
1

Xamoeba_general.c

/**/
/* xamoeba_general.c -- C code is from NUMERICAL RECIPES IN C --
 * Additional code written by Keith Poole
 * September - October 2009
 *
 Uses Nedler-Mead downhill simplex method to find a minimum/maximum
 of a multi-dimensional function
 |->amotry->func
Main -> amoeba --|
 |->func

 Amoeba initializes the simplex and calls func for each
 point in the simplex. The simplex starts at the usual
 triangluar definition plus the origin -- ndim +1.

 func is the user defined function being
 minimized/maximized;

 Amotry -- (from description in NUMERICAL RECIPES)
 Extrapolates by a factor, fac, through the face of the
 simplex across from a high point, tries, and replaces
 the high point if the new point is better.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define NRANSI

#define MP 26
#define NP 25
#define nrowX 1000
#define ncolX 25
#define FTOL 0.0000001
#define TINY 1.0e-10
#define NMAX 100000

void amoeba(double **p, double y[], int ndim, double ftol, double Y[], double
X[],
 double (*funk)(double [],double[],double[]), int *nfunk);
double func(double *,double *,double *);
double amotry(double **p, double y[], double psum[], int ndim, double Y[],
double X[],
 double (*funk)(double [],double[],double[]), int ihi, double
fac);

double func(double x[],double Y[], double X[])
{
 int i, j;
 double sum=0;
 double sumsquared=0;
 for(i=0;i<nrowX;i++)

2

 {
 sum=0.0;
 for(j=0;j<ncolX;j++)
 {
 sum=sum+X[i+j*nrowX]*x[j+1];
 }
 sumsquared = sumsquared + (Y[i]-sum)*(Y[i]-sum);
 }
 printf("%lf\n",sumsquared);
return sumsquared;

}
FILE *fp;
FILE *jp;

int main(void)
{
 int i,nfunc,j,ndim=NP;
// **p is a pointer to p[0][0] -- p is a matrix
 double *x,*y,**p;
 double *X, *Y;

 X = (double *) malloc (nrowX*ncolX*sizeof(double));
 Y = (double *) malloc (nrowX*sizeof(double));
 x = (double *) malloc ((NP+1)*sizeof(double));
 y = (double *) malloc ((MP+1)*sizeof(double));
/* Dynamic Allocation of a Matrix: */
/* First, allocate pointers to rows */
/* Second, allocate rows and set pointers to them -- note that p[0] is
 * a pointer to p[0][0:n] -- that is a row -- so the syntax below is
 * p[0][0:nrow*ncol] */
/* Third, form the matrix from step two -- the pointer to the kth row,
 * p[k] is set equal to the memory
 * location of the number of nrows-1 times the number of columns plus
 * the memory location of p[0] */
 p= (double **) malloc((MP+1)*sizeof(double*));
 p[0]=(double *) malloc((NP+1)*(MP+1)*sizeof(double));
 for (i=0;i<MP+1;i++)p[i]=p[0]+i*(NP+1);
//
 jp = fopen("c:/docs_c_summer_course/data_AMOEBA.txt","w");
 if((fp = fopen("c:/docs_c_summer_course/data_ols.txt","r"))==NULL)
 {
 printf("\nUnable to open file OLS_DATA.TXT: %s\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 else {

 fprintf(jp," Y and X = \n");
 for(i=0;i<nrowX;i++)
 {
 fscanf(fp,"%lf",&Y[i]);
 for(j=0;j<ncolX;j++)
 {
 fscanf(fp,"%lf",&X[i+j*nrowX]);

3

 }
 fprintf(jp,"%10d %12.6f", i,Y[i]);
 for(j=0;j<ncolX;j++)
 {
 fprintf(jp,"%12.6f",X[i+j*nrowX]);
 }
 fprintf(jp,"\n");
 }
 }
 for (i=1;i<=MP;i++) {
 for (j=1;j<=NP;j++)
/* if i == (j+1) is true then the value of x[j] = 1.0, otherwise =0.0 */
 x[j]=p[i][j]=(i == (j+1) ? 1.0 : 0.0);

 y[i]=func(x,Y,X);
 }
 amoeba(p,y,ndim,FTOL,Y,X,func,&nfunc);
 printf("\nNumber of function evaluations: %3d\n",nfunc);
 fprintf(jp,"\nNumber of function evaluations: %3d\n",nfunc);
 printf("Vertices of final 3-d simplex and\n");
 fprintf(jp,"Vertices of final 3-d simplex and\n");
 printf("function values at the vertices:\n\n");
 fprintf(jp,"function values at the vertices:\n\n");
 printf("%3s %10s %12s %12s %14s\n\n",
 "i","x[i]","y[i]","z[i]","function");
 for (i=1;i<=MP;i++) {
 printf("%3d ",i);
 fprintf(jp,"%3d ",i);
 for (j=1;j<=NP;j++) {
// printf("%12.6f ",p[i][j]);
 fprintf(jp,"%12.6f ",p[i][j]);
 }
 printf("%12.6f\n",y[i]);
 fprintf(jp,"%12.6f\n",y[i]);
 }
// printf("\nTrue minimum is at (0.5,0.6,0.7)\n");
 free(X);
 free(Y);
 free(x);
 free(y);
 free(p);
 return 0;
}

void amoeba(double **p, double y[], int ndim, double ftol, double Y[], double
X[],
 double (*funk)(double [], double[], double[]), int *nfunk)
{
 int i,ihi,ilo,inhi,j,mpts=ndim+1;
 double rtol,sum,swap,ysave,ytry,*psum;

 psum = (double *) malloc ((ndim+1)*sizeof(double));
 *nfunk=0;
 for (j=1;j<=ndim;j++) {
 for (sum=0.0,i=1;i<=mpts;i++) sum += p[i][j];

4

 psum[j]=sum;}
 for (;;) {
 ilo=1;
 ihi = y[1]>y[2] ? (inhi=2,1) : (inhi=1,2);
 for (i=1;i<=mpts;i++) {
 if (y[i] <= y[ilo]) ilo=i;
 if (y[i] > y[ihi]) {
 inhi=ihi;
 ihi=i;
 } else if (y[i] > y[inhi] && i != ihi) inhi=i;
 }
 rtol=2.0*fabs(y[ihi]-y[ilo])/(fabs(y[ihi])+fabs(y[ilo])+TINY);
 if (rtol < ftol) {
 swap= y[1];
 y[1]=y[ilo];
 y[ilo]=swap;
 for (i=1;i<=ndim;i++)
 {
 swap=p[1][i];
 p[1][i]=p[ilo][i];
 p[ilo][i]=swap;
 }
 break;
 }
 if (*nfunk >= NMAX)
 {
 printf("NMAX exceeded");
 exit(EXIT_FAILURE);
 }
 *nfunk += 2;
 ytry=amotry(p,y,psum,ndim,Y,X,funk,ihi,-1.0);
 if (ytry <= y[ilo])
 ytry=amotry(p,y,psum,ndim,Y,X,funk,ihi,2.0);
 else if (ytry >= y[inhi]) {
 ysave=y[ihi];
 ytry=amotry(p,y,psum,ndim,Y,X,funk,ihi,0.5);
 if (ytry >= ysave) {
 for (i=1;i<=mpts;i++) {
 if (i != ilo) {
 for (j=1;j<=ndim;j++)

 p[i][j]=psum[j]=0.5*(p[i][j]+p[ilo][j]);
 y[i]=(*funk)(psum,Y,X);
 }
 }
 *nfunk += ndim;
 for (j=1;j<=ndim;j++) {
 for (sum=0.0,i=1;i<=mpts;i++) sum +=
p[i][j];
 psum[j]=sum;}
 }
 } else --(*nfunk);
 }
 free(psum);
}

5

double amotry(double **p, double y[], double psum[], int ndim, double Y[],
double X[],
 double (*funk)(double [], double[], double[]), int ihi, double
fac)
{
 int j;
 double fac1,fac2,ytry,*ptry;

 ptry = (double *) malloc ((ndim+1)*sizeof(double));
 fac1=(1.0-fac)/ndim;
 fac2=fac1-fac;
 for (j=1;j<=ndim;j++) ptry[j]=psum[j]*fac1-p[ihi][j]*fac2;
 ytry=(*funk)(ptry,Y,X);
 if (ytry < y[ihi]) {
 y[ihi]=ytry;
 for (j=1;j<=ndim;j++) {
 psum[j] += ptry[j]-p[ihi][j];
 p[ihi][j]=ptry[j];
 }
 }
 free(ptry);
 return ytry;
}

6

xamoeba_test.c

/**/
/* xamoeba_test.c -- C code is from NUMERICAL RECIPES IN C --
 * Additional code written by Keith Poole
 * September - October 2009
 *
 Uses Nedler-Mead downhill simplex method to find a minimum/maximum
 of a multi-dimensional function
 |->amotry->func
Main -> amoeba --|
 |->func

 Amoeba initializes the simplex and calls func for each
 point in the simplex. The simplex starts at the usual
 triangluar definition plus the origin -- ndim +1.

 func is the user defined function being
 minimized/maximized;

 Amotry -- (from description in NUMERICAL RECIPES)
 Extrapolates by a factor, fac, through the face of the
 simplex across from a high point, tries, and replaces
 the high point if the new point is better.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define NRANSI

#define MP 26
#define NP 25
#define nrowX 1000
#define ncolX 25
#define FTOL 0.0000001
#define TINY 1.0e-10
#define NMAX 100000
#define NR_END 1
#define FREE_ARG char*

void amoeba(double **p, double y[], int ndim, double ftol,
 double (*funk)(double []), int *nfunk);
double func(double *);
double amotry(double **p, double y[], double psum[], int ndim,
 double (*funk)(double []), int ihi, double fac);
double keithrules(double x[]);

double func(double x[])
{
 return keithrules(x);
}
static double *Y,*X;
FILE *fp;

7

FILE *jp;

int main(void)
{
 int i,nfunc,j,ndim=NP;
 double *x,*y,**p;

 X = (double *) malloc (nrowX*ncolX*sizeof(double));
 Y = (double *) malloc (nrowX*sizeof(double));
 x = (double *) malloc ((NP+1)*sizeof(double));
 y = (double *) malloc ((MP+1)*sizeof(double));
/* Dynamic Allocation of a Matrix: */
/* First, allocate pointers to rows */
/* Second, allocate rows and set pointers to them -- note that p[0] is
 * a pointer to p[0][0:n] -- that is a row -- so the syntax below is
 * p[0][0:nrow*ncol] */
/* Third, form the matrix from step two -- the pointer to the kth row,
 * p[k] is set equal to the memory
 * location of the number of nrows-1 times the number of columns plus
 * the memory location of p[0] */
 p= (double **) malloc((MP+1)*sizeof(double*));
 p[0]=(double *) malloc((NP+1)*(MP+1)*sizeof(double));
 for (i=0;i<MP+1;i++)p[i]=p[0]+i*(NP+1);
//
 jp = fopen("c:/docs_c_summer_course/data_AMOEBA.txt","w");
 if((fp = fopen("c:/docs_c_summer_course/data_ols.txt","r"))==NULL)
 {
 printf("\nUnable to open file OLS_DATA.TXT: %s\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 else {

 fprintf(jp," Y and X = \n");
 for(i=0;i<nrowX;i++)
 {
 fscanf(fp,"%lf",&Y[i]);
 for(j=0;j<ncolX;j++)
 {
 fscanf(fp,"%lf",&X[i+j*nrowX]);
 }
 fprintf(jp,"%10d %12.6f", i,Y[i]);
 for(j=0;j<ncolX;j++)
 {
 fprintf(jp,"%12.6f",X[i+j*nrowX]);
 }
 fprintf(jp,"\n");
 }
 }
/* if i == (j+1) is true then the value of x[j] = 1.0, otherwise =0.0 */
 for (i=1;i<=MP;i++) {
 for (j=1;j<=NP;j++)
 x[j]=p[i][j]=(i == (j+1) ? 1.0 : 0.0);
 y[i]=func(x);
 }

8

 amoeba(p,y,ndim,FTOL,func,&nfunc);
 printf("\nNumber of function evaluations: %3d\n",nfunc);
 fprintf(jp,"\nNumber of function evaluations: %3d\n",nfunc);
 printf("Vertices of final 3-d simplex and\n");
 fprintf(jp,"Vertices of final 3-d simplex and\n");
 printf("function values at the vertices:\n\n");
 fprintf(jp,"function values at the vertices:\n\n");
 printf("%3s %10s %12s %12s %14s\n\n",
 "i","x[i]","y[i]","z[i]","function");
 for (i=1;i<=MP;i++) {
 printf("%3d ",i);
 fprintf(jp,"%3d ",i);
 for (j=1;j<=NP;j++) {
 fprintf(jp,"%12.6f ",p[i][j]);
 }
 printf("%12.6f\n",y[i]);
 fprintf(jp,"%12.6f\n",y[i]);
 }
 free(X);
 free(Y);
 free(x);
 free(y);
 free(p);
 return 0;
}

void amoeba(double **p, double y[], int ndim, double ftol,
 double (*funk)(double []), int *nfunk)
{
 int i,ihi,ilo,inhi,j,mpts=ndim+1;
 double rtol,sum,swap,ysave,ytry,*psum;

 psum = (double *) malloc ((ndim+1)*sizeof(double));
 *nfunk=0;
 for (j=1;j<=ndim;j++) {
 for (sum=0.0,i=1;i<=mpts;i++) sum += p[i][j];
 psum[j]=sum;}
 for (;;) {
 ilo=1;
 ihi = y[1]>y[2] ? (inhi=2,1) : (inhi=1,2);
 for (i=1;i<=mpts;i++) {
 if (y[i] <= y[ilo]) ilo=i;
 if (y[i] > y[ihi]) {
 inhi=ihi;
 ihi=i;
 } else if (y[i] > y[inhi] && i != ihi) inhi=i;
 }
 rtol=2.0*fabs(y[ihi]-y[ilo])/(fabs(y[ihi])+fabs(y[ilo])+TINY);
 if (rtol < ftol) {
 swap= y[1];
 y[1]=y[ilo];
 y[ilo]=swap;
 for (i=1;i<=ndim;i++)
 {
 swap=p[1][i];

9

 p[1][i]=p[ilo][i];
 p[ilo][i]=swap;
 }
 break;
 }
 if (*nfunk >= NMAX)
 {
 printf("NMAX exceeded");
 exit(EXIT_FAILURE);
 }
 *nfunk += 2;
 ytry=amotry(p,y,psum,ndim,funk,ihi,-1.0);
 if (ytry <= y[ilo])
 ytry=amotry(p,y,psum,ndim,funk,ihi,2.0);
 else if (ytry >= y[inhi]) {
 ysave=y[ihi];
 ytry=amotry(p,y,psum,ndim,funk,ihi,0.5);
 if (ytry >= ysave) {
 for (i=1;i<=mpts;i++) {
 if (i != ilo) {
 for (j=1;j<=ndim;j++)

 p[i][j]=psum[j]=0.5*(p[i][j]+p[ilo][j]);
 y[i]=(*funk)(psum);
 }
 }
 *nfunk += ndim;
 for (j=1;j<=ndim;j++) {
 for (sum=0.0,i=1;i<=mpts;i++) sum +=
p[i][j];
 psum[j]=sum;}
 }
 } else --(*nfunk);
 }
 free(psum);
}

double amotry(double **p, double y[], double psum[], int ndim,
 double (*funk)(double []), int ihi, double fac)
{
 int j;
 double fac1,fac2,ytry,*ptry;

 ptry = (double *) malloc ((ndim+1)*sizeof(double));
 fac1=(1.0-fac)/ndim;
 fac2=fac1-fac;
 for (j=1;j<=ndim;j++) ptry[j]=psum[j]*fac1-p[ihi][j]*fac2;
 ytry=(*funk)(ptry);
 if (ytry < y[ihi]) {
 y[ihi]=ytry;
 for (j=1;j<=ndim;j++) {
 psum[j] += ptry[j]-p[ihi][j];
 p[ihi][j]=ptry[j];
 }

10

 }
 free(ptry);
 return ytry;
}

double keithrules(double x[])
{
 int i, j;
 double sum=0;
 double sumsquared=0;
 for(i=0;i<nrowX;i++)
 {
 sum=0.0;
 for(j=0;j<ncolX;j++)
 {
 sum=sum+X[i+j*nrowX]*x[j+1];
 }
 sumsquared = sumsquared + (Y[i]-sum)*(Y[i]-sum);
 }
 printf("%lf\n",sumsquared);
 return sumsquared;

}

11

/*
xpowell_test.c -- C code is from NUMERICAL RECIPES IN C --
 * Additional code written by Keith Poole
 * September - October 2009
 *
 Uses Powell's Quadratically Convergent Method to find a minimum/maximum
 of a multi-dimensional function
 |->func
Main -> powell --| | ->mnbrak|
 |->linmin->| |
 |->brent->f1dim->func

 Powell minimizes a function of n variables. The
 starting values are in the vector p[1:n] and an n by n
 matrix of directions -- normally a simplex.

 func is the user defined function being
 minimized/maximized;

 linmin -- Finds the minimum on a line joining p and xi.

 mnbrak -- Used by linmin. It finds three points that bracket the
 minimum.

 brent -- Given the 3 points from mnbrak, it finds the
 minimum
*/

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define NRANSI
#define ITMAX 2000
#define NDIM 25
#define nrowX 1000
#define ncolX 25
#define FTOL 1.0e-6
#define TOL 2.0e-4
#define GOLD 1.618034
#define GLIMIT 100.0
#define TINY 1.0e-20
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
static double maxarg1,maxarg2;
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1) > (maxarg2) ? (maxarg1) : (maxarg2))

#define CGOLD 0.3819660
#define ZEPS 1.0e-10

/* Driver for routine powell */

void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
 double (*func)(double []));
void linmin(double p[], double xi[], int n, double *fret, double (*func)(double []));
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
 double (*func)(double));
double brent(double ax, double bx, double cx, double (*f)(double), double tol,
 double *xmin);
double f1dim(double x);
double keithrules(double x[]);

double func(double x[])
{
 return keithrules(x);

12

}
int ncom;
double *pcom,*xicom,(*nrfunc)(double []);
static double *Y,*X;
FILE *fp;
FILE *jp;

int main(void)
{
 int i,iter,j;
 double fret,**xi;
 static double
p[]={0.0,0.9,1.5,1.5,2.5,1.5,1.5,2.5,1.5,1.5,2.5,1.5,1.5,2.5,1.5,1.5,2.5,1.5,1.5,2.5,1.5,1.5,2.5,
1.5,1.5,2.5};
 X = (double *) malloc (nrowX*ncolX*sizeof(double));
 Y = (double *) malloc (nrowX*sizeof(double));
/* Dynamic Allocation of a Matrix: */
/* First, allocate pointers to rows */
/* Second, allocate rows and set pointers to them -- note that p[0] is
 * a pointer to p[0][0:n] -- that is a row -- so the syntax below is
 * p[0][0:nrow*ncol] */
/* Third, form the matrix from step two -- the pointer to the kth row,
 * p[k] is set equal to the memory
 * location of the number of nrows-1 times the number of columns plus
 * the memory location of p[0] */
 xi= (double **) malloc((NDIM+1)*sizeof(double*));
 xi[0]=(double *) malloc((NDIM+1)*(NDIM+1)*sizeof(double));
 for (i=0;i<NDIM+1;i++)xi[i]=xi[0]+i*(NDIM+1);
//
//
 jp = fopen("c:/docs_c_summer_course/data_POWELL.txt","w");
 if((fp = fopen("c:/docs_c_summer_course/data_ols.txt","r"))==NULL)
 {
 printf("\nUnable to open file OLS_DATA.TXT: %s\n", strerror(errno));
 exit(EXIT_FAILURE);
 }
 else {

 fprintf(jp," Y and X = \n");
 for(i=0;i<nrowX;i++)
 {
 fscanf(fp,"%lf",&Y[i]);
 for(j=0;j<ncolX;j++)
 {
 fscanf(fp,"%lf",&X[i+j*nrowX]);
 }
 fprintf(jp,"%10d %12.6f", i,Y[i]);
 for(j=0;j<ncolX;j++)
 {
 fprintf(jp,"%12.6f",X[i+j*nrowX]);
 }
 fprintf(jp,"\n");
 }
 }
 for (i=1;i<=NDIM;i++)
 for (j=1;j<=NDIM;j++)
 xi[i][j]=(i == j ? 1.0 : 0.0);
/* if i == j is true then the value of x[i][j] = 1.0, otherwise =0.0 */
 powell(p,xi,NDIM,FTOL,&iter,&fret,func);
 fprintf(jp,"Iterations: %3d\n\n",iter);
 printf("Iterations: %3d\n\n",iter);
 fprintf(jp,"Minimum found at: \n");
 printf("Minimum found at: \n");
 for (i=1;i<=NDIM;i++) {
 fprintf(jp,"%5d %12.6f\n",i, p[i]);
 printf("%5d %12.6f\n",i, p[i]);
 }
 fprintf(jp,"\n\nMinimum function value = %12.6f \n\n",fret);
 printf("\n\nMinimum function value = %12.6f \n\n",fret);

13

 free(xi);
 free(Y);
 free(X);
 return 0;
}
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
 double (*func)(double []))
{
 int i,ibig,j;
 double del,fp,fptt,t,*pt,*ptt,*xit;

 pt = (double *) malloc ((n+1)*sizeof(double));
 ptt = (double *) malloc ((n+1)*sizeof(double));
 xit = (double *) malloc ((n+1)*sizeof(double));
 *fret=(*func)(p);
 for (j=1;j<=n;j++) pt[j]=p[j];
 for (*iter=1;;++(*iter)) {
 fp=(*fret);
 ibig=0;
 del=0.0;
 for (i=1;i<=n;i++) {
 for (j=1;j<=n;j++) xit[j]=xi[j][i];
 fptt=(*fret);
 linmin(p,xit,n,fret,func);
 if (fptt-(*fret) > del) {
 del=fptt-(*fret);
 ibig=i;
 }
 }
 if (2.0*(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))+TINY) {
 free(xit);
 free(ptt);
 free(pt);
 return;
 }
 if (*iter == ITMAX)
 {
 printf("powell exceeding maximum iterations.");
 exit(EXIT_FAILURE);
 }
 for (j=1;j<=n;j++) {
 ptt[j]=2.0*p[j]-pt[j];
 xit[j]=p[j]-pt[j];
 pt[j]=p[j];
 }
 fptt=(*func)(ptt);
 if (fptt < fp) {
 t=2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-
del*(fp-fptt)*(fp-fptt);
 if (t < 0.0) {
 linmin(p,xit,n,fret,func);
 for (j=1;j<=n;j++) {
 xi[j][ibig]=xi[j][n];
 xi[j][n]=xit[j];
 }
 }
 }
 }
}

void linmin(double p[], double xi[], int n, double *fret, double (*func)(double []))
{
 int j;
 double xx,xmin,fx,fb,fa,bx,ax;

 ncom=n;
 pcom = (double *) malloc ((n+1)*sizeof(double));
 xicom = (double *) malloc ((n+1)*sizeof(double));

14

 nrfunc=func;
 for (j=1;j<=n;j++) {
 pcom[j]=p[j];
 xicom[j]=xi[j];
 }
 ax=0.0;
 xx=1.0;
 mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
 *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
 for (j=1;j<=n;j++) {
 xi[j] *= xmin;
 p[j] += xi[j];
 }
 free(xicom);
 free(pcom);
}

void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
 double (*func)(double))
{
 double ulim,u,r,q,fu,dum;

 *fa=(*func)(*ax);
 *fb=(*func)(*bx);
 if (*fb > *fa) {
 SHFT(dum,*ax,*bx,dum)
 SHFT(dum,*fb,*fa,dum)
 }
 *cx=(*bx)+GOLD*(*bx-*ax);
 *fc=(*func)(*cx);
 while (*fb > *fc) {
 r=(*bx-*ax)*(*fb-*fc);
 q=(*bx-*cx)*(*fb-*fa);
 u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
 (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
 ulim=(*bx)+GLIMIT*(*cx-*bx);
 if ((*bx-u)*(u-*cx) > 0.0) {
 fu=(*func)(u);
 if (fu < *fc) {
 *ax=(*bx);
 *bx=u;
 *fa=(*fb);
 *fb=fu;
 return;
 } else if (fu > *fb) {
 *cx=u;
 *fc=fu;
 return;
 }
 u=(*cx)+GOLD*(*cx-*bx);
 fu=(*func)(u);
 } else if ((*cx-u)*(u-ulim) > 0.0) {
 fu=(*func)(u);
 if (fu < *fc) {
 SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
 SHFT(*fb,*fc,fu,(*func)(u))
 }
 } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
 u=ulim;
 fu=(*func)(u);
 } else {
 u=(*cx)+GOLD*(*cx-*bx);
 fu=(*func)(u);
 }
 SHFT(*ax,*bx,*cx,u)
 SHFT(*fa,*fb,*fc,fu)
 }
}

15

double brent(double ax, double bx, double cx, double (*f)(double), double tol,
 double *xmin)
{
 int iter;
 double a,b,d,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm;
 double e=0.0;

 a=(ax < cx ? ax : cx);
 b=(ax > cx ? ax : cx);
 x=w=v=bx;
 fw=fv=fx=(*f)(x);
 for (iter=1;iter<=ITMAX;iter++) {
 xm=0.5*(a+b);
 tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
 if (fabs(x-xm) <= (tol2-0.5*(b-a))) {
 *xmin=x;
 return fx;
 }
 if (fabs(e) > tol1) {
 r=(x-w)*(fx-fv);
 q=(x-v)*(fx-fw);
 p=(x-v)*q-(x-w)*r;
 q=2.0*(q-r);
 if (q > 0.0) p = -p;
 q=fabs(q);
 etemp=e;
 e=d;
 if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
 d=CGOLD*(e=(x >= xm ? a-x : b-x));
 else {
 d=p/q;
 u=x+d;
 if (u-a < tol2 || b-u < tol2)
 d=SIGN(tol1,xm-x);
 }
 } else {
 d=CGOLD*(e=(x >= xm ? a-x : b-x));
 }
 u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
 fu=(*f)(u);
 if (fu <= fx) {
 if (u >= x) a=x; else b=x;
 SHFT(v,w,x,u)
 SHFT(fv,fw,fx,fu)
 } else {
 if (u < x) a=u; else b=u;
 if (fu <= fw || w == x) {
 v=w;
 w=u;
 fv=fw;
 fw=fu;
 } else if (fu <= fv || v == x || v == w) {
 v=u;
 fv=fu;
 }
 }
 }
 printf("Too many iterations in brent");
 exit(EXIT_FAILURE);
 *xmin=x;
 return fx;
}

double f1dim(double x)
{
 int j;
 double f,*xt;

16

 xt = (double *) malloc ((ncom+1)*sizeof(double));
 for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
 f=(*nrfunc)(xt);
 free(xt);
 return f;
}

double keithrules(double x[])
{
 int i, j;
 double sum=0;
 double sumsquared=0;
 for(i=0;i<nrowX;i++)
 {
 sum=0.0;
 for(j=0;j<ncolX;j++)
 {
 sum=sum+X[i+j*nrowX]*x[j+1];
 }
 sumsquared = sumsquared + (Y[i]-sum)*(Y[i]-sum);
 }
 printf("%lf\n",sumsquared);
 return sumsquared;

}

17

Error function
From Wikipedia, the free encyclopedia

Jump to: navigation, search

Plot of the error function

In mathematics, the error function (also called the Gauss error function) is a special function
(non-elementary) of sigmoid shape which occurs in probability, statistics, materials science, and
partial differential equations. It is defined as:

The complementary error function, denoted erfc, is defined in terms of the error function:

The complex error function, denoted w(x), (also known as the Faddeeva function) is also
defined in terms of the error function:

18

The error function is essentially identical to the standard normal cumulative distribution
function, denoted Φ, as they differ only by scaling and translation. Indeed,

or rearranged for erf and erfc:

xamoeba_test_bush_probit.c

/**/
/* xamoeba_test.c -- C code is from NUMERICAL RECIPES IN C --
 * Additional code written by Keith Poole
 * September - October 2009
 *
 Uses Nedler-Mead downhill simplex method to find a minimum/maximum
 of a multi-dimensional function
 |->amotry->func
Main -> amoeba --|
 |->func

 Amoeba initializes the simplex and calls func for each
 point in the simplex. The simplex starts at the usual
 triangluar definition plus the origin -- ndim +1.

 func is the user defined function being
 minimized/maximized;

 Amotry -- (from description in NUMERICAL RECIPES)
 Extrapolates by a factor, fac, through the face of the
 simplex across from a high point, tries, and replaces
 the high point if the new point is better.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define NRANSI

#define MP 9
#define NP 8
#define nrowX 432

19

#define ncolX 8
#define FTOL 0.0000001
#define TINY 1.0e-10
#define NMAX 10000

ETC ETC ETC

The Function the Calculates the probit

double keithrules(double x[])
{
 int i, j, k1, k0, l1, l0;
 double sum=0;
 double phi=0.0;
 double xphi=0.0;
 double sumsquared=0;
 k1=0;
 k0=0;
 for(i=0;i<nrowX;i++)
 {
 sum=0.0;
 for(j=0;j<ncolX;j++)
 {
 sum=sum+X[i+j*nrowX]*x[j+1];
 }
 phi = (erf(fabs(sum)/sqrt(2.0)))/2.0 + 0.5;
 xphi = phi;
 if(sum < 0.0)phi=1.0-xphi;
 xphi = phi;
 if(xphi > 0.99999999)phi=0.9999999;
 if(xphi < 0.00000001)phi=0.0000001;
// Voted for Bush
 if(Y[i] >= 50.0){
 l1=1;
 l0=0;
 k1=k1+1;
 sumsquared = sumsquared + log(phi);
 }
// Voted for Gore
 if(Y[i] < 50.0){
 l1=0;
 l0=1;
 k0=k0+1;
 sumsquared = sumsquared + log(1.0 - phi);
 }
 }
 printf("%lf\n",-sumsquared);
 return -sumsquared;

}

20

STATA Probit Output

file C:\docs_c_summer_course\hdmg106_2009_fixed.dta saved

. probit ybush black00 south hispanic00 income owner00 dwnom1n dwnom2n

Iteration 0: log likelihood = -299.27289
Iteration 1: log likelihood = -155.22888
Iteration 2: log likelihood = -134.72283
Iteration 3: log likelihood = -130.45346
Iteration 4: log likelihood = -130.1108
Iteration 5: log likelihood = -130.10873
Iteration 6: log likelihood = -130.10873

Probit estimates Number of obs = 432
 LR chi2(7) = 338.33
 Prob > chi2 = 0.0000
Log likelihood = -130.10873 Pseudo R2 = 0.5653

--
 ybush | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 black00 | -.0285248 .0098015 -2.91 0.004 -.0477354 -.0093142
 south | .7685989 .2545868 3.02 0.003 .269618 1.26758
 hispanic00 | -.0089129 .0069185 -1.29 0.198 -.0224729 .004647
 income | -.0240403 .0126564 -1.90 0.058 -.0488463 .0007658
 owner00 | .0236413 .0143807 1.64 0.100 -.0045444 .0518271
 dwnom1n | 2.760012 .2621742 10.53 0.000 2.24616 3.273864
 dwnom2n | 1.136143 .2339367 4.86 0.000 .6776357 1.594651
 _cons | -.9799419 1.079705 -0.91 0.364 -3.096126 1.136242
--

note: 1 failure and 0 successes completely determined.

. probit ygore black00 south hispanic00 income owner00 dwnom1n dwnom2n

Iteration 0: log likelihood = -296.05574
Iteration 1: log likelihood = -149.55538
Iteration 2: log likelihood = -128.23315
Iteration 3: log likelihood = -123.81516
Iteration 4: log likelihood = -123.48492
Iteration 5: log likelihood = -123.48326
Iteration 6: log likelihood = -123.48326

Probit estimates Number of obs = 432
 LR chi2(7) = 345.14
 Prob > chi2 = 0.0000
Log likelihood = -123.48326 Pseudo R2 = 0.5829

--
 ygore | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 black00 | .037454 .0096159 3.90 0.000 .0186072 .0563007
 south | -.5341551 .2623903 -2.04 0.042 -1.048431 -.0198796
 hispanic00 | .0142289 .0068103 2.09 0.037 .000881 .0275768
 income | .0331017 .0128455 2.58 0.010 .007925 .0582783
 owner00 | -.0321204 .0135469 -2.37 0.018 -.0586718 -.005569
 dwnom1n | -2.590046 .2538889 -10.20 0.000 -3.087659 -2.092433
 dwnom2n | -.8584056 .2325336 -3.69 0.000 -1.314163 -.4026481
 _cons | .6039696 1.017087 0.59 0.553 -1.389484 2.597424
--

note: 0 failures and 1 success completely determined.

