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INTRODUCTION

Perhaps the most salient feature in the progress of multidimensional scaling
(MDS) over the past 7 years since Cliff’s (1973) chapter on "Scaling" 
been the explosive growth in number and variety of models and methods,
the proliferation of applications of MDS within many different fields, and
a kind of semantic encroachment of the term MDS on other domains (e.g.
factor analysis, test theory, analysis of variance or mathematical models).
This semantic expansion of the term is not necessarily undesirable, since
"multidimensional scaling," liberally speaking, could be taken to include
much that has traditionally been identified with other areas of psychomet-
rics or mathematical psychology. Broadly defined, multidimensional scal-
ing comprises a family of geometric models for multidimensional
representation of data and a corresponding set of methods for fitting such
models to actual data. A much narrower definition would limit the term to
spatial distance models for similarities, dissimilarities or other proximities
data. The usage we espouse would include nonspatial (e.g. discrete geomet-
ric models such as tree structures) and nondistanee (e.g. scalar product 
projection) models that apply to nonproximities (e.g. preference or other
"dominance") data as well as to proximities.

Because of this methodological and semantic expansion of the field, it
seems to us that the major service a reviewer can do for readers is to attempt
to put some order into what may appear as chaos: that is, to impose a
taxonomy on the field. This task is our goal. At the outset, we state our
disclaimers. Our taxonomy is only one of many possible ways of organizing
the field; we view the classification as provisional, relevant to the field as it
now is and not as it may be some years in the future. In effect, our taxonomy
might be regarded as a subjectively derived meta-multidimensional scaling
(and/or clustering) of the current state of multidimensional sealing. 
hope that the taxonomy will facilitate readers’ understanding of the work
reviewed herein, as well as of the chapter itself.

A NEW TAXONOMY OF MEASUREMENT
DATA AND OF MULTIDIMENSIONAL
MEASUREMENT MODELS

The present taxonomy can be viewed as an attempt to update and generalize
Coombs’ (1964) .4 Theory of Data, although there are many ways in which
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MULTIDIMENSIONAL SCALING 609

our taxonomy departs significantly from Coombs’, so that our approach is
not, strictly speaking, a generalization. Still, the clearest antecedent is .4
Theory of Data, and Coombs (personal communication) has indicated that
except for our use of "data" where he would use "observations," he finds
no conflict between his (1964; also see Coombs 1979) taxonomy and the
present one. Our viewpoint has also been influenced by Shepard’s (1972b)
taxonomy of data and of methods of analysis. Finally, the term "modes"
is due to Tucker (1964), and the scale types are derived of course from
Stevens (1946, 1951).

The main difference between Coombs’ and our approach is that we
attempt separate taxonomies of data and of models, whereas Coombs ar-
gued that data cannot be classified independently of the model to which
those data are referred, so that the very same data (observations, in Coombs’
terms) may fit into different quadrants (or octants) of his schema, depending
on which model is assumed. Our attempt to separate the classification
of data and of models may be only partially successful, since there is cer-
tainly a strong connection between type of data and of model. (There is
only a limited class of models suitable for any specific type of data.)
We shall nevertheless attempt to maintain the distinction wherever pos-
sible.

When one considers the highly important aspect of scale typology, it
could be applied exclusively to the data (a la Stevens) or to the model (as
suggested by Guttman 1971), but our view is that the scale typology is
decidable separately for the data and for the model. For the former, it seems
self-evident that some tasks ask the subject to adhere to certain scale types
(e.g. sorting versus magnitude estimation). However, there can be little
doubt that during the years covered by this review, far greater practical
emphasis has been placed on incorporating the transformations underlying
the scale typology into the model.

The advantages of maintaining the typology for both data and model are
apparent from consideration of Shepard’s (1972a, Chang & Shepard 1966)
approach that embodied an exponential decay fitting procedure in a metric
multidimensional scaling analysis. Unless such a transformation (character-
istic of many models of forgetting or confusions) can be accommodated by
the scale typology, then it must be claimed that Shepard’s analysis produced
a new and distinct type of scale. We find it more parsimonious to view the
data as ordinal and Shepard’s analysis/model as interval with a transforma-
tion included. We could explicitly include scale type as a property of such
models; however, for the present we are including scale type only as a
property of the data. The current version of our new schema is presented
below:

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

98
0.

31
:6

07
-6

49
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

04
/0

5/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


610 CARROLL & ARABIE

I. Properties of Measurement Data
Definitions

A mode is defined as a particular class of entities. Modes will be denoted by capital
letters A, B, C .... etc. Entities could be, for example, subjects, stimuli, test items,
occasions, experimental conditions, geographical areas, or components of a "multiattrib-
ute stimulus." Particular members of the class of entities corresponding to a mode are
denoted by subscripts; e.g. Ai, i = 1,2,... ,S could denote S subjects.

An N-way array is defined as the cartesian product of a number of modes, some of
which may be repeated, For example, an array associated with three-way multidi-
mensional scaling might be of the form AxBxB, where A denotes subjects, and B
stimuli. An element of the array is a particular value of this cartesian product [i.e. a
combination of particular members of the modes; e.g. (Ai,Bj,Bk)]. A data array is an
assignment of scale values to some or all elements of the array with possible replica-
tions.

Having established these definitions, the taxonomy of data arrays follows straightfor-
wardly, as outlined below:
A. Number of modes

1. One mode
2. Two modes
3. Three or more modes

B. Power of a given mode
A mode’s power is the number of times the mode is repeated in the N-way
table.
1. Monadic data (e.g. single stimulus data, as from an absolute judgment task).

Power = 1
2. Dyadic data (e.g. proximities data). Power = 

a. Symmetric
b. Nonsymmetric

3. Polyadic data (e.g. judgments of homogeneity of sets of three or more stimuli,
or similarity of or preference for "portfolios" of a number of items from the same
set). Power >~ 
(Note: In principle each mode could be of power greater than one. In practice
only the "stimulus" mode commonly has power greater than one.)

C. Number of ways, defined as total number of factors, whether repeated or not, de’lining
the data array; N if table of data is N-way (exclusive of replications, which are not
usually thought of as defining a separate mode or way unless there is a structure on
the replications and the replications "mode" is explicitly included in the model).
(Note: The number of ways is clearly redundant with the first two data properties,
since it is just the sum over modes of the power of each mode. However, we find it
convenient to include this redundant property explicitly in our schema.)

D. Scale type of data (after Stevens, but with some additions)
1. Nominal
2. Ordinal
3. Interval
4. Ratio (sometimes called "interval with rational origin")
5. Positive ratio
6. Absolute

We have added to Stevens’ four scale types what is sometimes called the "interval with
rational origin" (which we simply call "ratio") that can be viewed as a ratio scale
admitting negative as well as ’positive values (and, of course, zero), and the "absolute"
scale (e.g. Zwislocki 1978), in which no transformation whatsoever is allowed. At the

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

98
0.

31
:6

07
-6

49
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

04
/0

5/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


MULTIDIMENSIONAL SCALING 61 !

suggestion of Amos Tversky, we are relabeling Stevens’ "ratio scale" the "positive ratio
scale" (i.e. a ratio scale that allows only non-negative values).
E. Conditionality of data

1. Unconditional data
2. Row or column conditional data (Coombs 1964)
3. Matrix conditional data
4. Other types of conditional data

F. Completeness of data
1. Complete data
2. Incomplete data

G. Number and nature of replications
1. Only one data set comprising the data array
2. Two or more data sets

a. Same scale type for each replication
b. Different scale types for different replications

II. Properties of Multidimensional Measurement Models
A. Type of geometric model

1. Spatial
a. Distance models

i) Euclidean
ii) Minkowski-p (or lp) metrics
iii) Riemannian metrics
iv) Other non-Euclidean metrics

b. Scalar product (or projection) models
2. Nonspatial (discrete set-theoretic or graph-theoretic models)

a. Nonoverlapping classes (partitions) (e.g. standard clustering methods)
b. Overlapping classes (e.g. Shepard-Arabie ADCLUS model)
c. Hierarchical tree structure
d. Multiple tree structure

3. Hybrid models (mixtures of continuous and discrete structure)
a. Mixture of (single or multiple) tree structure and spatial structure
b. Mixture of class structure (overlapping or nonoverlapping) and spatial

structure
i) Dimensions that generalize over all classes
ii) Some class-specific dimensions
iii) Both of the above

B. Number of sets of points in space (or other structure)
1. One set
2. Two sets
3. More than two sets

C. Number of spaces or structures (and their interrelations)
1. One space or structure (e.g. two-way MDS)
2. Two spaces or structures [e.g. stimulus (or other "object") space and subject (or

other "data source") space in three-way or individual differences MDS]
3. More than two spaces or structures

D. Degree of external constraint on model parameters
1. Purely "internal" solutions in which all model parameters are unconstrained

2. Various kinds of linear, ordinal, or other constraints on specific parameters of
model

3. "External" models, in which one or more spaces (or other structures), or one 
more sets of points in the same structure, is totally fixed
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612 CARROLL & ARABLE

The present survey of multidimensional scaling and related techniques is
organized around our taxonomy, but does not conform exactly, owing to
space limitations and, of course, uneven progress in various subareas during
recent years. We take aspects I-A and I-C ("modes" and "ways" from the
properties of data) as the dominant organizing principles. Since we are
defining as our goal the imposition of structure on the field as a whole, we
shall take somewhat greater liberty than may be usual for Annual Review
chapters, to cite work that may lie outside the time period we are primarily
covering, to cite or refer to unpublished work, or even in some cases work
still in progress. We also note that we may underemphasize applications of
MDS relative to theoretical and methodological developments. (Some
methodological areas are also underemphasized or omitted altogether.) We
hope any imbalance that results will be partly corrected by a bibliography
now in preparation at Bell Laboratories (also see Bick et al 1977, Nishisato
1978a).

ONE-MODE TWO-WAY DATA

We begin our discussion of MDS data and models with the class of data
most frequently encountered: one-mode two-way data, which could other-
wise be characterized as two-way dyadic data. These data are typically some
form of similarities, dissimilarities, or other proximities data (e.g. measures
of association between pairs of stimuli or other objects, frequencies of
confusions, second order measures of similarity or dissimilarity derived
from standard multivariate or other data, etc). A general overview discuss-
ing and interrelating most of the spatial (both distance and scalar product)
models and corresponding methods for analysis of such data (as well as
two-mode three-way data) is provided by Carroll & Kruskal (1977; see also
Carroll & Wish 1974b). Another type of ostensibly dyadic data are so-called
"paired comparisons" data depicting preferences or other forms of domi-
nance relations on members of pairs of stimuli. However, such data are
seldom utilized in multidimensional (as opposed to unidimensional) scaling.
We do not cover paired comparisons data in this section because we view
such data not as dyadic, but as replicated monadic data (having n-2 missing
data values within each replication).

Spatial Distance Models (for One-mode Two-way Data)

The most widely used MDS procedures are based on spatial distance mod-
els. These are geometric models in which the similarities, dissimilarities, or
other proximities data are assumed to relate in a simple and well-defined
manner to recovered distances in an underlying spatial representation. If
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MULTIDIMENSIONAL SCALING 613

the data are interval scale, the function relating the data to distances would
generally be assumed to be inhomogeneously linear; that is, linear with an
additive constant as well as a slope coefficient. Data that are interval scale
or stronger (ratio, positive ratio, or absolute) are called metric data, while
the corresponding models and analyses are collectively called metric MDS.
In the case of ordinal data, the functional relationship is generally assumed
to be monotonic---either monotonic nonincreasing (in the case of similari-
ties) or monotonic nondecreasing (for dissimilarities). Ordinal data 
often called nonmetric data, and the corresponding MDS models and analy-
ses are also referred to as nonmetric MDS. The distinction between metric
and nonmetric is based on the presence or absence of metric properties in
the data [not in the solution, which almost always has metric properties;
Holman (1978) is an exception].

Following Kruskal’s (1964b, 1965) innovative work in monotone regres-
sion (as the basic engine for fitting most of the ordinal models considered
in this review), first devised by Ayer et al (1955), there has been much
activity in this area of statistics. In addition to Shepard’s (1962a,b) early
approach and Guttman’s 0968) rank image principle, there have also been
alternative and related methods proposed by Barlow et al (1972), Johnson
(1975), Ramsay (1977a), Srinivasan (1975), and de Leeuw (1977b). 
provocative comparison between the approaches of Kruskal (1964b) and
Guttman (1968) is given by McDonald (1976), and the two methods 
subsumed as special cases of Young’s (1975b) general formulation. Shepard
& Crawford 0975, Shepard 1974) and Goldstein & Kruskal (1976) have
developed techniques for imposing various constraints on ordinal regression
functions.

The range of types of data to which MDS analyses are applicable has
recently been extended through the use of nominal scale techniques of
regression (Nishisato 1971, Hayashi 1974, Young et al 1976, Bouroche et
al 1977, Young & Null 1978), as found in the ALSCAL program (discussed
below) of Takane et al (1977).

UNCONSTRAINED SYMMETRIC DISTANCE MODELS (FOR ONE-MODE
TWO-WAY DATA) Although one of the most intensely developed areas in
recent years has been the treatment of nonsymmetric data (discussed in
detail below), it is still true that most of the extant data relevant to MDS
are symmetric, owing in part to the previous lack of models allowing for
nonsymmetric data. Therefore, we first consider recent developments in the
scaling of symmetric data, i.e. where the proximity of a to b is assumed
identical to that obtained when the stimuli are considered in the reverse
order.
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614 CARROLL & ARABLE

Euclidean and Minkowski-p metric The most widely assumed metric in
MDS work is the Euclidean, in which the distance between two points i and
j is defined as

R

dij = [~(Xir -- Xjr)2]1/2

r=l

(where xir and xjr are the rth coordinates of points i and j, respectively,
in an R-dimensional spatial representation). Virtually all two-way MDS
procedures use either the Euclidean metric or the Minkowski-p (or /:)
metric which defines distances as:

R

dij = [~,~lxir - XjrlP]l/P (p >~ 1)

and so includes Euclidean distance as a special case in which p = 2.
The program KYST (Kruskal et al 1973, 1977) was christened with 

acronym based on the names of Kruskal, Young, Shepard, and Torgerson.
KYST is a combination of what were regarded by many as the preferred
features of Kruskal’s (1964a,b) MDSCAL and Young & Torgerson’s (1967)
TORSCA, and also includes the new feature of"constrained" or "external"
analyses in which a subset of the stimuli are given fixed coordinates by the
user while the remaining stimuli are mapped into the constrained configura-
tion.

Other algorithms include the Guttman-Lingoes family of two-way
"Smallest Space Analysis" MDS procedures (Lingoes 1972, 1973; see also
Lingoes 1977) and Roskam’s (1975) related series of programs. An informa-
tive discussion comparing several of these different algorithmic approaches
to MDS is given by Kruskal (1977a; see also de Leeuw.& Heiser 1980).
Other techniques have also been devised by Young (1972), Johnson (1973)
and Hubert & Busk (1976).

Two of the most valuable algorithmic developments in unconstrained
two-way (and three-way) MDS within the period covered by this review
are the Takane et al (1977) ALSCAL procedure and Ramsay’s (1977b)
MULTISCALE. ALSCAL (for Alternating Least squares SCALing) differs
from previous two-way MDS algorithms in such ways as (a) its loss func-
tion, (b) the numerical technique of alternating least squares (ALS) 
earlier by Carroll & Chang (1970) and devised by Wold (1966; also see 
Leeuw 1977a, and de Leeuw & Heiser 1977), and (c) allowing for nominal
scale (or categorical), as well as interval and ordinal data. Both ALSCAL
and MULTISCALE are also applicable to two-mode three-way data, and
both programs will be considered again under spatial distance models for
such data.
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MULTIDIMENSIONAL SCALING 615

MULTISCALE (MULTidimensional SCAL[E]ing), Ramsay’s (1977b;
also see Ramsay 1975) maximum likelihood based procedure, although
strictly a metric (or linear) approach, has statistical properties which make
it potentially much more powerful as both an exploratory and (particularly)
a confirmatory data analytic tool. MULTISCALE, as required by the maxi-
mum likelihood approach, makes very explicit assumptions regarding dis-
tribution of errors, and about the relationship of parameters of this
distribution to parameters defining the underlying spatial representation.
One such assumption is that the dissimilarity values ~ij are log normally
distributed over replications, but other distributional assumptions are also
allowed.

The major dividend from Ramsay’s (1978) strong assumptions is that the
approach enables statistical tests of significance that include, for example,
assessment of the correct dimensionality appropriate to the data, via an
asymptotically valid chi square test of significance. Another advantage is
the resulting confidence regions for gauging the relative precision of stimu-
lus coordinates in the spatial representation. The chief disadvantage is the
very strong assumptions that must be made for the asymptotic chi squares
and/or confidence regions to be valid. Not least of these is the assumption
of ratio scale dissimilarity judgments. In addition, there is the assumption
of a specific distribution (log normal or normal with specified parameters)
and of statistical independence of the dissimilarity judgments.

Applications and theoretical investigations of the Euclidean, Minkowski-p,
and other intradimensionally subtractive and interdimensionally additive
metrics (for one-mode two-way symmetric data) While the Euclidean dis-
tance formula has certain computational conveniences to recommend it as
a statistical model, only within recent years has-the formula been viewed
as a possible contender for a psychological model. Relevant research has
followed along three lines, the earliest of which stems from Beals et al
(1968), who provided a set of testable axioms underlying a wide class 
distance metrics (including Euclidean and Minkowski-p) as a psychological
model. Two of these conditions, intradimensional subtractivity and interdi-
mensional additivity, were extensively violated in the perception of simi-
larity of rectangles in Krantz & Tversky (1975). A very thorough follow-up
by Wiener-Ehrlich (1978) also found an interaction between dimensions for
rectangle stimuli. However, for stimuli that were Munsell papers varying
along the "separable" dimensions of area and brightness, she found that her
data did satisfy the relevant axiomatic conditions. Related research has also
been reported by Monahan & Lockhead (1977), Sch/Snemann (1977),
Zinnes & Wolff (1977), and Chipman & Noma (1978). At present it seems
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616 CARROLL & ARABIE

that no general conclusion can be drawn from this approach to the validity
of distance models, but there is certainly no strong support forthcoming.

A major boost for the plausibility of distance models was provided by the
elegant work of Rumelhart & Abrahamson (1973), who presented data
consistent with a model in which the traditional analogy a : b : : c : x implies
a parallelogram in a metric space. The study also established that subjects’
solutions to certain types of analogical problems were in fact successfully
predicted by an independently obtained MDS solution. Other experiments
in which the parallelogram rule was verified were designed by Sternberg
0977). Also, a scaling algorithm which takes as input judgments assumed
to fit the model (and thus implying linear vector equations a la Rumelhart
and Abrahamson) was devised by Carroll & Chang (1972b).

The third stage for questioning the viability of distance models for psy-
chological similarity was set by important papers by Tversky (1977) and
Tversky & Gati (1978). While space limitations prohibit an adequate sum°
mary or discussion of those papers, the main challenges to distance models
were (a) questioning of the minimality (dii = 0) and (b) symmetry (d# = d~.,-)
conditions of the metric axioms, and (c) arguments advocating discrete
features as opposed to continuous dimensions as the underlying basis of
psychological similarity. Several of these challenges have been eloquently
answered by Krumhansl (1978) and will be considered below.

Somewhat oblivious to the validity of the preceding studies, nonmetric
(two-way) scaling has continued to grow in popularity, and we are able 
mention only a small proportion of the applications in recent years. Scaling
has provided representations of structure in memory (Wexler & Romney
1972, Arabie et al 1975, Shepard et al 1975, Holyoak & Walker 1976,
Ebbesen & Allen 1979). Studies by Shoben (1976, p. 372) and Friendly
(1977, p. 206) have demonstrated the utility of the often overlooked option
in KYST (Kruskal et al 1973, 1977) of differentially weighting the stimuli
being scaled. The relevance of scaling to memory and other experimental
aspects of educational research has been reviewed by Subkoviak (1975).

Many applications of scaling to perceptual phenomena have been covered
by Fillenbaum & Rapoport (1971), Carroll & Wish (1974b), Indow (1974),
and Gregson (1975). Other scaling studies of visual processes include
Heider & Olivier (1972) and Reed (1972). The substantive importance 
determining the correct dimensionality of a scaling solution was under-
scored by the comments of Rodieck (1977) on the investigations of Tansley
& Boynton (1976, 1977). Multidimensional scaling has also been found
increasingly useful in olfaction (Moskowitz & Gerbers 1974, Schiffman 
Dackis 1976). In psychoacoustics, two-way scaling has continued to play
a prominent role, with examples provided by Shepard (1972a), Wang et 
(1978), Cermak (1979), and Krumhansl (1979).
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MULTIDIMENSIONAL SCALING 617

Seriation is a term which comes from archaeology and refers to unidi-
mensional representation of a set of objects, where the dimension in ques-
tion is usually time, so that the result is a chronological ordering of those
entities. In several ways, seriation defies our taxonomy, although the origi-
nal data are typically two-mode two-way and nonsymmetric. An example
in archaeology would be an incidence matrix of artifacts by sites, with the
objective of separately ordering (i.e. seriating) the objects corresponding 
each mode. A corresponding problem in psychology considers a subjects-
by-item response matrix (Hubert 1974a).

In spite of the description just given of the basic data structure, the actual
analysis typically begins with one-mode two-way symmetric data that are
analyzed by KYST (Kruskal et al _1973, 1977) or some variant of that
program. An adequate summary of developments culminating in this prac-
tice would greatly exceed the length of this chapter; for an overview, see
Hubert (1974b, 1976) or Arabic et al (1978). The central idea of using
KYST or related programs to get a Euclidean two-dimensional representa-
tion from which the (one-dimensional) seriation is inferred is due to Kendall
(1970, 1975; see Shepard 1974, pp. 385-89 for an example). Refinements 
this technique can be found in chapters of Hodson et al (1971), especially
the papers by Kendall (1971a,b), Sibson (1971), and Wilkinson (1971).
Important work has also been done by Kupershtokh & Mirkin (1971),
Wilkinson (1974), Graham et al (1976), Hubert & Schultz (1976a), 
& Hubert (1977), and Defays (1978). The applicability of seriation to 
stantive problems in psychology is cogently illustrated by Coombs & Smith
(1973) and Hubert & Baker (1978).

Continuing theoretical interest in non-Euclidean Minkowski-p (p ;~ 2)
metrics is evinced in papers by Fischer & Micko (1972), Carroll & Wish
(1974b), Shepard (1974), Arabic et al (1975), and Lew (1978). While 
not uncommon to find articles oblivious to the difficulties of local minima
in non-Euclidean nonmetric scaling, the problems have been documented
by various authors and appear not to be limited to specific scaling programs.
Arabie& Boorman (1973) reported extensive local minima for non-
Euclidean metrics using Kruskal’s MDSCAL, and Ramsay (1977b, p. 255)
found similar diflficulties with his MULTISCALE.

Perhaps the first effort explicitly to overcome some of these drawbacks
was by Arnold (1971), who obtained Euclidean solutions which were then
used as rational initial configurations for Minkowski-p (p ~ 2) metrics. The
latter solutions served iteratively as initial configurations for p-values in-
creasingly discrepant from 2, in search of the p-value for which stress was
least for a given dimensionality. In unpublished work, some of which is
described by Shepard (1974), Arabic replicated Arnold’s results, and found
that Arnold’s approach generally worked well for various data sets, if the
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618 CARROLL & ARABLE

declared dimensionality exceeded 2. For reasons still not understood, the
Arnold strategy appears not to work well in two-dimensional spaces, where
Arabie instead used many different random initial configurations. Also,
Shepard (1974) has cautioned that Kruskal’s (1964a,b) measure of badness-
of-fit, stress, may not be comparable across different Minkowski p-values
when the data are heavily tie-bound.

The extent to which Shepard’s caveat is applicable to real data is pres-
ently unknown. However, it is clear that obtaining a lower stress value for
a non-Euclidean metric is a necessary but not sut~cient condition for declar-
ing data to be non-Euclidean. Shepard &Arabie (1979, p. 115) presented
a city-block solution possessing a least stress value for that particular Min-
kowski metric as well as a substantive interpretation for the unrotated axes.
Another instance of a best-fitting city-block metric was given by Wiener-
Ehrlich (1978, p. 405).

Metrics other than Euclidean or Minkowski-p There have been some inter-
esting developments in MDS involving more general metrics. Perhaps the
most general of these is Holman’s (1978) "completely nonmetric" MDS
procedure. This approach can in some ways be viewed as an explicit al-
gorithm to accomplish what Coombs (1964) attempted more heuristically
and less algorithmically in his "nonmetric scaling" approach. That is, Hol-
man’s approach is nonmetric both vis-~t-vis the data and the solution (the
latter in the sense that only the rank order of coordinate values are defined).

Recently considerable interest has focused on another class of metrics--
the Riemannian metrics. Motivated largely by Luneburg’s (1947, 1950)
theory, Indow (1974, 1975, 1979) has made various attempts to fit Rieman-
nian metrics with constant negative curvature to data relevant to the geome-
try of visual space (e.g. judgments of distances among fixed light sources),
but has not developed an MDS algorithm involving a Riemannian metric.
The first attempt at Riemannian multidimensional scaling was an approach
by Pieszko (1975), who first used "classical" metric MDS (Torgerson 1958)
to fit a configuration, limited to two dimensions, to the data and then
obtained a very rough approximation for Riemannian distances defined on
that configuration. Lindman & Caelli (1978) have criticized the inappropri-
ateness of Pieszko’s global approximation, which is only valid locally. Those
authors were the first to produce a genuinely Riemannian (metric) MDS
procedure, for Riemannian metrics of constant curvature. In some unpub-
lished work, Caelli, Carroll, and Chang have extended this approach to
include Riemannian metrics of positive nonconstant curvature.

More general Riemannian metrics can also be considered, involving
geodesic metrics defined in very general nonlinear surfaces (or manifolds)
embedded in high-dimensional Euclidean space. An interesting paper by
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MULTIDIMENSIONAL SCALING 619

Shepard (1978) describes a number of perceptual (and/or judgmental) 
nomena that could be represented in terms of such very general geometric
models. Weisberg (1974) provides an urbane discussion of the relevance 
a priori structures (and the underlying models) to psychology and related
behavioral sciences.

CONSTRAINED SYMMETRIC EUCLIDEAN MODELS (FOR ONE-MODE
TWO-WAY DATA) A number of approaches have emerged quite recently
that allow the imposition of various kinds of constraints on two-way MDS
(distance model) solutions. To date, all such research has involved the case
of symmetric data and has been restricted to the Euclidean metric. More
recent approaches include: Bentler & Weeks (1978), in which linear con-
straints (equality of specified pairs of coordinate values or proportionality
to given external values) are imposed; Noma & Johnson (1979), in which
inequality constraints are imposed on coordinate values (i.e. a given dimen-
sion in the solution is constrained to be monotonically related to an external
variable); and Borg & Lingoes (1979), in which inequality constraints 
imposed on certain distances. Recently de Leeuw & Heiser (1979) have
discussed a very general class of algorithms for fitting constrained models
of many different kinds. Finally, an approach called CANDELINC (Car-
roll et al 1976, Green et al 1976, Carroll, Pruzansky & Kruskal 1979)
includes as a special case a version of "classical" metric two-way MDS in
which a very general class of linear constraints are imposed. (See discussion
under two-mode three-way constrained models.)

UNCONSTRAINED NONSYMMETRIC EUCLIDEAN MODELS (FOR ONE-
MODE TWO-WAY DATA) A number of approaches exist for analysis of
nonsymmetric dyadic data in terms of a Euclidean model. In the analysis
of nonsymmetric data, an important general principle is the following: any
nonsymmetric m-mode n-way data set can be accommodated by a symmet-
ric model designed for (m+l)-mode n-way data. The extra mode arises
from considering the "rows" and "columns" as corresponding to distinct
entities, so that each entity will be depicted twice in the representation from
the symmetric model. This principle is valid throughout our discussions of
nonsymmetric data, and we will therefore not repeat it in subsequent sec-
tions.

An alternative, second general principle in the analysis of nonsymmetric
proximities data assumes they are row or column conditional (possibly 
correct assumption), but employs a model allowing only one set of entities.
Thus the model is symmetric, but nonsymmetry is assumed to result from
conditionality of the data. Such analyses are possible in MDSCAL-5 and
KYST, as well as in a procedure proposed by Roskam (1975) called
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620 CARROLL & ARABIE

MNCPAEX. (See external distance models for two-mode two-way data.)
Takane (1979) has produced a nonmetric maximum likelihood approach
that allows conditional rank order data. Takane’s algorithm is especially
interesting because it is simultaneously parametric (in the sense that 
specific error distribution is assumed) and nonmetric (in that the data are
strictly ordinal).

Gower (1978) has recently applied unfolding techniques (discussed under
spatial distance models for two-mode two-way data) to nonsymmetric dy-
adic proximities data. In addition, a general approach for decomposing
nonsymmetric data matrices has been developed independently by Tobler
(1976) and Gower (1977, Constantine & Gower 1978), while another 
been proposed by Holman (1979), in which nonsymmetric proximities are
analyzed (via nonmetric models) into symmetric proximities and row and/
or column bias parameters.

Young’s (1975a) ASYMSCAL (for ASYMmetric multidimensional
SCALing) provides another approach for analysis of nonsymmetric data.
ASYMSCAL allows differential weights for dimensions for either the row
stimuli or for the column stimuli, or both. In this respect ASYMSCAL
closely resembles a weighted generalization of the unfolding model that will
be discussed in the section on unfolding.

Theoretical developments for and applications of nonsymmetric analyses (for
one-mode two-way data) Until very recently, asymmetries in a proximities
matrix have often been regarded as a nuisance--something to be averaged
out or eliminated by various strategies. The recent proliferation of models
for asymmetric data has coincided with increased awareness of the psycho-
logical importance of asymmetries in proximities data. Tversky (1977) and
Tversky & Gati (1978) cite many examples of psychological processes
giving rise to nonsymmetric data (see Sj/Sberg 1972) and leave the reader
with the impression that the psychological universe may indeed be more
nonsymmetric than symmetric.

Tversky (1977) and Tversky & Gati (1978) develop the argument still
further in advocating the superiority of feature-theoretic models to continu-
ous spatial dimensions for representing structure in data (e.g. Gati 1979).
However, Krumhansl (1978), drawing extensively on findings from unidi-
mensional psychophysics, has developed a highly ingenious "distance-den-
sity" model that assumes similarity is a function of both interpoint distance
and the spatial density of other stimulus points in the surrounding region
of the metric space. Krumhansl finds support in the literature for various
predictions made by her model (also see Podgorny & Garner 1979) and
suggests that spatial distance models may still be more relevant to nonsym-
metric data than Tversky (1977, Tversky & Gati 1978) argued.
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MULTIDIMENSIONAL SCALING 621

While careful consideration of experimental procedures in order to avoid
artifactual asymmetries is still warranted (Janson 1977), current practice
clearly pays much greater attention to (and respect for) asymmetries 
data; e.g. Cermak & Cornillon (1976), Zinnes & Wolff (1977), Jones et 
(1978), Krumhansl (1979). Also, a useful inferential test for symmetry 
a proximities matrix has been developed by Hubert & Baker (1979).

Scalar Product (Spatial but Nondistance) Models
(for One-mode Two-way Data)
The scalar product between points i and j (b,~) is defined in terms of their
coordinates (Xir and xp, r = 1,2 .... R) as:

R

bij ~-" £ XirXj,

Scalar product models are sometimes called "projection models" because
the scalar products of a set of points with a fixed point are proportional to
the projections of those points onto a vector from the origin of the coordi-
nate system to the fixed point.

After the factor analytic model (not considered in this chapter), probably
the most widely known scalar product model for symmetric proximities
data is Ekman’s "content model." Important articles discussing this class
of models, whose popularity has declined within the period covered by this
review, are Eisler & Roskam (1977) and SjSberg (1975). The latter argues
strongly against the content model, in favor of the more widely accepted
class of distance models for proximities data.

Other scalar product symmetric approaches include Outtman and
Lingoes’ SSA-III (Lingoes 1972, 1973) and certain options in Young’s
(1972) POLYCON (for POLYnomial CONjoint analysis). Both programs
are nonmetric factor analytic procedures applicable to symmetric data,
usually but not necessarily correlations or covariances. Further discussion
of these models will be found under unconstrained scalar product models
for two-mode two-way data.

In considering scalar product models for nonsymmetric dyadic data,
there is Harshman’s (1975, 1978) metric procedure DEDICOM (DEcom-
position into Directional COMponents), which can also handle two-mode
three-way data (~ee below). The "strong" case of the model assumes 
common set of dimensions for the rows and columns, so that the model is
in that sense symmetric. Asymmetries are accounted for in this model by
a set of indices of "directional relationship" which indicate the degree to
which each dimension affects each other dimension. One way of viewing the
strong DEDICOM model is as a special case of the factor or components
analysis model in which factor loadings and factor scores are constrained
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622 CARROLL & ARABIE

to be linearly related to each other. (The "weak" model is precisely equiva-
lent to the factor or components analysis model.)

A model involving a geometrically interesting generalization of scalar
products (defined only for two or three dimensions, however) has been
formulated by Chino (1978) for one-mode two-way nonsymmetdc data.

Nonspatial Distance Models (for One-mode Two-way Data)

A development that has occurred almost entirely within the period covered
by this review is that of nonspatial or discrete models for proximities data.
Of course the vast area of clustering has long allowed such representation
of proximities, but the solutions have infrequently been viewed as realistic
psychological models for proximities data. Moreover, as is true with factor
analysis, the clustering literature is much too vast to be covered here, so we
refer the reader to Sneath& Sokal (1973), Hubert (1974c), Hartigan (1975),
and Blashfield & Allenderfer (1978) for relevant reviews.

Backtracking somewhat, we first consider an approach by Cunningham
& Shepard (1974) that is, in fact, neither spatial nor nonspatial. This
"nondimensional" scaling approach transforms the data so as to satisfy the
metric condition of the triangle inequality. The method is useful primarily
in converting ordinal proximities into ratio scale distance estimates, which
could then be used as data for various metric analyses, or for determining
the form of the function relating proximities to distances.

One nonspatial model that assumes a discrete geometric model is the
Shepard &Arabie (1979, Arabie& Shepard 1973) ADCLUS (for ADditive
CLUStering) model. ADCLUS assumes that similarities data can be repre-
sented in terms of discrete but possibly overlapping classes or clusters, and
that each of these clusters has a non-negative weight (although an additive
constant interpretable as the weight for the cluster corresponding to the
complete set is not so constrained). The predicted similarity for any pair of
stimuli is just the sum of the weights across the clusters containing that pair
of stimuli. Formally stated, s,~ is approximated by

R

where s~ is similarity of stimuli (or other objects) i and j, wr is the weight
for the rth class, R is the number of classes, analogous to the number of
dimensions in various spatial models, and Pit is a binary (0,1) class member-
ship function (Pir = 1 iffstimulus i is a member of class r, and 0 otherwise).
This model is formally equivalent to the factor analytic model (without
communalities) for correlations or c~)variances, except for the constraint
that the Pir be restricted to the discrete values of 0 or 1. In addition,
ADCLUS represents a special (symmetric) case of Tversky’s (1977) general
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MULTIDIMENSIONAL SCALING 623

features model of similarity, and is in fact the only case for which an
analytic procedure is currently operational.

Arabie& Carroll (1978) have provided a different algorithm called
MAPCLUS (for MAthematical Programming CLUStering) for fitting the
ADCLUS model, since the algorithm used in the Shepard-Arabie (1979)
program was very expensive computationally and otherwise unwieldy.
Moreover, the MAPCLUS approach is easily generalized to fit the three-
way model, called INDCLUS (Carroll & Arabie 1979).

Tree structures comprise another interesting class of discrete geometric
models. For a given tree structure there are at least two (and in some cases
three) types of metrics that can be defined on the stimuli. In this representa-
tion, the stimuli are represented as nodes of the tree, either terminal nodes
only or both terminal and nonterminal. One of the two classes of metrics
is the ultrametric (Hartigan 1967, Jardine et al 1967, Johnson 1967), 
which "heights" are associated with nonterminal nodes of the tree, and
"distance" between any two nodes is defined as the "height" of the first
nonterminal node at which the two are linked.

An interesting relationship between ultrametric and Euclidean metrics
(see above) was formally derived by Holman (1972), who showed that 
Euclidean representation of "ultrametric data" requires n-1 dimensions,
where n is the cardinality of the largest subset of stimuli satisfying the
ultrametric inequality. While this demonstration has somewhat limited
applicability to data containing error, Holman’s (1972) result should help
dispel a lingering misconception from the factor analytic tradition, namely
that distance-based scaling models are legitimately serviceable as a cluster-
ing method; they are not (cf Kruskal 1977b).

A second metric, after the ultrametric, has been given a variety of names,
and the same is true for the resulting representations. The metric is simply
defined as the shortest path in terms of lengths of the "branches" or "links"
connecting adjacent nodes in the tree. For a tree structure there is only one
path connecting any pair of nodes, so the shortest path is trivially defined
as the length of that unique path. This metric was designated as "path
length" and the associated trees as "path length trees" by Carroll & Chang
(1973), Carroll (1976), and Carroll & Pruzansky (1975, 1980). Alternative
algorithms for fitting the metric, as well as relevant applications, are given
by Cunningham (1974, 1978) and Sattath & Tversky (1977). Other impor-
tant references include Bunemann (1971, 1974) and Dobson (1974). 
note that some of these authors have also given other names to this metric
and/or trees on which it is defined.

Carroll & Chang (1973) also allowed a third type of metric, namely 
synthesis of ultrametric and path length metric, in which distances were
defined as the sum of the path length and a height value associated with the
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"least common ancestor" node. It can be shown that this "combined"
metric can be meaningfully defined only in the case (allowed by Carroll 
Chang 1973) of trees in which the stimuli or other objects are .associated
with at least some nonterminal as well as terminal nodes.

The approach of Carroll & Pruzansky (1975, 1980; see also Carroll 1976)
utilized mathematical programming techniques, analogous in some ways to
those used in the Arabie-Carroll (1978) MAPCLUS approach, to fit either
ultrametric or path length trees to proximities data via a least squares
criterion. The essential new feature of the Carroll-Pruzansky approach,
however, is the generalization to multiple tree structures, for which prox-
imities data are represented by composite distances summed over distances
(either ultrametric or path length) from two or more trees. Carroll and
Pruzansky applied this approach to a number of data sets, with interpret-
able results, and conjectured that there may be a relatively well-defined
sense in which a single tree structure is approximately equivalent to a
two-dimensional spatial structure (of Sattath & Tversky 1977).

A constrained nonmetric analysis in terms of (single) path length tree
structure models has been described by Roskam (1973), which allows such
options as constraining certain branch lengths to be equal. Constrained
analyses are also possible by using appropriate options in most of the
procedures designed for unconstrained fitting of the ADCLUS or tree struc-
ture models.

Hybrid Distance Models (for One-mode Two-way Data)

By hybrid geometric models we denote models that in some way combine
continuous spatial structure of the type classically associated with MDS
with discrete nonspatial structure such as assumed in ADCLUS, tree struc-
ture, other more general graph-theoretic structures, or combinations of
these. Carroll & Pruzansky (1975) have produced the only approach known
to us of "wholistic" fitting of a hybrid model, where both components are
simultaneously fitted to the data. This hybrid model combines a tree struc-
ture component (either single or multiple) with an R-dimensional spatial
component, and uses an alternating least squares procedure for fitting the
model. Very good results were obtained in such a hybrid analysis of some
kinship data obtained from a sorting task by Rosenberg & Kim (1975). 
expect to see other hybrid models formulated and the associated analytic
procedures implemented in the future (Carroll 1975, 1976).

TWO-MODE TWO-WAY DATA

We now consider two-way data in which the two ways correspond to
distinct modes (e.g. subjects and stimuli). The data array in this case will
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MULTIDIMENSIONAL SCALING 625

correspond (in general) to a rectangular matrix which is generally nonsym-
metric (even in the case when, by coincidence or design, the matrix is
square).

Spatial Distance Models (for Two-mode Two-way Data)

The principal distance model for studying individual differences in prefer-
ence judgments (as a case of two-mode two-way data) is the unfolding
model. This approach was originally formulated by Coombs (1950), with
a multidimensional generalization provided by Bennett & Hays (1960). The
hallmark of this model is that both stimuli and subjects’ ideal points are
simultaneously mapped into the same spatial configuration. As such, this
approach constitutes what we have called an internal (unconstrained) anal-
ysis of preference data. The original developments by Coombs (1950) and
Bennett & Hays (1960) assumed the data were ordinal and conditional, the
latter by subjects for subjects by stimuli preference data. Subsequent pro-
posals and corresponding computer programs have allowed for interval
(metric) and/or unconditional data. Also, more recent procedures include
external analyses, which are constrained in that the stimulus space is given
a priori, while the subjects’ ideal points are fitted on the basis of the prefer-
ence data.

It should be emphasized that the unfolding model is not limited only to
subjects by stimuli preference data, but may be applied to any two-mode
two-way data matrix for which a distance model is appropriate. Recall, in
particular, the first principle given above for representing nonsymmetric
data. For a general and more detailed discussion of unfolding models, see
Carroll (1972, 1980).

INTERNAL (UNCONSTRAINED) DISTANCE MODELS (FOR TWO-MODE
TWO-WAY DATA) Procedures that allow internal unfolding analysis in-
clude KYST (Kruskal et al 1973, 1977) as well as its predecessors
MDSCAL-5 and TORSCA-9 (cited above), Guttman and Lingoes’ SSAR-I
and SSAR-II procedures (Lingoes 1972, 1973), and a procedure by Roskam
(1971; see also Lingoes & Roskam 1973). Of these, only KYST and
MDSCAL-5 (or 6) use an appropriate loss function and/or allow use of 
loss function (stress "formula two") with a variance-like normalization (for
conditional analyses) or metric unfolding options (for unconditional analy-
ses). Those two programs thus are the only theoretically valid implementa-
tions, since trivial "degenerate" solutions (with a zero value of the loss
function) occur when a loss function like stress formula one (having 
normalizing factor resembling the sum of squared distances) is used, or
when nonmetric conditional analysis is done (irrespective of what loss
function is used). The rationale for a loss function like stress formula two
can be found in Kruskal & Carroll (196~9; see also Carroll 1980). Programs
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626 CARROLL & ARABIE

other than KYST and MDSCAL-5 sometimes yield what appear to be good
solutions despite this theoretical problem, but such findings are generally
the results of convergence to substantively acceptable local minima, rather
than the global minimum corresponding to a degenerate solution. An exam-
ple of the latter is a configuration in which the entities corresponding to the
two modes are each mapped into a single point.

In addition to the metric (internal or external) analyses discussed above,
there is a metric unfolding procedure (SchSnemann 1970) that attains 
analytic internal solution for a very strong case of the unfolding model.
Carroll & Chang’s PREFMAP-2 (1971, Chang & Carroll 1972), which 
primarily designed for external analyses (as discussed below; see also Car-
roll 1980), also allows an internal solution for a model similar to but slightly
more general than SchiSnemann’s (1970). Sch~Snemann & Wang (1972)
combine the metric unfolding model with the Bradley-Terry-Luce choice
model (Luce 1959), to produce a stochastic unfolding approach that 
applicable to paired comparisons data. The MDPREF model, which can be
viewed as a special case of the unfolding model [in which the subjects’ ideal
points are infinitely distant from the stimulus points (Carroll 1972, 1980)]
will be discussed in the section on scalar product models.

EXTERNAL (CONSTRAINED) DISTANCE MODELS (FOR TWO-MODE
TWO-WAY DATA) External analyses in terms of the unfolding model
(and some of its generalizations) are provided by the PREFMAP procedure
of Carroll & Chang (1967; see also Chang 1969 and Carroll 1972, 1980),
by KYST (Kruskal et al 1973, 1977), as well as other programs described
below. PREFMAP (and its successor PREFMAP-2, described in Carroll
1980) is based on a general linear least squares approach involving quad-
ratic regression procedures, and allows both metric and nonmetric options.

PREFMAP and PREFMAP-2 also allow fitting of two models more
inclusive than the standard unfolding model. One of these models, for
"weighted unfolding," allows a more general weighted Euclidean metric,
with a different pattern of dimension weights as well as different location
of ideal points for each subject. A second generalization allows the most
general form of Euclidean metric, defined by a different quadratic form for
each subject, thus allowing a different rigid (or orthogonal) rotation of the
reference frame for individual subjects, followed by differential weighting
of the resulting idiosyncratically defined dimensions. An alternative strat-
egy for implementing nonmetric external unfolding analyses is given by the
linear programming approach of Srinivasan & Shocker (1973), which also
includes non-negativity constraints for the dimension weights. The same
constraints are provided in a metric procedure using quadratic program-
ming described by Davison (1976).
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MULTIDIMENSIONAL SCALING 627

During the years covered by this chapter, substantive applications of both
internal and external unfolding include Levine (1972), Coombs et al (1975),
Davison (1977), Seligson (1977). Coombs & Avrunin (1977) provided 
theoretical derivation of the unfolding model from fundamental psychologi-
cal principles. There also have been several studies making extensive com-
parisons (with interesting psychological results) of the structures found
when subjects give similarity as well as preference judgments for the same
stimulus domain (Cermak & Cornillon 1976, Nygren & Jones 1977, Sj/Sberg
1977, 1980; also see Carroll 1972 for an early discussion of this question).
A new methodological approach for combining proximities with preference
(and possibly other rating scale) data has been discussed by Ramsay
(1979b). The corresponding model lies somewhere between our categories
of "internal" and "external" models.

Scalar Product Models (for Two-mode Two-way Data)

By far the dominant class of models for two-mode two-way data are scalar
product models, which include factor analysis and principal components
analysis. One approach seeks to fit the score matrix, another to lit correla-
tions or covariances; Kruskal (1978) refers to these as the direct and indirect
approaches, respectively.

INTERNAL (UNCONSTRAINED) MODELS (FOR TWO-MODE TWO-WAY
DATA) The program SSA-III (Lingoes 1972, 1973) can be viewed as 
form of nonmetric factor analysis differing markedly in rationale from the
Kruskal-Shepard (1974) variety of nonmetric factor analysis. SSA-III gen-
erally assumes correlations or covariances (but can use other proximities
data) and seeks a representation involving vectors such that the scalar
products between vectors reproduce the order of the proximities. In con-
trast, the Kruskal-Shepard approach starts with a general rectangular (two-
mode as well as two-way) data matrix, and seeks a representation in terms
of two sets of vectors such that the scalar products reproduce (as well as
possible) the conditional rank orders (within one of the two modes) of 
scores. Thus, Kruskal and Shepard’s method uses the direct approach,
while Guttman and Lingoes’ SSA-III or Young’s POLYCON uses the
indirect approach. The theoretical rationale of the latter approach is less
clear because, aside from Guttman’s simplex structure, it is difficult to
envision conditions where correlations or covariances are only defined ordi-
nally.

In passing we would like to note that when the Kruskal & Shepard (1974)
method is applied to two-mode two-way data, it is often expedient to depict
the objects of one mode as vectors and the other as points. This representa-
tion has various advantages over the more conventional display of both
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628 CARROLL & ARABLE

modes as points in a joint space, particularly when the data are conditional
with respect to the mode represented by vectors.

A particular type of data to which a factor or component analytic type
of model has been very usefully applied comprises a subjects by stimuli
matrix of preference (or other dominance) data. In this case the scalar
product or projection model has come to be known as the "vector model"
because of the very convenient pictorial representation of stimuli as points
and subjects as vectors. We view this technique as the "right" way to depict
such solutions, since in the case of such data, the matrices are conditional
with respect to subjects. Thus, the order of projections of (stimulus) points
onto a (subject) vector, but not that of vectors onto a point, is meaningfully
defined, both in the data and in the geometric representation.

Tucker (1960) and Slater (1960) were the first to propose (independently)
somewhat limited versions of such a model for preferences (see also Ni-
shisato 1978b). Probably the most widely used method of analysis involving
this model is Carroll & Chang’s (1964; see also Carroll 1972, 1980)
MDPREF (for MultiDimensional PREFerence analysis), which is actually
a special type of factor analysis of either a derived or given preference score
matri~¢. While MDPREF applied to paired comparisons preference data is
computationally a metric technique, there is a reasonable index of ordinal
agreement with the paired comparisons preference data which is optimized
by this procedure (Carroll 1972).

It is possible, at least in principle, to effect a multidimensional analysis
of "classical" paired comparisons data, in which the paired comparisons
judgtrtents are aggregated over different subjects or over replications for a
single subject. As argued earlier, the result of such preprocessing can be
viewed as replicated two-mode two-way data. A multidimensional model
for su.ch a matrix, called the "wandering vector" model, is discussed by
Carroll (1980). de Leeuw & Heiser (1979) independently proposed a mathe-
matically equivalent model based on Thurstone’s Case I model.

EXTERNAL (CONSTRAINED) SCALAR PRODUCT MODELS (FOR TWO-
MODIE TWO-WAY DATA) In scalar product external models for two-
mode two-way data (as with external unfolding models), one set of points
is fixed and the other "mapped in." In the case of conditional data, it is
almo,~.t always the points corresponding to the conditional mode (the one
typically represented as vectors) that are mapped in. One metric means of
implementation is multiple linear regression, where the regression coeffi-
cients (possibly after some normalization) define the coordinates of the
second set of points or vectors. In the case of nonmetric data, some form
of what has variously been called nonmetric, ordinal, or monotonic multiple
linear regression is necessary. Carroll & Chang’s (1971, Chang & Carroll
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MULTIDIMENSIONAL SCALING 629

1972) PREFMAP and PREFMAP-2 both provide metric and nonmetric
options for such mapping.

One class of models and methods not usually viewed in this way, but
which can be characterized as external analysis in terms of a scalar product
or vector model (see discussion below and Carroll 1980), is the class includ-
ing approaches variously called conjoint measurement (Luce& Tukey
1964), functional measurement (Anderson 1974, 1977), and/or conjoint
analysis (Green & Wind 1973, Green & Srinivasan 1978). While all three
approaches allow more general models, in the most widely known and used
versions of these three closely related approaches, a simple additive model
is assumed to relate a (metric or nonmetric) dependent variable to a set 
qualitative independent variables that form a (complete or fractional) fac-
torial design. In conjoint measurement, the dependent variable is always
assumed to be ordinal, in functional measurement it is usually but not
always assumed metric, while conjoint analysis includes both metric and
nonmetric alternatives.

The additivity analysis central to these three approaches can be viewed
as fitting a "main effects only" analysis of variance model to the data either
metrically (via classical ANOVA procedures) or nonmetrically. Such ad-
ditivity analysis can be viewed as an external one in terms of a scalar
product model by expressing the main effects ANOVA model in the now
widely known form of a multiple linear regression model with appropriately
defined (usually binary) "dummy" variables, which play the role of the
external dimensions. One widely used procedure for fitting a nonmetric
version of this model is Kruskal’s (1965, Kruskal & Carmone 1965)
MONANOVA, and other nonmetric procedures for fitting this simple addi-
tive model include ADDIT (Roskam & Van Glist 1967), POLYCON
(Young 1972), CM-I (Lingoes 1972, 1973), and ADDALS (de Leeuw 
1976). ADDALS also allows more general cases in which, say, the factors
of the factorial design are treated as ordinal or interval scale rather than
(necessarily) nominal scale variables (or mixtures of scale types are allowed
for factors), or in which the dependent variable is nominally scaled. Car-
roll’s (1969) categorical conjoint measurement and Nishisato’s (1971) opti-
mal scaling approach also provide options for dealing with nominal scale
dependent variables.

In recent years there have been increasingly frequent applications of
conjoint measurement to data from experimental and other judgmental
tasks (e.g. Cliff 1972, Ullrich & Painter 1974, Falmagne 1976), as well 
relevant theoretical developments (e.g. Fishburn 1975, Falmagne et al
1979), which generally fall under the purview of a forthcoming chapter on
unidimensional scaling and psychophysics in the Annual Review of Psy-
chology. However, conjoint analysis remains one of the most underem-
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630 CARROLL & ARABIE

ployed techniques for data analysis in psychology. In contrast, the method
has enjc,yed extensive usage in marketing research, where Green & Wind
(1973) provided a practitioner’s handbook. Although applications are too
numerous to cite at length, the following serve as examples: Johnson (1974),
Green & Wind (1975), Green et al (1975), Bouroche (1977), Green (1977),
Green &: Carmone (1977). Helpful overviews of current developments in the
application of conjoint analysis in marketing can be found in Green &
Srinivasan (1978) and Wind (1976, 1978a,b).

A general procedure called ORDMET, that is applicable to nonmetric
external analysis in terms of a scalar product model, is described by McClel-
land & Coombs (1975). Given data sufficiently close to being errorless,
ORDMET’s linear programming approach can be applied to fitting any
external scalar product model, conjoint measurement model, and even
external versions of the unfolding model.

Nonspatial Distance Models (for Two-mode Two-way Data)
The only nonspatial model proposed to date (outside the clustering litera-
ture) that is directly applicable to two-mode two-way data is Tversky 
Sattath’:~ (1979) "Preference Trees" model, This model is applicable 
a paired comparisons preference matrix aggregated over subjects (or,
more appropriately, over replications by a single subject) and so can be
viewed ,(see above) as a two-mode two-way model. The Preference Tree
(PRETREE) model follows as a special case of the elimination by aspects
(EBA) model (Tversky 1972a,b) and subsumes Luce’s (1959, 1977) constant
ratio model. Although there is no program for fitting the PRETREE model
to data, it has been tested by utilizing trees derived from similarity data or
on a priori grounds.

TWO-IMODE THREE-WAY DATA

As mentioned under one-mode two-way data, Carroll & Kruskal (1977)
have provided a general overview of spatial models and data analytic meth-
ods falling under the present heading.

Spatia,t, Distance Models (for Two-mode Three-way Data)

UNCONSTRAINED SYMMETRIC EUCLIDEAN MODELS (FOR TWO-
MODE ".[’HREE-WAY DATA) The principal type of data falling under this
classification is three-way dyadic data, comprising two or more square
symmetric proximities matrices for pairs of stimuli, from two or more
subjects (or other data sources). The dominant type of model is a distance
model (only Euclidean models to date) for stimuli, with a set of individual
differences parameters characterizing subjects. The models extend from the
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"points of view" approach of Tucker & Messick (1963) through various
forms of a weighted Euclidean model (Bloxom 1968, Horan 1969, Carroll
& Chang 1969, 1970), frequently called the INDSCAL (for INdividual
Differences SCALing) model [but called a "subjective metrics" model by
SchSnemann (1972)].

Yet further generalizations of this model include Tucker’s (1972) "three-
mode scaling" model, Carroll & Chang’s (1972a) IDIOSCAL model, and
Harshman’s (1972b) PARAFAC2 model. Of these IDIOSCAL is the most
general, as it includes the other two as special cases. IDIOSCAL assumes
a different generalized Euclidean metric, which for each subject is defined
by a quadratic form described by a symmetric RxR matrix. Three-mode
scaling is essentially a special case of Tucker’s (1964) model for three-mode
factor analysis, applied to an array of estimated scalar products derived
from three-way proximities data. Tucker’s approach can be viewed as a
special case of the IDIOSCAL model, in which a special structure is im-
posed on the quadratic form matrices (that is, the individual quadratic
forms are linear combinations of a small set of symmetric RxR matrices).
Recent statistical developments in three-mode factor analysis are given by
Bentler & Lee 0978, 1979). Harshman’s (1972b) PARAFAC2 provides 
interesting special case of both IDIOSCAL and three-way scaling. In terms
of a geometric interpretation (also adopted by Tucker 1972), PARAFAC2
allows the dimensions to be oblique or correlated (i.e. have nonindependent
effects on the data) but assumes that the angles between dimensions remain
the same for all subjects.

All three of these models have the simple weighted Euclidean model
INDSCAL (Carroll & Chang 1970) as a special case. INDSCAL has 
important property, however, that two of these three more general models
(IDIOSCAL and three-mode scaling) do not share, and which has only
been conjectured but not proved for PARAFAC2 (Harshman 1972b). The
specific feature is "dimensional uniqueness," which means that the dimen-
sions are not invariant under orthogonal (or general linear) transforma-
tions, but are uniquely defined (or are "identifiable" in current statistical
parlance) except for permutations and reflections. [See I-Iarshman (1972a)
and Kruskal (1976, 1977c) for uniqueness proofs. It should be noted that
these results have actually been proved for the more general three-way
CANDECOMP (for CANonical DECOMP.osition) model provided 
Carroll & Chang (1970) and independently by Harshman (1970) under 
name of PARAFAC (for PARAllel FACtor analysis).] A more extensive
discussion of these models can be found in Carroll (1973), Carroll & Wish
(1974a,b) and Wish & Carroll 0974).

The principal algorithmic advances in this domain during recent years
have entailed the procedure already discussed when considering the
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632 CARROLL & ARABIE

ALSCAL method of Takane et al (1977) and Ramsay’s (1977b) maximum
likelihood approach in MULTISCALE. Each of these programs has both
(one-mode) two-way and (two-mode) three-way capability. In the latter
case, both techniques assume the weighted Euclidean, or INDSCAL model.
The pri~acipal new feature of the ALSCAL treatment of three-way data is
that the program provides a nonmetric implementation of the INDSCAL
model. Another capability, also not available in other approaches (e.g.
INDSCAL) to fitting the weighted Euclidean model, is the provision for
missing or replicated data. In the case of MULTISCALE, which is re-
stricted to the metric case, there are some points to be emphasized concern-
ing three-way data. First, the asymptotic chi-square criterion for tests of
statistical significance of dimensions is more questionable than in the two-
way case. Ramsay (1979a) has devised an adjustment in degrees of freedom
to expedite more valid nominal levels of significance. In addition, of course,
MULTISCALE in the three-way case allows the definition of confidence
regions for subject weights as well as for stimulus points. In research
currently underway, Sharon Weinberg is comparing the confidence regions
produced by MULTISCALE with those produced by straightforward jack-
knifing of INDSCAL, a less model-specific procedure employed earlier by
Cohen (1974a) and Ebbesen (1977).

A mathematical development that has led to some important new al-
gorithms for the INDSCAL model is SchiSnemann’s (1972) "analytic solu-
tion for a class of subjective metrics models." This solution, however, is
appropriate only for errorless data that fit the model exactly. More robust
modifications have been provided by Carroll & Chang (1972a), Sch~ine-
mann et al (1976), and de Leeuw & Pruzansky (1978). These three modifica-
tions all have the advantage that they provide approximate solutions for the
weighted Euclidean or INDSCAL model in much less time than for the
more standard implementations (Carroll & Chang 1970, Pruzansky 1975,
Takanc et al 1977, Ramsay 1977b). The solutions resulting from the
more rapid algorithms often provide useful initial configurations for the
standard approaches, which have more well-defined and probably more
stable numerical properties. Another approach providing an initial config-
urationt for the INDSCAL procedure is implemented in a program called
SINDSCAL-LS (Carroll & Pruzansky 1979), based on a special case 
CANDELINC (called LINCINDS) providing a linearly constrained ver-
sion of INDSCAL. SINDSCAL-LS uses the stimulus space and/or subjects
space ttom three-mode scaling to define the constraint matrices (cf Cohen
1974b, MacCallum 1976).

A final approach to be discussed here is one by Lingoes & Borg (1978),
based generally on using "Procrustean" configuration matching techniques,
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MULTIDIMENSIONAL SCALING 633

called PINDIS (for Procrustean INdividual Differences Scaling). 
addition to providing options for fitting models of the INDSCAL and
IDIOSCAL variety, PINDIS introduces a new "vector weighting" or "per-
spective" model.

APPLICATIONS OF TWO-MODE THREE-WAY SYMMETRIC EU-
CLIDEAN MODELS Along with the increased capabilities of higher-way
models, the user must accept the responsibility for offering convincing
interpretations of a larger number’of fitted parameters. Accordingly, the
highly elegant work of Bisanz et al (1978) and LaPorte & Voss (1979)
closely related the model parameters of INDSCAL solutions to substantive
issues in the study of memory for prose. Other interesting results in the area
of memory and cognition can be found in Shoben (1974), Howard & How-
ard (1977), and Friendly (1977). There have been many three-way analyses
of perceptual data, including the studies reviewed in Carroll & Wish
(1974a,b) and Wish & Carroll (1974). Other such papers include Carroll 
Chang (1974), Walden & Montgomery (1975), Fraser (1976), Chang 
Carroll (1978), Getty et al (1979), Soli &Arabie (1979), Arabie 
(1980). Researchers in social psychology and sociology have been especially
active in applying the weighted Euclidean model (e.g. Rosenberg & Kim
1975; Breiger et al 1975; Wish 1975, 1976; Wish et al 1976; Wish & Kaplan
1977; Coxon & Jones 1978; Wish 1979a,b). The studies by Wish and his
colleagues used the INDSCAL model and obtained substantive results
supportive of Wish’s implicit theory of interpersonal communication.

CONSTRAINED SYMMETRIC EUCLIDEAN MODELS (FOR TWO-MODE
THREE-WAY DATA) A constrained approach to individual differences
MDS that takes as its basic model the Tucker three-mode scaling model has
been provided by Bloxom (1978), who imposes various equality constraints
so that parameters are equal to each other or to prespecified values. Bloxom
(1978) also includes a constrained version of the INDSCAL model as 
special case, since INDSCAL itself corresponds to three-mode scaling with
all (off diagonal) dimension cosines constrained to zero, and all three modes
constrained to have the same number of dimensions.

A different approach to a constrained INDSCAL analysis is provided in
a procedure called LINCINDS (for LINearly Constrained INDSCAL) that
is a special case of the CANDELINC procedure (Carroll, Pruzansky 
Kruskal 1979) to be discussed in detail under constrained three-mode three-
way scalar product models. In LINCINDS the INDSCAL stimulus coordi-
nates, subject weights, or both can be constrained to be linearly related to
a set of exogenous ("outside") variables (measured on the stimuli, subjects,
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634 CARROLL & ARABIE

or both). Specifically, the coordinate xir of the ith stimulus on the rth
dimension can be constrained to be of the form

S

xir := ~brsvis ,
s~l

where v~ is the known value of stimulus i on exogenous variable s, and
b~s is a fitted coei~eient (analogous to a regression coefficient in the least
squares regression equation predicting dimension r from the S exogenous
variables). In practice it has been found inappropriate to use this procedure
to constrain the subject weights, however, both from empirical experience
and for theoretical reasons related to MacCallum’s (1977) criticism 
applying linear procedures to INDSCAL weights, although we regard his
arguments as overstated (see Carroll, Pruzansky & Kruskal 1979).

NONSYMMETRIC EUCLIDEAN MODELS (FOR TWO-MODE THREE-
WAY DATA) DeSarbo (1978) has produced a three-way metric unfolding
appro~tch which can accommodate nonsymmetric data according to the first
general principle listed above for such data. Also, as noted above in the
discussion of Young’s (1975a) ASYMSCAL, there is a three-way general-
izatio~t of that model.

Scalar Product Models (for Two-mode Three-way Data)

While not originally formulated as such, both the INDSCAL (Carroll 
Chang 1970) and three-mode scaling (Tucker 1972) procedures have been
applied directly to scalar product data. Both methods ordinarily start out
with dissimilarities data and, via preprocessing, transform these data into
estimated scalar product matrices, which are then analyzed by a symmetric
version of three-way CANDECOMP or of three-mode factor analysis,
respectively. Either procedure just as easily fits a model directly for two-
mode three-way scalar product data. Moreover, the INDSCAL program
(Chang & Carroll 1969) and its successor SINDSCAL (Pruzansky 1975)
both h~ave options to deal with scalar product data directly.

A s,~alar product model explicitly formulated for nonsymmetric two-
mode three-way data is a three-way version of Harshman’s (1975, 1978)
DEDICOM model. This is a generalization of the one-mode two-way
DEDICOM model to the two-mode three-way case. A set of dimension
weights analogous to those assumed in the INDSCAL-CANDECOMP-
PARA~FAC models are introduced as parameters describing the second
mode (and third way), which may correspond to subjects or other data
sources.

Another model for this type of nonsymmetric data has been formulated
by Carroll & Sen (1976), and was explicitly designed for the case of "cross
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MULTIDIMENSIONAL SCALING 635

impact" data, in which each of a number of subjects judges the impact of
each of a set of events on each other event. See Carroll (1977) for a descrip-
tion of the model and the corresponding analytic procedure, called Impact
Scaling.

THREE-MODE THREE-WAY DATA

Spatial Distance Models (for Three-mode Three-way Data)
As already mentioned in the section on distance models for two-mode
three-way nonsymmetric data, DeSarbo (1978) has implemented a three-
way metric unfolding procedure, which can be interpreted either as a direct
generalization of Sch~Snemann’s (1972) two-way metric unfolding model
and method or as a nonsymmetric generalization of INDSCAL. The
DeSarbo procedure, like Sch/Snemann’s, is both metric and unconditional.
(although a case can be made that DeSarbo’s approach is matrix condi-
tional). A typical data array to which this three-way unfolding procedure
can be applied is a set of subjects by stimuli matrices of preference scale
values, one such matrix for each of a number of situations or experimental
conditions.

Scalar Product Models (for Three-mode Three-way Data)
The two principal unconstrained models appropriate to this section
are the Tucker (1964) three-mode factor analysis model and the general
three-way case of CANDECOMP-PARAFAC. While there have been
some useful applications of three-mode factor analysis (Wiggins & Black-
burn 1976, Sjoberg 1977, Redfield & Stone 1979), there have so far been
very few convincing applications of the general three-mode three-way case
of CANDECOMP-PARAFAC (but see Harshman, Ladefoged & Gold-
stein 1977). CANDECOMP has mainly been useful (in its two-mode three-
way symmetric case) as the analytic underpinnings of the Carroll-Chang
INDSCAL procedure and, more recently, as the first step in DeSarbo’s
(1978) approach to three-way unfolding.

Turning now to constrained models, we note that the CANDELINC
approach, which has been referred to previously (Carroll, Pruzansky
& Kruskal 1979), is directly applicable to the three- or higher-way
CANDECOMP model. In the three-way case, CANDELINC allows linear
constraints on all modes, or on just one or two of the three modes. In
general these constraints take the form that the parameters for a given mode
must be linear combinations of a set of a priori external variables. These
external variables are defined via a "design matrix" for each of the linearly
constrained modes, with the design matrix containing the evaluated exter-
nal variables.
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636 CARROLL & ARABIE

HIGIHER-WAY DATA

Tucker’s three-mode factor analysis could easily be generalized to the high-
er-way case (see Carroll & Wish 1974a,b), but to our knowledge no actual
implementation has been achieved. The N-way CANDECOMP model has
been so implemented. While it has not been usefully applied to general
N-way multivariate data, one particular useful application has been to a
least squares fitting of the Lazarsfeld latent class model (Carroll, Pruzansky
& Green 1979).

DATA COLLECTION AND RELATED ISSUES

Altho~agh we have emphasized the development of models and their al-
gorithms, there has also been much research in the techniques used before
the model is to be fitted, including the perennial problem of comparing two
or more proximities matrices. The fact that the straightforward approaches
(e.g. correlating two matrices) encounter formidable ditficulties when infer-
ential tests are sought has often caused investigators to feel that only the
scalinl; output (but not the input matrices) could be compared. The conse-
quent practices have recently become less forgivable owing to results (Hu-
bert & Schultz 1976b, Hubert 1978) which generalized earlier work of
Mantel (1967) to allow significance tests for the correspondence between
two or more (Hubert 1979) input matrices as well as related applications.

The: extensive variety of models (and their associated types of input data)
notwithstanding, situations often arise where the data at hand are not
immediately compatible with the intended model. A typical example occurs
when a one-mode two-way nonmetric scaling representation is sought for
either of the modes of a two-mode two-way data set. Shepard (1972b) has
labeled as "indirect similarities" (also sometimes called "profile similari-
ties") the secondary data that ultimately serve as input to the program
implementing the model. An example consists of computing the squared
Euclidean distances (of Carroll 1968) between all pairs of rows/columns 
such a two-mode two-way data set.

One relevant area of research concerns the partitions that result when
subjects are asked to sort a set of stimuli into "homogeneous groups." For
analyses where differences be.tween subjects’ sortings are of interest, a vari-
ety of measures of distance between such partitions have been developed
(Boor~an &Arabie 1972, Arabie & Boorman 1973). For situations 
which the stimuli being sorted are of greater interest in the analysis, there
is an extensive literature on techniques for going from partitions of the
stimuli to one-mode two-way (stimuli by stimuli) data: Carroll (1968),
Rosenberg & Jones (1972), Rosenberg & Sedlak (1972), Rosenberg & 
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(1975), Wish (1976), Wish et al (1976), Wish & Kaplan (1977), 
& Jones (1979). Other papers relevant to indirect similarities data include
Sibson (1972), Lund (1974), Batchelder & Narens (1977), Arabic 
(1980). Finally, R. A. Harshman (personal communication) has reported
favorable results when two-way marginals are subtracted from three-way
data in applications of CANDECOMP-PARAFAC, and Kruskal (1977d)
has derived least squares properties supporting this strategy.

A related area of activity in scaling concerns the development of incom-
plete experimental designs to reduce the effort and expense involved in
collecting MDS data. For selectively obtaining data on a subset of the
n(n-1)/2 pairs of n stimuli, the following may serve as useful references:
Spence & Domoney (1974), Green & Bentler (1979), Deutscher (1980),
Green (1980), Isaac (1980), Kohler & Rushton (1980), Spence (1980),
Young et al (1980). For conjoint analysis, Green et al (1978) have discussed
an approach that spares researchers the need to execute a full factorial
design.

MDS: NEW AREAS OF USAGE

In addition to research activities in the United States, Canada, the United
Kingdom, the Netherlands, Israel, and Sweden, various other countries
have developed their own traditions of MDS. In Japan, Hayashi, Indow,
and others have been especially a.ctive (see references throughout this chap-
ter), and Okada and Wa~anabe have translated into Japanese the two vol-
umes of the 1969 Irvine conference (Shepard et al 1976, Romney et al 1977).
Bouroche and his colleagues in France have been responsible for many
developments and applications of scaling techniques (Bertier & Bouroche
1975, Bouroche & Dussaix 1975). In Germany, Feger (1978) and Bick 
Miiller have formed the core of groups actively developing and using MDS
and related methods. In the Soviet Union, there is continuing work by
Mirkin and others (Terekhin 1973, 1974; Kamenskii 1977).

With respect to disciplines, MDS has maintained a strong base in market-
ing research. There also appear to be possible applications in econometrics
(Maital 1978), and usage in political science (e.g. Weisberg 1972) and sociol-
ogy (e.g. Boorman & White 1976; Coxon & Jones 1977) is also apparent
from various references cited earlier. From an advocacy point of view,
perhaps the greatest gains in areas related to psychology have come from
geography (e.g. Tobler & Wineburg 1971, Olshavsky et al 1975, Golledge
& Spector 1978, Golledge et al 1980; also see other papers in Golledge &
Rayner 1980). We view this substantive interest in MDS from related
disciplines as providing a salutary diversity of assumptions upon which new
models can be formulated.
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AIDS TO USERS: TEXTBOOKS

MDS remains an area characterized by a considerable lag between new
methodological developments and routine use by nonspecialists (viz., the
majority of the consumer community). The fact that the two-volume Irvine
conference proceedings (Shepard et al 1972, Romney et al 1972) were never
intended to be a textbook has frustrated many instructors, and so have the
ongoing developments subsequent to publication of some of the most useful
textbooks (Dawes 1972, Green & Rao 1972, Green & Wind 1973). Fortu-
nately, a monograph by Kruskal & Wish (1978) has recently appeared, and
it is enainently usable as a textbook covering two- and three-way MDS of
proximities data. This monograph provides helpful guidelines to and exam-
ples of usage, and has been enthusiastically received by graduate and ad-
vanced undergraduate students in courses we have taught.

PROSPECTS

As stated in our introduction, our primary goal in this chapter has been to
impose a taxonomy on current models and methods so that their interrela-
tionships as well as various lacunae would be more apparent. While review-
ing developments and applications in MDS, we have noted several trends.
First, there is increased attention to the substantive appropriateness of these
models in contrast to earlier years when the techniques served primarily as
conve~tient vehicles (and sometimes steam rollers) for data reduction. Sec-
ond, we find increased realization that no particular model, in general, gives
"the true representation." Most analyses choose a model that at best cap-
tures part of the structure inherent in the data; the part not fitted often
awaits another analysis with a different model and perhaps a complemen-
tary interpretation as well. Third, we see a strong trend toward the develop-
ment of three-way models with applications of three- and higher-way
methods becoming almost as numerous as two-way applications. A develop-
ment not unrelated to the two preceding observations is that we see consid-
erable !interest in discrete and hybrid models and predict that their coverage
will be more extensive in the next chapter on MDS in this series.
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