b

c
                         
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where b, empirically, is no greater than 2. 

 Hence, our posterior distribution is: 

ξ(Xik,Zjk|D
*)   * 2

11 11

1 1

( , | ) ( )... ( ) ( )... ( ) ( )
qn

ij ik jk ij ns qs

i j

f X Z d X X Z Z     
 

  (18) 

Taking the log of the right hand side and dropping the 

unnecessary constants: 

   
2

2
2 *

2
1 1 1

2 2

2 2
1 1 1 1

1
ln( ) ln ln

2 2

1 1
                                       ln( ) = 

2 2

qn s

ij ik jk

i j k

qn s s

ik jk

i k j k

nq
n d X Z

X Z c

 


 

  

   

  
      

  
  

  
    

   

 

 

  

    
2

2 * 2 2

2 2 2
1 1 1 1 1 1

1 1 1
ln( ) ln ln ln( )

2 2 2 2

q qn n s s

ij ij ik jk

i j i k j k

nq
d d X Z c

       

  
       

   
    (19) 

We follow standard practice of using vague priors and set 

ζ=100 and κ=100.  In the Appendix we show the first and second 

derivatives for (19).   

Our unfolding example is the classic 1968 National Election 

Study feeling thermometers.  A feeling thermometer asks 

individuals to respond to a set of stimuli (political figures in 

this case) based on their subjective views of warmth towards 

them. The thermometer ranges from 0 to 100 degrees with 100 

indicating warm and very favorable feeling, 50 indicating 

neutrality towards the political figure, and 0 indicating that 

the respondent feels cold and very unfavorable towards the 
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political figure.  The 1968 feeling thermometers have been 

analyzed by Weisberg and Rusk (1970), Wang, et al. (1975), 

Rabinowitz (1976), Cahoon, et al. (1978), Poole and Rosenthal 

(1984), and Brady (1990) with the main focus on modeling the 

latent dimensions underlying the thermometers as well as testing 

theories of spatial voting.    

In the NES 1968 survey twelve political figures were 

included in the thermometer questions: George Wallace, Hubert 

Humphrey, Richard Nixon, Eugene McCarthy, Ronald Reagan, Nelson 

Rockefeller, President Johnson, George Romney, Robert Kennedy, 

Edmund Muskie, Spiro Agnew, and Curtis LeMay.  There were 1,673 

respondents and we included in our analysis the 1,392 

respondents who rated at least five of the twelve political 

figures.  

We perform our analysis in two dimensions because previous 

analyses using optimization methods almost all find two 

dimensions in the data.  We think this is due to the 

idiosyncratic noise in the thermometers (see Abrajano and Poole, 

2011, for a discussion) and valence effects (Londregan, 2000; 

Merrill and Grofman, 1999; Adams, Merrill, and Grofman, 2005).  

A second dimension is picking up some of these effects and 

―smoothing‖ out the first dimension.  Modeling valence effects 

is difficult so we leave that for future work.  In any event, 

our aim here is to show the advantages of our Bayesian approach.  
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Namely, a properly designed Markov chain reveals much more 

information than simply the modes of a loss function. 

 Finding the optimal solution for the unfolding problem is 

difficult because of the number of parameters.  In two 

dimensions this would require a search over a 2,805 dimensional 

hyperplane.  This was impractical.  Instead, what we found to 

work well was to simply fix one candidate at the origin and 

another candidate at zero on one of the dimensions.  Holding the 

candidate points fixed, it was easy to find the optimal point 

for each respondent.  Then, holding the respondent points fixed, 

it was again easy to find the optimal points for the candidates.  

We continued this until there was no further improvement.  At 

each step we used Nedler-Mead (1965) to find the points.  We 

checked the first derivatives (see Appendix) for the starting 

configuration to be sure that our points were located on modes 

of the loss function. 

 In practice we set George Romney at the origin and Eugene 

McCarthy's second dimension coordinate at zero.  Using the 

respondent and candidate coordinates as targets we were able to 

run a slice sampler on the 1968 data.  Because the ratio of 

respondents to the candidates is so large, we found that the 

method that worked the best was to first draw the respondent 

coordinates and then the candidate coordinates.  We kept Romney 

at the origin but we did not constrain any other points because 
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we found that simply rotating the drawn configuration to the 

optimal configuration with Romney at the origin was simple and 

easy to implement.  We ran our chain to 110,000 draws with the 

first 10,000 as burn-in.  Figure 3 shows the results. 

Figure 3: 1968 Thermometer Unfolding Example 

 

 The left panel of Figure 3 shows the candidate 

configuration and the right panel shows the respondents.  We 

display those respondents who indicated that they voted for 

Humphrey, Nixon, or Wallace, as the tokens "h", "n", or "w", 

respectively.  Humphrey, Nixon, and Wallace are located near 

where their voters are concentrated.    
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 The candidates are very precisely estimated.  The largest 

standard deviation was for George Wallace's second dimension 

coordinate at 0.11.  Figure 4 shows the 100,000 draws (after 

burn-in) for the three major Presidential candidates.  All are 

unimodal and appear to be symmetric. 

 

Figure 4: Major Candidates 1968 Presidential Election 

 

 The respondents were less precisely estimated.  For 

example, Figure 5 shows the distribution of the 100,000 draws 

for the coordinates of the respondent number 2.  The 2
nd
 

respondent was a young white male Democrat.  He did not like 

Wallace, LeMay, Agnew, and Reagan (15, 30, 30, 30) but he was a 
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little warmer towards Nixon and Romney (40, 40).  He was less 

than enthused with President Johnson and Hubert Humphrey (50 and 

60) but he really liked Robert Kennedy, Nelson Rockefeller, and 

Eugene McCarthy (97, 97, 85).  His preferences roughly line up 

left to right but not entirely.  This is reflected in the 

distribution of the draws.  The draws on the first dimension are 

unimodal with a reasonable standard deviation but the draws on 

the second dimension have two modes with a large standard 

deviation.  A mode finder (optimization method) will land on one 

of the two modes whereas a Markov chain ―illuminates‖ the entire 

distribution and recovers the means.   
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Figure 5:  1968 NES Respondent 2 
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7.  Conclusion 

 In this paper we have shown how to apply Bayesian methods 

to noisy ratio scale distances for both the classical 

similarities problem as well as the unfolding problem.  Our 

approach combines the advantages of traditional mode finders and 

Bayesian MCMC.  We use the mode finders to give us a target that 

identifies (―freezes‖) the posterior for the Markov chain 

generator.   

 Our unfolding example using the 1968 candidate thermometers 

shows the power of MCMC (made possible by the speed of modern 

computers) to illuminate complex distributions.  Instead of 

modes with their associated standard deviations from the inverse 

Hessian, "painting" the entire posterior distribution allows us 

to show means and the complete distribution of the parameters.   

 Our results are preliminary.  We deliberately kept our 

models simple because our aim was to revisit older problems 

using modern methods.  We think the thermometers are an 

underutilized resource that potentially can reveal important 

information about individuals' utilities for political figures.  

Our aim here was simply to show a basic method that can be used 

as a springboard to more complex analyses.   

 



 

28 
 

 

Appendix 

A1  WINBUGS SIMILARITIES MODEL 

# 

#  MDS Model for 90th Senate--over constrained 

# 

model{ 

 

#  Fix one point 

# 

        x[8,1] <- -0.626000480 

………………  x[8,2] <-  0.46524749 

# 

# llh and sumllh monitor the log-likelihood 

# 

for (i in 1:101){ 

    llh[i,i] <- 0.0 

    for (j in i+1:102){ 

# 

#  Read in Distances rather than the similarities (makes handling missing data easier) 

# 

         dstar[i,j] ~ dlnorm(mu[i,j],tau) 

         mu[i,j] <- log(sqrt((x[i,1]-x[j,1])*(x[i,1]-x[j,1])+(x[i,2]-x[j,2])*(x[i,2]-x[j,2]))) 

         llh[i,j] <- (log(dstar[i,j])-mu[i,j])*(log(dstar[i,j])-mu[i,j]) 

         llh[j,i] <- (log(dstar[i,j])-mu[i,j])*(log(dstar[i,j])-mu[i,j]) 

    } 

} 

 

   llh[102,102] <- 0.0 

   sumllh <- sum(llh[,])  

#    

  ## priors 

  tau ~ dgamma(1,1) 

 

# 

# Informed priors placed below (not all shown) 

# 

  x[1,1] ~ dnorm(0,.1) I(0,) 

  x[1,2] ~ dnorm(0,.1) I(,0) 

  x[2,1] ~ dnorm(0,.1) I(,0) 

  x[2,2] ~ dnorm(0,.1) I(0,) 

 

...etc. etc. 

 

  x[98,1] ~ dnorm(0,.1) I(,0) 

  x[98,2] ~ dnorm(0,.1) I(0,) 

  x[99,1] ~ dnorm(0,.1) I(,0) 

  x[99,2] ~ dnorm(0,.1) I(, -0.5) 

  x[100,1] ~ dnorm(0,.1) I(,0) 

  x[100,2] ~ dnorm(0,.1) I(,-0.5) 

  x[101,1] ~ dnorm(0,.1) I(0.5,) 

  x[101,2] ~ dnorm(0,.1) I(0.2,) 

  x[102,1] ~ dnorm(0,.1) I(,-0.2) 

  x[102,2] ~ dnorm(0,.1) I(,0) 

 

} 
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A2  The Derivatives for the Log-Normal Bayesian Model 

Similarities: The first derivatives for the similarities 

problem are: 
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and 
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Hence, we get the usual result for the variance term: 
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Note that since κ
2
 is a vague prior, the practical effect is 

that at an inflection point we have 

2

2
0

jk jk

n n

Z Z

 



 
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 
.  Numerically, 

this is a handy result because it makes computing the inverse 

Hessian much easier to accomplish.  

The second derivative for the variance is: 
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Substituting (A3) into (A4) it is easy to show that 

2

2 2
0

n

 




 
 so 

that when the global maximum for the Zjk is found σ
2
 will be a 

maximum as well. 

The second derivatives for the coordinates are: 
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In more than one dimension   
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where 1,..., s  and ℓ≠k. 

Unfolding: The first derivatives for the unfolding problem 

are: 
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and 
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Hence, we get the usual result for the variance term for the 

unfolding model: 

    
2

2

1 1

1 qn
*

ij ij

i j

ˆ ln d ln d
nq


 

               (A12) 

Note that since ζ
2
 and κ

2
 are vague priors, the practical 

effect is that at an inflection point we have 
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The second derivative for the variance is: 
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Substituting (A12) into (A13) it is easy to show that 

2

2 2
0

n

 




 
 

so that when the global maximum for the Xik and Zjk is found σ
2
 

will be a maximum as well. 

The second derivatives for the coordinates are: 
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Where h=1,...,n and h≠i.  In more than one dimension  
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