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ABSTRACT

In this paper we show how to apply Bayesian methods to
noisy ratio scale distances for both the classical similarities
problem as well as the unfolding problem. We show that Bayesian
methods produce essentially the same point estimates as the
classical methods developed by the Psychometricians in the 1950s
and 1960s but the Bayesian methods are superior in that they

provide more accurate measures of uncertainty in the data.

Identification is non-trivial for this class of problems
because only distances are observed so that a configuration of
points that reproduces the distances is only identified up to a
choice of origin and a rotation. This can be solved by fixing
some of the coordinates of the points but if too many points are
held fixed then the correct posterior distribution will not be
searched with MCMC methods. The approach we take is to find the
optimal solution using “hill climbing” methods such as Nedler-
Mead and Powell. The configuration of points from the
optimizers is then used to identify the Bayesian posterior.
Consequently, we are then able to get a complete picture of the

parameters of interest using standard MCMC methods.



1. Introduction

In this paper we take a fresh look at the classical
similarities and unfolding problems from the Psychometrics
literature using Bayesian methods. Because these problems have
been studied for 50 years or more, the solutions are known and
various data sets have been used to calibrate a succession of
statistical methods. Both problems can easily be handled with
frequentist or Bayesian models but Markov chain Monte Carlo
(MCMC) methods must be properly constrained to yield meaningful
results.

The analysis of ratio scale similarities data by
psychometricians in the 1930s through the 1960s led to the
development of multidimensional scaling methods (MDS). The
psychometricians solved the general problem of representing
relational or distance data in a spatial or geometric map where
the points represented the stimuli and the distances between the
points in the geometric map reproduced the observed
distance/relational data. The ratio scale similarities problem
was solved by Torgerson (1952, 1958) which in turn built upon
work done by pschometricians in the 1930s [Eckart and Young,
(1936); Young and Householder (1938)].

In the unfolding problem there are two sets of points - one
representing individuals and one representing stimuli. The

observed distance/relational data are regarded as expressing the



preferences of individuals; namely, the closer a stimulus point
is to an individual point the more the individual prefers that
stimulus. The unfolding problem for ratio scale data (the
“metric unfolding problem”) was first solved by Schodnemann
(1970) .

We first discuss the similarities problem and then we turn to
the unfolding problem. Because our Bayesian framework is
essentially the same for both problems, we spend more time
detailing our solution for the similarities problem because the
mathematical exposition is simpler. However, the unfolding
problem is of greater interest because most public opinion
survey data sets include a set of relational data questions in
some form (“where would you place George Bush”; “On a scale of
zero to 10, how would you rate John Kerry?”; etc.).

We begin with a discussion of Torgerson’s solution to the
similarities problem and then we discuss the nature of the
constraints necessary for identification. Namely, given only
distances, a configuration of points is defined up to a choice
of origin and a rotation of the configuration as a whole. The
unfolding problem has the same set of constraints.

There are two levels of constraints. In two dimensions only
three constraints are necessary to identify the global minimum
(if least squares) or global maximum (if Log-Likelihood) for

both similarities and unfolding. We show this using analytical



and numerical Hessians. However, there are reflections of the
global minimum/maximum that are identical in every respect. In
two dimensions there are always four solutions that have full
rank Hessians. In one dimension there are always two solutions.
We then proceed to a discussion of a Bayesian approach to the
similarities and unfolding problems. Given the above result,
additional constraints are needed to isolate the correct
posterior distribution. We show a simple solution to the
problem using a combination of classical hill climbing methods
(Nedler and Mead, 1965; Powell, 1973) with a constrained form of

MCMC.

2. Classical Metric Scaling

Torgerson’s solution to the similarities problem is quite
elegant. First, transform the observed
similarities/dissimilarities into squared distances. (For
example, 1f the matrix is a Pearson correlation matrix subtract
all the entries from 1 and square the result.) Next, double-
center the matrix of squared distances by subtracting from each
entry in the matrix the mean of the row, the mean of the column,
adding the mean of the matrix, and then dividing by -2. This
has the effect of removing the squared terms from the matrix

leaving just the cross-product matrix (Gower, 1966). Finally,



perform an eigenvalue-eigenvector decomposition to solve for the

coordinates.

The statistical properties of Torgerson’s solution are
unclear. This is due to the fact that
similarities/dissimilarities data cannot be negative and the

derivatives are not everywhere continuous. For example, denote
the observed dissimilarity (distance) as d% where

dip = djp + & (1)
Where J and m are both indices for the stimuli; i.e., j=1,..,9;
m=1,..,9. Let Zj, be the j*" stimulus coordinate on the k*
dimension, k=1,..,s8, where s is the number of dimensions. Let djm

be the Euclidean distance between stimulus j and stimulus m in

the s-dimensional space:

di, = \/Z(ij - Zn)’ (2)

k=1
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The joint probability distribution of the sample is:
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Where D" is the q by g matrix of observed dissimilarities.

Following DeGroot (1986, p. 317), if we regard f(D*IZﬂ) as a
function of the parameters for given values of the d;then it is

a likelihood function; that is
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Taking the log of the right hand side and dropping the

unnecessary constants yields a standard squared error loss

function:

=3, Y.

j=1 m=j+1

2
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The first derivatives of (6) are quite unusual as they are

sums of line equations. Namely, they can be written as:

omé a |(d
=2 s L-1\(Zy - Z, (7)
) LV O
Gleason (1967) points out that all the multidimensional

scaling methods then in use for similarities problems (Shepard,

1962a,b; Kruskal, 1964a,b; Lingoes, 1965; Guttman, 1968)



employed some variant of equation (7). The problem with the use

*

of equation (7) is the ratio —* which is undefined when 2y = Zn
jm

so that dyjn = 0. In practice this is not a problem but it and
the fact that distances cannot be negative means that the
statistical properties are not clear and that the assumption
about the error, equation (3), 1is dicey at best. Nevertheless,
finding Z’s that minimize (or maximize as in equation (6)) the

squared error loss function is relatively easy.

We now turn to a more realistic model of the data. We
assume that the observed distances,d%, are drawn from the log-
normal distribution because distances are inherently positive:

* 2
In(d;,) ) N(In(d,,), o) (8)

That 1is

. — L (in(@p)-In(d )’
f(djm): 11 e( 2‘7( )j
(27o?)?d;,

Hence our likelihood function is:
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To implement our Bayesian model we use simple normal prior

distributions for the stimuli coordinates:

and a simple uniform prior for the variance term:

5(02)=%, O<c<b (11)

where, empirically, b is no greater than 2.

Hence, our posterior distribution is:

§(Zx|D7) o ﬁﬁ{f,-m(Z,-m|d}}n)}é(zn)i(zlz)---f(zls)5(221)---§(Zq5)§(02) (12)

j=1 m=j+1

Taking the log of the right hand side and dropping the

unnecessary constants:
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We follow standard practice of using vague priors and set

k=100. In the Appendix we show the first and second derivatives



for (13). 1In our estimation work we check the solutions with
both numerical and analytical first and second derivatives.
Before turning to an example of similarities scaling we
first discuss the identification problem inherent in
similarities and unfolding data. We then resume our analysis

with the appropriate set of constraints.

3. The Problem of Constraints

Assume that our dissimilarities data are squared distances
between pairs of stimuli. Our g by g symmetric matrix of data
has g(g-1)/2 unique entries (we ignore the diagonal of zeroes).
Suppose there is an exact solution; that is, a set of g points
in s dimensions that exactly reproduces the squared distances.
Clearly, given that we only observe the distances, it does not
matter what origin or rotation around that origin we select as
long as the configuration of points vis a vis one another is not

altered.

With g points in s dimensions we have to solve for g*s

parameters. However, we can set any point to the origin -
(0,0,..,0) — so this leaves us with g*s - s= (g-1)*s parameters.
To pin down the configuration we need to set the rotation. 1In

general a rigid rotation of a configuration is determined by s-1
angles from the origin. For example, in two dimensions the

general form of the rotation matrix is:



{ cosd sind
1_‘_

=/ 0<60<2r
—-sin@ cosé

However, note that given a specific 6 we have four rotation

matrices:
cosd sin@ —cos@ sind cosd —sind —cosfd -—sind
rl= R r2= R r3= R r4= .
—-sin@ cosé sing coséd —-singd -—cosé singd —coséd
Or
. +1 0
I = AT" where A= (14)
0 #1

That is, given a specific 6, there are 2° sign flips

corresponding to the s columns of the rotation matrix. With

s=2, suppose that we have a solution Z such that it reproduces
our matrix of squared distances, D. Then there are three more
solutions corresponding to the above rotation matrices that also

exactly reproduce D. 1In general, in s dimensions, i1f we have a

solution Z that exactly reproduces the matrix of squared
distances then there an additional 2°-1 solutions that exactly

reproduce D.

This identification problem is very similar to that
discussed by Rivers (2003). He discusses the identification of

the classical maximum likelihood factor analysis problem and

10



shows the number of restrictions necessary to get identification
(these include fixing the origin and sign flips). However, his
main concern is the identification of the multidimensional IRT
model where the data are indicators and he shows that fixing s+l
points (or s(s+l) parameters) fully identifies the model. Our
result is different because we assume that we observe (noisy)

ratio scale data. Identification is simpler in this setting.

4. A Bayesian MDS Model

To illustrate our approach to similarities scaling, we use
agreement scores computed between members of the U.S. 90™ (1967-
68) Senate. We chose the 90th Senate because it is well known
that voting was two dimensional during this period (Poole and
Rosenthal, 1997). Given g roll call votes, the agreement score
is the number of times a pair of senators vote the same way
(Yea, Yea or Nay, Nay) divided by the number of times that they
both voted on the same roll calls and multiplied by 100. The
agreement scores range from 0 to 100 with 100 indicating
identical wvoting records. Table 1 shows a few Senators and

their agreement scores.
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Table 1: Agreement Scores for 9 Senate (Partial)

JOHNSON (D-Pres) 100 61 50 52 65 70 37
SPARKMAN (D-AL) 61| 100 89 50 65 85 65
HILL (D-AL) 50 89100 53 62 78 69
GRUENING (D-AK) 52 50 53 (100 76 58 43
BARTLETT (D-AK) 65 65 62 76| 100 70 477
HAYDEN (D-AZ) 70 85 78 58 701|100 57
FANNIN (R-AZ) 37 65 69 43 477 57 1100

We convert the agreement scores to distances by subtracting
them from 100 and dividing by 50. This is a convenient
normalization because the estimated coordinates are usually in
the unit hypersphere. Note that we include President Lyndon
Johnson in the matrix by using Congressional Quarterly’s
presidential support roll calls. That is, CQ indicates on a
fair number of roll calls whether a Yea/Nay is a vote in favor
of the President’s position. Hence, the President can be
treated as a Senator. He just does not vote as often.

To fix the origin we set Senator Hill (D-AL) at the origin

and we fix President Johnson’s second dimension coordinate at

12



zero. We use the Nedler-Mead (1965) amoeba method and the
Powell (1973) method to obtain 1001 solutions from random
starts. The best solution and its reflections are shown in
Figure 1. The tokens in the plots indicate the political party
of the member -- "D" for northern Democrat, "S" for southern
Democrat, and "R" for Republican. We computed both numerical
and analytical first and second derivatives for the optimal
solution to show that the Hessian was full rank (i.e., negative-

definite; see Appendix A2).
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Figure 1: Best 90th Senate Configuration and its Reflections
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Of the 1001 solutions for the Bayes posterior, only 3 were
the solution (and its reflections) shown in Figure 1. The log-
likelihood was about -3100.0. The value for o° was 0.1104. The
extreme non-linearity of the log-normal likelihood function

meant that a large number of modes were found by the optimizers.
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Many of these were quite close together in terms of log-

likelihood.

5. Applying MCMC to Similarities Data

In two dimensions three constraints are enough to pin down
four identical posteriors corresponding to the sign flips. This
is enough so that an optimizer can find modes. However, three
constraints are not enough for the use of MCMC methods because
the reflections will cause the chains to settle in around 0.0
for all the parameters. Clearly, if MCMC methods are to be
applied to this problem enough constraints must be imposed to
remove the reflections. Four loss functions are layered over
the hyperplane of the parameters. One must be isolated so that
its properties can be analyzed.

For small similarities problems we found that in addition
to the origin and one fixed coordinate simply adding three sign
constraints to the three fixed coordinates isolated a single
posterior. That is, keep the three constraints used to find the
modes and then restrict three coordinates to be
positive/negative. This works well and it is easy to implement

in WinBUGS by using the I(,0) or I(0,) operators.
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For larger problems like the 90™"

Senate agreement scores we
retain the origin and one fixed coordinate and then solve for
the sign flips by computing simple correlations dimension by
dimension between coordinates from each draw in the chain (a
configuration of points) and the coordinates from the optimizer
solution. This adds four additional constraints corresponding
to the sign flips.

Figure 2 shows the results for the 90"

Senate (we adjusted
the coordinates to -1 to +1 for presentation purposes). We ran

our chain out to 110,000 and treated the first 10,000 draws as

burn-in. The configuration is the mean of draws 10,001 to
110,000. The configuration is very similar to that shown in
Figure 1. The variance term is very precisely estimated with a
standard deviation of 0.0026. The standard deviations around

the points range from about 0.08 to 0.18 with the largest being
0.25. Additionally, we assessed convergence using the Geweke,
Heidelberger-Welch and Raftery and Lewis diagnostics. According
to these diagnostics, the posteriors for all parameters meet all
criteria for convergence. Note that fixing three coordinates
has the effect of "transmitting" the uncertainty associated with
those coordinates to other points. There is no solution for

this. It is just inherent in the problem.
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Figure 2: 90th Senate Using 6 Constraints and Vague Priors
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Our approach has the advantage of isolating one posterior
distribution and then analyzing it with standard MCMC methods.
However, we could simply fix the origin and let the chain wander
through the (g-1)*s dimensional hyperplane and post-process the
results by rotating each configuration in the chain back to a

target configuration. This approach is very similar to that
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advocated by Oh and Raftery (2001) and Hoff, Raftery, and
Handcock (2002). We prefer our approach because it is
computationally simpler and can be implemented in publicly
available software such as WinBUGS and JAGS. However, for the
unfolding problem we found that a variant of the rotation method
to work the best. In Appendix Al we show our WinBUGS script for
the 90" Senate. We used informed priors derived from the
Nedler-Mead configuration to stabilize the sampler in WinBUGS.
We now turn to a discussion of how to apply our approach to

the unfolding problem.

6. A Bayesian Multidimensional Unfolding Model

In the unfolding problem we have two sets of points - one
for individuals and one for stimuli We are given only the noisy
ratio scale distances between the two sets and not the distances

within each set. Specifically, denote the observed distance as

dij where

d = d. + & (15)

Where n is the number of individuals, i=1,..,n, and Xix is the i®"
individual coordinate on the k™ dimension. As before let Zj, be

the j*® stimulus coordinate on the k*" dimension, k=1,..,s, where s
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1s the number of dimensions. Let dij be the Euclidean distance

between individual i and stimulus j in the s-dimensional space:

S
= \/Z(Xik - ij)2 (16)
k=1
As before, we assume that the observed distances,d;, are
drawn from the log-normal distribution:
In(d;") 1 N(In(d, ), &)

Which produces the likelihood function:

-t B |

k

20 i=1 j=1
L* (Xix, Z5cID)= na IIII (17)
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UN

We use simple normal prior distributions for the individual

and stimuli coordinates:

X2
-
§ (Xix) = ) 1 €
(27g")?
, &
2i?
§(Z5%) = 1 €
(27%)?

and a simple uniform prior for the variance term:

aa)— ,0<c<b
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where b, empirically, is no greater than 2.

Hence, our posterior distribution is:

§ (Xix, 23k | D*) oc ﬁH{ fij(Xik1ij |d;)}f:(xll)...f(Xns)f(zll)...f(zqs)f(az) (18)

i=1 j=1

Taking the log of the right hand side and dropping the

unnecessary constants:

2

Enfoc—%ln(az)—%znlzq: |n(d;)—|n(\/ : (Xik_zjk)zJ
o)

i=1 j=1 k=1

1 (vyvyz] 1[N 2 _
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i=1 k=1 j=1 k=1

n S

_“_2q|n(gz)_zi i(m(d;)—m(du))gz_;(l X2 _z_ll(z(i 1z]?kj_m(c) (19)

2
O ia j=1 i=1 k=1 =1 k=

=}

We follow standard practice of using vague priors and set
(=100 and x=100. In the Appendix we show the first and second
derivatives for (19).

Our unfolding example is the classic 1968 National Election
Study feeling thermometers. A feeling thermometer asks
individuals to respond to a set of stimuli (political figures in
this case) based on their subjective views of warmth towards
them. The thermometer ranges from 0 to 100 degrees with 100
indicating warm and very favorable feeling, 50 indicating
neutrality towards the political figure, and 0 indicating that

the respondent feels cold and very unfavorable towards the
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political figure. The 1968 feeling thermometers have been
analyzed by Weisberg and Rusk (1970), Wang, et al. (1975),
Rabinowitz (1976), Cahoon, et al. (1978), Poole and Rosenthal
(1984), and Brady (1990) with the main focus on modeling the
latent dimensions underlying the thermometers as well as testing
theories of spatial voting.

In the NES 1968 survey twelve political figures were
included in the thermometer questions: George Wallace, Hubert
Humphrey, Richard Nixon, Eugene McCarthy, Ronald Reagan, Nelson
Rockefeller, President Johnson, George Romney, Robert Kennedy,
Edmund Muskie, Spiro Agnew, and Curtis LeMay. There were 1,673
respondents and we included in our analysis the 1,392
respondents who rated at least five of the twelve political
figures.

We perform our analysis in two dimensions because previous
analyses using optimization methods almost all find two
dimensions in the data. We think this is due to the
idiosyncratic noise in the thermometers (see Abrajano and Poole,
2011, for a discussion) and valence effects (Londregan, 2000;
Merrill and Grofman, 1999; Adams, Merrill, and Grofman, 2005).
A second dimension is picking up some of these effects and
“smoothing” out the first dimension. Modeling valence effects
is difficult so we leave that for future work. 1In any event,

our aim here is to show the advantages of our Bayesian approach.
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Namely, a properly designed Markov chain reveals much more
information than simply the modes of a loss function.

Finding the optimal solution for the unfolding problem is
difficult because of the number of parameters. In two
dimensions this would require a search over a 2,805 dimensional
hyperplane. This was impractical. 1Instead, what we found to
work well was to simply fix one candidate at the origin and
another candidate at zero on one of the dimensions. Holding the
candidate points fixed, it was easy to find the optimal point
for each respondent. Then, holding the respondent points fixed,
it was again easy to find the optimal points for the candidates.
We continued this until there was no further improvement. At
each step we used Nedler-Mead (1965) to find the points. We
checked the first derivatives (see Appendix) for the starting
configuration to be sure that our points were located on modes
of the loss function.

In practice we set George Romney at the origin and Eugene
McCarthy's second dimension coordinate at zero. Using the
respondent and candidate coordinates as targets we were able to
run a slice sampler on the 1968 data. Because the ratio of
respondents to the candidates is so large, we found that the
method that worked the best was to first draw the respondent
coordinates and then the candidate coordinates. We kept Romney

at the origin but we did not constrain any other points because
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we found that simply rotating the drawn configuration to the
optimal configuration with Romney at the origin was simple and
easy to implement.

We ran our chain to 110,000 draws with the

first 10,000 as burn-in. Figure 3 shows the results.

Figure 3: 1968 Thermometer Unfolding Example
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The left panel of Figure 3 shows the candidate
configuration and the right panel shows the respondents. We

display those respondents who indicated that they voted for

Humphrey,

respectively.

Nixon, or Wallace,

Humphrey,

as the tokens

Nixon,

"h"’ "n"’ Or "W",

and Wallace are located near

where their voters are concentrated.
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The candidates are very precisely estimated. The largest
standard deviation was for George Wallace's second dimension
coordinate at 0.11. Figure 4 shows the 100,000 draws (after
burn-in) for the three major Presidential candidates. All are

unimodal and appear to be symmetric.

Figure 4: Major Candidates 1968 Presidential Election
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The respondents were less precisely estimated. For
example, Figure 5 shows the distribution of the 100,000 draws
for the coordinates of the respondent number 2. The 2nd
respondent was a young white male Democrat. He did not like

Wallace, LeMay, Agnew, and Reagan (15, 30, 30, 30) but he was a
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little warmer towards Nixon and Romney (40, 40). He was less
than enthused with President Johnson and Hubert Humphrey (50 and
60) but he really liked Robert Kennedy, Nelson Rockefeller, and
Eugene McCarthy (97, 97, 85). His preferences roughly line up
left to right but not entirely. This is reflected in the
distribution of the draws. The draws on the first dimension are
unimodal with a reasonable standard deviation but the draws on
the second dimension have two modes with a large standard
deviation. A mode finder (optimization method) will land on one
of the two modes whereas a Markov chain “illuminates” the entire

distribution and recovers the means.
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Figure 5: 1968 NES Respondent 2
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7. Conclusion

In this paper we have shown how to apply Bayesian methods
to noisy ratio scale distances for both the classical
similarities problem as well as the unfolding problem. Our

approach combines the advantages of traditional mode finders and

Bayesian MCMC. We use the mode finders to give us a target that
identifies (“freezes”) the posterior for the Markov chain
generator.

Our unfolding example using the 1968 candidate thermometers
shows the power of MCMC (made possible by the speed of modern
computers) to illuminate complex distributions. Instead of
modes with their associated standard deviations from the inverse
Hessian, "painting" the entire posterior distribution allows us
to show means and the complete distribution of the parameters.

Our results are preliminary. We deliberately kept our
models simple because our aim was to revisit older problems
using modern methods. We think the thermometers are an
underutilized resource that potentially can reveal important
information about individuals' utilities for political figures.
Our aim here was simply to show a basic method that can be used

as a springboard to more complex analyses.
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Appendix

Al WINBUGS SIMILARITIES MODEL

z MDS Model for 90th Senate--over constrained
:odel{

# Fix one point

* x[8,1] <- -0.626000480

.................. x[8,2] <- 0.46524749

z 1lh and sumllh monitor the log-likelihood

#

for (i in 1:101)({
11h[i,i] <- 0.0
for (j in i+1:102){

Read in Distances rather than the similarities (makes handling missing data easier)

B

dstar[i,j] ~ dlnorm(mul[i,j], tau)

mu[i,j] <- log(sqrt((x[i,1]-x[j,1])*(x[1,1]-x[J,1])+(x[1i,2]-%x[],2])*(x[i,2]-x[],2])))
11h[i,j] <- (log(dstar[i,j]l)-mul[i,]j])*(log(dstar[i,]])-mu[i,j])

11h[j,i] <- (log(dstar[i,j]l)-mul[i,]j])*(log(dstar[i,]])-mu[i,j])

11h[102,102] <- 0.0
sumllh <- sum(1llh[,])

## priors
tau ~ dgamma(1,1)

Informed priors placed below (not all shown)

HH 3 I

x[1,1] ~ dnorm(0,.1) I(O0,)
x[1,2] ~ dnorm(0,.1) I(,0)
x[2,1] ~ dnorm(0,.1) I(,0)
x[2,2] ~ dnorm(0,.1) I(0,)

..etc. etc.

x[98,1] ~ dnorm(0,.1) I(,0)
x[98,2] ~ dnorm(0,.1) I(0,)
x[99,1] ~ dnorm(0,.1) I(,0)
x[99,2] ~ dnorm(0,.1) I(, -0.5)
x[100,1] ~ dnorm(0,.1) I(,0)
x[100,2] ~ dnorm(0,.1) I(,-0.5)
x[101,1] ~ dnorm(0,.1) I(0.5,)

x[101,2] ~ dnorm(0,.1) I(0.2,)
x[102,1] ~ dnorm(0,.1) I(,-0.2)
x[102,2] ~ dnorm(0,.1) I(,0)
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A2 The Derivatives for the Log-Normal Bayesian Model
Similarities: The first derivatives for the similarities

problem are:

8o L3t e, ) 2 S 2] ez 2.2

o j=m jm k=1

which simplifies to

or 1 & | (In df —In(d. 7.

aznf:?jz ( ( )d? ( i ))(ij _ka) _K_Jzk (A1)
] #M jm

and

or 1 1 &g .

625 OIS:IGZ : 25" - m_zjll(ln(djm)—ln(djm))z (A2)

Hence, we get the usual result for the variance term:

g-1 ¢

T q(q- 1)22(( w)=In (djm))2 (A3)

j=1 m=j+1

Note that since k? is a vague prior, the practical effect is

o*Iné _omg
0Z,0° 9z,

that at an inflection point we have =0. Numerically,

this is a handy result because it makes computing the inverse

Hessian much easier to accomplish.

The second derivative for the variance is:
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e 46D LS 1) () -

2 2 4 6
oo 0o 4o o Troa

o°Iné

leatolon

Substituting (A3) into (A4) it is easy to show that <0 so

that when the global maximum for the Z;x is found o’ will be a

maximum as well.

The second derivatives for the coordinates are:

azg—ng4Zq:(ln(djm)—ln(djm))(zjkka)zzzq:{(zjk —4ka)2]Jrzqu:{(ln(dj*m)—ln(djm))} 1

02,0z, & d, e~ d?, = az 2
(A5)

Fme (|n(d;m)—|n(djm)) , (zjk—zmk)2 (ln(d}m)—ln(djm))

7. =4 & (zjk—zmk) +2 i —2 & (26)

In more than one dimension

% zzi{[(z,k —zmkd)fzjﬁ me)][z(m(d:m)In(d,m))l}} (A7)

j¢m jm

azénf (Z‘ —Zy )(Z'/"_Zm/:‘) *
oz, ., Kk kd?m i [z(ln(djm)—ln(djm))ﬂ} (A8)

where /¢=1..5 and ({#k.

Unfolding: The first derivatives for the unfolding problem

are:

- Zy) -k (A9)
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n In d|* In d| Z.
o L N S
i = ij
and
or 1 &L *
aanf :_2?32 "2 i_l,-z_;‘('”(du)"”(dn))z (AL1)

Hence, we get the usual result for the variance term for the

unfolding model:

&2 =iii(ln(da)—ln(dij ))2 (A12)

ng 5= =2

2

Note that since ¢° and x’ are vague priors, the practical

o’ing Loms _

effect is that at an inflection point we have >
oX, 0" OX,

The second derivative for the variance 1is:

ot 1 &L d X
80225'2 B 2?4 _EZZ(In(dij)_ln(dij))z (A13)

. . . o o’/
Substituting (Al2) into (Al3) it is easy to show that 2775é5<0
o°0oc

so that when the global maximum for the X;x and Z;x 1s found o?

will be a maximum as well.

The second derivatives for the coordinates are:
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s e n@)n)) o [(z) ] ¢ (nle)-m(e)] 1
OX; X __ZJZ; di? (Xik_zjk) _JZ=; di? J +; du? | 52 (AL
o*né o} (In(di}k)_ln(dii)) 2 & (xik_z'k)2 . (In(d;)_ln(dij))_ 1
7, _2§ & (X =2Z) +Zl 7 j _zl i - (A15)
ome | (X -Z,) . (In(d;)-In(d, )
axikazjk { kdi? Jk ][2(In(dij)_ln(dij))+q_ J du? | (i)
o°Iné _ o°Iné o (A17)
oX;0X,, 0L jk(?ka
Where h=1, ..., n and h#i. In more than one dimension
o*né :_Zq: _(Xik_ij)(xiﬁ_ij)_[z(ln(df)—ln(d..))—kl} (a18)
X OX;, = || di? i ! !
azéné : _(xik_z'k)(xi/:‘_z'lf)_ *
az,kazf;{ o _[2('”(‘1”)"”(%))*1} (319)

X, 0Z,,

o2né ={(Xik —ijzgxw _Zi”)][z(ln(dj)ln(d.,))+1} (a20)

o*ng  o%né
XX, 0Z,0Z,,

=0 (A21)
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