Xamoeba_general.c

/**/

/* xamoeba_general.c -- C code is from NUMERICAL RECIPES IN C --
* Additional code written by Keith Poole
* September - October 2009

*

Uses Nedler-Mead downhill simplex method to find a minimum/maximum
of a multi-dimensional function
| ->amotry->func
Main -> amoeba --|
| ->func

Amoeba initializes the simplex and calls func for each
point in the simplex. The simplex starts at the usual
triangluar definition plus the origin -- ndim +1.

func is the user defined function being
minimized/maximized;

Amotry -- (Ffrom description in NUMERICAL RECIPES)
Extrapolates by a factor, fac, through the face of the
simplex across from a high point, tries, and replaces
the high point if the new point is better.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define NRANSI

#define MP 26

#define NP 25

#define nrowX 1000
#define ncolX 25
#define FTOL 0.0000001
#define TINY 1.0e-10
#define NMAX 100000

void amoeba(double **p, double y[], int ndim, double ftol, double Y[], double

X0,

double (*funk)(double [],double[],double[]), int *nfunk);
double func(double *,double *,double *);
double amotry(double **p, double y[], double psum[], int ndim, double Y[],
double X[],

double (*funk)(double [].,double[],double[]), int ihi, double
fac);

double func(double x[],double Y[], double X[])
{

int i, j;

double sum=0;

double sumsquared=0;

for(i=0;i<nrowX;i++)

{
sum=0.0;
for(§=0;j<ncolX;j++)

sum=sum+X[i+j*nrowX]*x[j+1];

}

sumsquared = sumsquared + (Y[i]-sum)*(Y[i]-sum);

}
printf(C'%I\n"",sumsquared);
return sumsquared;

b
FILE *fp;
FILE *jp:

int main(void)

{
int i1,nfunc,j,ndim=NP;

// **p is a pointer to p[0][0] -- p is a matrix
double *X,*y,**p;
double *X, *Y;

X = (double *) malloc (nrowX*ncolX*sizeof(double));
Y = (double *) malloc (nrowX*sizeof(double));
X = (double *) malloc ((NP+1)*sizeof(double));
y = (double *) malloc ((MP+1)*sizeof(double));

/* Dynamic Allocation of a Matrix: */
/* First, allocate pointers to rows */
/* Second, allocate rows and set pointers to them -- note that p[0] is
* a pointer to p[0][0:n] -- that is a row —-- so the syntax below is
* p[O0][O:nrow*ncol] */
/* Third, form the matrix from step two -- the pointer to the kth row,
* p[k] is set equal to the memory
* location of the number of nrows-1 times the number of columns plus
* the memory location of p[0] */
p= (double **) malloc((MP+1)*sizeof(double*));
p[0]=(double *) malloc((NP+1)*(MP+1)*sizeof(double));
for (i=0;i<MP+1;i++)p[i]=p[0]+i*(NP+1);
//
Jjp = fopen('c:/docs_c_summer_course/data_AMOEBA.txt","w');
if((fp = fopen(''c:/docs_c_summer_course/data_ols.txt","r'))==NULL)
{

printf(""\nUnable to open file OLS DATA.TXT: %s\n",
strerror(errno));
exit(EXIT_FAILURE);
}

else {

fprintfgp,"” Y and X = \n");
Ffor(i=0; i<nrowX;i++)
{
fscanf(fp, "Wl ", &Y[i1]);
for(J=0;j<ncolX;j++)
{
fscant(fp, "%l ", &X[i+j*nrowX]);

2

}
fprintf(p,"%10d %12.6F", i,Y[i]);
for(§=0; j<ncolX;j++)

fprintf @p,"%12_.6F" , X[i+j*nrowX]);
3
fprintfgp,"™\n");
}
}
for (i=1;i<=MP;i++) {
for (J=1;j<=NP;j++)
/* 1F 1 == (J+1) is true then the value of x[]j] =
xpgl=plilLl=G == g+1) ?

yLi]=func(x,Y,X);

1.0, otherwise =0.0 */
1.0 : 0.0);

amoeba(p,y,ndim,FTOL,Y,X, func,&nfunc);
printf(""\nNumber of function evaluations: %3d\n",nfunc);
fprintfF(p, "\nNumber of function evaluations: %3d\n",nfunc);
printf("'Vertices of final 3-d simplex and\n™);
fprintf(p, "'Vertices of final 3-d simplex and\n');
printf(""function values at the vertices:\n\n");
fprintf(p,"function values at the vertices:\n\n");
printf("'%3s %10s %12s %12s %1l4s\n\n",

Uiyt ty[]t, vz, "function™) ;
for (i=1;i<=MP;i++) {

printf("'%3d ",i);

fprintfQp,"%3d ",1);

for (J=1;j<=NP;j++) {

// printf('%12.6F ",p[i1L1):
fprintf(p,"%12.6F “,p[ilLiD:

}
printf("'%12.6F\n",y[i]);
fprintf(p,"%1l2.6A\n",y[i]);
by
// printf('\nTrue minimum is at (0.5,0.6,0.7)\n"");
free(X);
free(Y);
free(X);
free(y):
free(p);
return O;

}

void amoeba(double **p, double y[], int ndim, double ftol, double Y[], double
X[1.

{

double (*funk)(double [], double[], double[]), int *nfunk)

int i,ihi,ilo,inhi,j,mpts=ndim+1;
double rtol,sum,swap,ysave,ytry,*psum;

psum = (double *) malloc ((ndim+1l)*sizeof(double));
*nfunk=0;
for (g=1;j)<=ndim;j++) {
for (sum=0.0, i=1;i<=mpts;i++) sum += p[ilLi];

3

psum[j]=sum;}
for (53D {
ilo=1;

ihi = y[1]>y[2] ? (inhi=2,1) : (inhi=1,2);
for (i=1;i<=mpts;i++) {
if (y[i] <= y[ilo]) ilo=i;
it (yL[il > yLihi]) {
inhi=ihi;
ihi=i;
} else if (y[i] > y[inhi] && 1 '= ihi) inhi=i;
3
rtol=2.0*fabs(y[ihi]-y[ilo])/(fabs(y[ihi])+Ffabs(y[il10])+TINY);
if (rtol < ftol) {
swap= y[1];
y[1]=y[ilo];
y[ilo]=swap;
for (i=1;i<=ndim;i++)
{
swap=p[11[i];
p[1]1Li]=p[ilo][i];
pl[ilo][i]=swap;

break;
}
if (*nfunk >= NMAX)

printF("'NMAX exceeded");
exit(EXIT_FAILURE);

*nfunk += 2;
ytry=amotry(p,y,psum,ndim,Y,X,funk, ihi,-1.0);
it (ytry <= y[ilo])
ytry=amotry(p,y,psum,ndim,Y,X,funk, ihi,2.0);
else if (ytry >= y[inhi]) {
ysave=y[ihi];
ytry=amotry(p,y,psum,ndim,Y,X,funk, ihi,0.5);
if (ytry >= ysave) {
for (i=1;i<=mpts;i++) {
it (1= 1lo) {
for (J=1;j)<=ndim;j++)

pLil1Lid=psum[§1=0.5*(pLi1Li1+pLilo]ld1);
y[i]=Cfunk) (psum,Y,X);

}

*nfunk += ndim;
for (g=1;j<=ndim;j++) {
for (sum=0.0,1=1;i<=mpts;i++) sum +=
pLilll;
psum[j]=sum;}
}
} else --(*nfunk);
ks

free(psum);

double amotry(double **p, double y[], double psum[], int ndim, double Y[],

double X|[],

fac)
{

double (*funk)(double [], double[], double[]), int ihi, double

int j;
double facl,fac2,ytry,*ptry;

ptry = (double *) malloc ((ndim+l)*sizeof(double));
facl=(1.0-fac)/ndim;
fac2=facl-fac;
for (J=1;j<=ndim;j++) ptry[jl=psum[j]*facl-p[ihi][j]*fac2;
ytry=Cfunk) (ptry,Y,X);
if (ytry < y[ihi]D) {
y[ihi]=ytry;
for (J=1;j)<=ndim;j++) {
psumlj] += ptry[jl-pLihillj]:
pLihili]1=ptry[il:
}
¥
free(ptry);
return ytry;

xamoeba_test.c

/**/

/* xamoeba_test.c -- C code is from NUMERICAL RECIPES IN C --
* Additional code written by Keith Poole
* September - October 2009

*

Uses Nedler-Mead downhill simplex method to find a minimum/maximum
of a multi-dimensional function
| ->amotry->func
Main -> amoeba --|
| ->func

Amoeba initializes the simplex and calls func for each
point in the simplex. The simplex starts at the usual
triangluar definition plus the origin -- ndim +1.

func is the user defined function being
minimized/maximized;

Amotry -- (Ffrom description in NUMERICAL RECIPES)
Extrapolates by a factor, fac, through the face of the
simplex across from a high point, tries, and replaces
the high point if the new point is better.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define NRANSI

#define MP 26

#define NP 25

#define nrowX 1000
#define ncolX 25
#define FTOL 0.0000001
#define TINY 1.0e-10
#define NMAX 100000
#define NR_END 1
#define FREE_ARG char*

void amoeba(double **p, double y[], int ndim, double ftol,
double (*funk)(double []), int *nfunk);

double func(double *);

double amotry(double **p, double y[], double psum[], int ndim,
double (*funk)(double []), int ihi, double fac);

double keithrules(double X[]);

double func(double x[1)
{

¥
static double *Y,*X;

FILE *fp;

return keithrules(x);

FILE *jp;

int main(void)

{
int i,nfunc,j,ndim=NP;
double *x,*y,**p;

X = (double *) malloc (nrowX*ncolX*sizeof(double));
Y = (double *) malloc (nrowX*sizeof(double));

X = (double *) malloc ((NP+1)*sizeof(double));

y = (double *) malloc ((MP+1)*sizeof(double));

/* Dynamic Allocation of a Matrix: */
/* First, allocate pointers to rows */
/* Second, allocate rows and set pointers to them -- note that p[O0] is
* a pointer to p[0][0:n] -- that is a row —-- so the syntax below is
* p[O0][O:nrow*ncol] */
/* Third, form the matrix from step two -- the pointer to the kth row,
* p[k] is set equal to the memory
* location of the number of nrows-1 times the number of columns plus
* the memory location of p[0] */
p= (double **) malloc((MP+1)*sizeof(double*));
p[0]=(double *) malloc((NP+1)*(MP+1)*sizeof(double));
for (i=0;i<MP+1;i++)p[i]=p[0]+i*(NP+1);
//
Jjp = fopen('c:/docs_c_summer_course/data_AMOEBA.txt","w');
if((fp = fopen(''c:/docs_c_summer_course/data_ols.txt","r'))==NULL)
{

printf("'\nUnable to open file OLS DATA.TXT: %s\n",

strerror(errno));
exit(EXIT_FAILURE);
3

else {

fprintfF p,” Y and X = \n"");
Ffor(i=0;i<nrowX;i++)
{
fscanf(fp, "Wl ", &Y[1]);
for(J=0;j<ncolX;j++)
{

}

fprintf(p,"%10d %12.6F", i,Y[i]);
for(J=0;j<ncolX;j++)

{

T
fprintf@p, " \n"");

fscant(fp, "%l ,&X[i+j*nrowX]);

fprintf @p,"%12_6F" , X[i+j*nrowX]);

}
}
/* if 1 == (J+1) is true then the value of x[j] = 1.0, otherwise =0.0 */
for (i=1;i<=MP;i++) {
for (J=1;jJ<=NP;j++)
x(g1=pLi1Li1=G == g+1) ? 1.0 = 0.0);
yLi]=func(x);

amoeba(p,y,ndim,FTOL,func,&nfunc);
printf(""\nNumber of function evaluations: %3d\n",nfunc);
fprintfF(@p, "\nNumber of function evaluations: %3d\n",nfunc);
printf("'Vertices of final 3-d simplex and\n™);
fprintf(p, "Vertices of final 3-d simplex and\n");
printf(""function values at the vertices:\n\n");
fprintfF(p, " "function values at the vertices:\n\n");
printf("'%3s %10s %12s %12s %l4s\n\n",

LUyt tyL[]t, "z, "function™) ;
for (i=1;i<=MP;i++) {

printf("'%3d ",i);

fprintf@p,"%3d ",i);

for (J=1;j<=NP;j++) {

fprintfQp,"%12.6F *,p[i101);
by

printf("%12.6F\n",y[i]);
fprintf(p,"%12.6A\n",y[i]);:

}

free(X);
free(Y);
free(X);
free(y):
free(p);
return O;

}

void amoeba(double **p, double y[], int ndim, double ftol,
double (*funk)(double []), int *nfunk)
{

int i,ihi,ilo,inhi,j,mpts=ndim+1;
double rtol,sum,swap,ysave,ytry,*psum;

psum = (double *) malloc ((ndim+l)*sizeof(double));
*nfunk=0;
for (g=1;j)<=ndim;j++) {
for (sum=0.0,i=1;i<=mpts;i++) sum += p[i]l[i];
psum[j]=sum;}
for (G2 {
ilo=1;

ihi = y[1]>y[2] ? (inhi=2,1) : (inhi=1,2);
for (i=1;i<=mpts;i++) {
it (y[i] <= y[ilo]) ilo=i;
if (yLi] > yL[ihi]) {
inhi=ihi;
ithi=i;
} else if (y[i] > y[inhi] && 1 '= ihi) inhi=i;

}
rtol=2_0*fabs(y[ihi]-y[ilo])/(fabs(y[ihi])+Ffabs(y[i10])+TINY);
it (rtol < frol) {

swap= y[1];

y[1]=y[ilo];

y[ilo]=swap;

for (i=1;i<=ndim;i++)

{

swap=p[1]1[il;

8

pL1]Li]=pLilo][i];
pLilo][i]=swap;

break;

}

if (*nfunk >= NMAX)

{
printfF("'NMAX exceeded™);
exit(EXIT_FAILURE);

*nfunk += 2;
ytry=amotry(p,y,psum,ndim, funk, ithi,-1.0);
it (ytry <= y[ilo])
ytry=amotry(p,y,psum,ndim,funk,ihi,2.0);
else if (ytry >= y[inhi]) {
ysave=y[ihi];
ytry=amotry(p,y,psum,ndim, funk, i1hi,0.5);
if (ytry >= ysave) {
for (i=1;i<=mpts;i++) {
if (i '=1ilo) {
for (g=1;j<=ndim;j++)

pLil01=psum[i1=0.5*(pLil1Li1+pLilo]iD);
y[1]=Cfunk) (psum) ;

}
*nfunk += ndim;
for (g=1;j<=ndim;j++) {
for (sum=0.0,i=1;i<=mpts;i++) sum +=
pLillil:
psum[j]=sum;}

}
} else --(*nfunk);
3}

free(psum);

double amotry(double **p, double y[], double psum[], int ndim,
double (*funk)(double []), int ihi, double fac)
{

int j;
double facl,fac2,ytry,*ptry;

ptry = (double *) malloc ((ndim+l)*sizeof(double));
facl=(1.0-fac)/ndim;
fac2=facl-fac;
for (g=1;j<=ndim;j++) ptry[j]=psum[j]*facl-p[ihi][jJ]*fac2;
ytry=Cfunk) (ptry);
if (ytry < y[ihi]) {
yLihi]=ytry;
for (J=1;j<=ndim;j++) {
psun[j] += ptry[i1-pLihi]1L[il;
pLihi]l[]1=ptry[j];

s
free(ptry);
return ytry;

}

double keithrules(double X[])
{
int i, j;
double sum=0;
double sumsquared=0;
for(i=0; i<nrowX;i++)
{
sum=0.0;
for(§=0;j<ncolX;j++)

sum=sum+X[i+j*nrowX]*x[j+1];

}

sumsquared = sumsquared + (Y[i]-sum)*(Y[i]-sum);

}
printf(C'%If\n",sumsquared) ;
return sumsquared;

10

/*
xpowell test.c -- C code is from NUMERICAL RECIPES IN C --
Additional code written by Keith Poole
* September - October 2009
*
Uses Powell"s Quadratically Convergent Method to find a minimum/maximum
of a multi-dimensional function
| ->func
Main -> powell --| | ->mnbrak]
|->linmin->|
| ->brent->fldim->func

Powell minimizes a function of n variables. The
starting values are in the vector p[1l:n] and an n by n
matrix of directions -- normally a simplex.

func is the user defined function being
minimized/maximized;

linmin -- Finds the minimum on a line joining p and Xxi.

mnbrak -- Used by linmin. It finds three points that bracket the
minimum.

brent -- Given the 3 points from mnbrak, it finds the
minimum
*/

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

#include <string.h>

#include <math_h>

#define NRANSI

#define ITMAX 2000

#define NDIM 25

#define nrowX 1000

#define ncolX 25

#define FTOL 1.0e-6

#define TOL 2.0e-4

#define GOLD 1.618034

#define GLIMIT 100.0

#define TINY 1.0e-20

#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
static double maxargl,maxarg2;

#define FMAX(a,b) (maxargl=(a),maxarg2=(b),(maxargl) > (maxarg2) ? (maxargl) : (maxarg2))

#define CGOLD 0.3819660
#define ZEPS 1.0e-10

/* Driver for routine powell */

void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
double (*func)(double [1));

void linmin(double p[], double xi[], int n, double *fret, double (*func)(double [1));

void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
double (*func)(double));

double brent(double ax, double bx, double cx, double (*f)(double), double tol,
double *xmin);

double fldim(double x);

double keithrules(double x[]);

double func(double x[1)
{

return keithrules(x);

11

}

int ncom;

double *pcom,*xicom, (*nrfunc)(double [1);
static double *Y,*X;

FILE *fp;

FILE *jp;

int main(void)
{
int i,iter,j;
double fret,**xi;
static double
p[]={0.0,0.9,1.5,1.5,2.5,1.5,1.5,2.5,1.5,1.5,2.5,1.5,1.5,2.5,1.5,1.5,2.5,1.5,1.5,2.5,1.5,1.5,2.5,
1.5,1.5,2.5};
= (double *) malloc (nrowX*ncolX*sizeof(double));
= (double *) malloc (nrowX*sizeof(double));
/* Dynamic Allocation of a Matrix: */
/* First, allocate pointers to rows */
/* Second, allocate rows and set pointers to them -- note that p[0]
* a pointer to p[0][0:n] -- that is a row -- so the syntax below is
* p[O]1[0:nrow*ncol] */
/* Third, form the matrix from step two -- the pointer to the kth row,
* p[k] is set equal to the memory
location of the number of nrows-1 times the number of columns plus
* the memory location of p[0] */
xi= (double **) malloc((NDIM+1)*sizeof(double*));
Xi[0]=(double *) malloc((NDIM+1)*(NDIM+1)*sizeof(double));
for (i=0;i<NDIM+1;i++)xi[i]=xi[0]+i*(NDIM+1);

*

//
//
Jjp = fopen(*'c:/docs_c_summer_course/data POWELL .txt" ;
if ((fp = fopen(*'c:/docs_c_summer_course/data_ols. txt" "r")) =NULL)
{
printf(""\nUnable to open file OLS_DATA.TXT: %s\n', strerror(errno));
exit(EXIT_FAILURE);
else {
fprintfF(@p,” Y and X = \n");
for(i=0;i<nrowX;i++)
{
Ffscanf(fp, "%l ,&Y[1]);
Ffor(J=0;j<ncolX;j++)
Ffscanf(fp, "%l ", &X[i+j*nrowX]);
3
fprintfF(gp,"%10d %12.6F", i,Y[i]);
for(J=0;j<ncolX;j++)
fprintfF(p,"%12._6F" , X[i+j*nrowX]);
3
fprintfgp,"\n");
3
by

for (i=1;i<=NDIM;i++)

for (J=1;j<=NDIM;j++)

xi[i]101=(i == j ? 1.0 : 0.0);
/* if 1 == J is true then the value of x[i][J] = 1.0, otherwise =0.0 */

powell (p,xi,NDIM,FTOL, &iter,&Ffret,func);
fprintf(p, " lIterations: %3d\n\n",iter);
printf("lterations: %3d\n\n",iter);
fprintf p, "Minimum found at: \n");
printf("Minimum found at: \n");
for (i=1;i<=NDIM;i++) {

fprintf(p,"%5d %12.6A\n",i, p[i]);

printf("%5d %12.6F\n",i, p[il);

}
fprintfF@p, "\n\nMinimum function value = %12_.6F \n\n",fret);
printf(C''\n\nMinimum function value = %12.6F \n\n",fret);

12

free(xi);
free(Y);
free(X);
return O;

void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
double (*func)(double [1))
{

int i,ibig,j;
double del,fp,fptt,t,*pt,*ptt,*xit;

pt = (double *) malloc ((n+l)*sizeof(double));
ptt = (double *) malloc ((n+l)*sizeof(double));

xit = (double *) malloc ((n+l)*sizeof(double));
*fret=C*func) (p);

for (g=1;j<=n;j++) pthil=pLil:
for (*iter=1;;++(*iter)) {
fp=C*fret);
ibig=0;
del=0.0;
for (i=1l;i<=n;i++) {
for (g=1;j<=n;j++) xit[gl=xi]1L[i]l;
fptt=C*fret);
lLinmin(p,xit,n,fret,func);
if (fptt-Cfret) > del) {
del=fptt-(*fret);
ibig=i;
3

it 2.0*(fp-(*fret)) <= frol*(Ffabs(fp)+fabs(*fret))+TINY) {
free(xit);
free(ptt);
free(pt);
return;

if (Fiter == ITMAX)
{

printf(""powell exceeding maximum iterations.™);
exit(EXIT_FAILURE);

3

for (g=1;j<=n;j++) {
pte[§]1=2.0*p[j1-ptLil;
xit[i1=pLil-ptLil;

X pthil=pLil:

fptt=C*func) (ptt);

if (fptt < fp) {

t=2.0*(fp-2.0*(*fret)+fptt) *(fp-(*fret) -de)*(fp-*fret)-del)-
del*(fp-fptt)*(fp-fptt);
if (t <0.0) {
lLinmin(p,xit,n,fret,func);
for (G=1;j<=n;j++) {
xi[j1Libigl=xi[j1[n];
xigJ][n1=xit[j];

void linmin(double p[], double xi[], int n, double *fret, double (*func)(double []1))
{

int j;
double xx,xmin,fx,fb,fa,bx,ax;
ncom=n;

pcom = (double *) malloc ((n+l)*sizeof(double));
xicom = (double *) malloc ((n+1)*sizeof(double));

13

nrfunc=func;

for (g=1;J<=n:;j++) {
pcom[j1=pLi];
xicom[J1=xi[j];

ax=0.0;
xx=1.0;
mnbrak(&ax, &xx,&bx,&Fa,&Fx,&Ffb,Fldim);
*fret=brent(ax,xx,bx,fldim,TOL,&xmin);
for g=1;j<=n;j++) {

xi[J] *= xmin;

P01 += xilil;

free(xicom);
free(pcom);

void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
double (*func)(double))

{
double ulim,u,r,q,fu,dum;
*Fa=(*func) (*ax);
*Fo=*func) (*bx);
if (*fb > *fa) {
SHFT (dum, *ax, *bx,dum)
SHFT (dum, *fb,*fa,dum)
b
*cx=(*bx)+GOLD* (*bx-*ax) ;
*fc=(*func) (*cx);
while (*fb > *fc) {
r=C*bx-*ax)*(*fb-*fc);
q=C*bx-*cx)*(*fb-*fa);
u=(*bx) - ((*bx-*cx)*g- (*bx-*ax)*r)/
(2.0*SIGN(FMAX(fabs(g-r),TINY),q-r));
ulim=C*bx)+GLIMIT*(*cx-*bx) ;
if ((*bx-u)*(u-*cx) > 0.0) {
Ffu=C*func) (u);
if (fu < *fc) {
*ax=(*bx);
*bx=u;
*fa=(*Tb);
*fb=Fu;
return;
} else if (fu > *fb) {
*CX=Uuj;
*fc=Ffu;
return;
}
u=(*cx)+GOLD* (*cx-*bx) ;
fu=C*func) (u);
} else if ((*cx-u)*(u-ulim) > 0.0) {
Ffu=C*func) (u);
if (fu < *fc) {
SHFT (*bx, *cx,u,*cx+GOLD* (*cx-*bx))
SHFT (*fb,*fc, fu, (*func) (u))
}
} else if (Qu-ulim)*(ulim-*cx) >= 0.0) {
u=ulim;
fu=C*func) (u);
} else {
u=(*cx)+GOLD* (*cx-*bx) ;
Ffu=C*func) (u);
}
SHFT (*ax, *bx,*cx,u)
SHFT (*fa,*fb,*fc, fu)
}
3

14

double brent(double ax, double bx, double cx, double (*f)(double), double tol,
double *xmin)

{ o
int iter;
double a,b,d,etemp,fu,fv,fw,fx,p,q,r,toll,tol2,u,v,w,X,xm;
double e=0.0;
a=(ax < cx ? ax : cx);
b=(ax > cx ? ax : cx);
X=w=v=DbX;
fw=Fv=Fx=C*F) (X);
for (iter=1;iter<=ITMAX;iter++) {
xm=0.5*(atb);
tol2=2_0*(toll=tol*fabs(x)+ZEPS);
if (fabs(x-xm) <= (tol2-0.5*(b-2a))) {
*Xmin=x;
return Fx;
}
if (fabs(e) > toll) {
r=(x-w)*(fx-fv);
g=(X-v)*(Fx-fw);
pP=(X-Vv)*q-(X-W)*r;
g=2.0*(g-r);
if (g >0.0) p=-p;
qg=Tfabs(q);
etemp=e;
e=d;
it (fabs(p) >= fabs(0-5*g*etemp) || p <= g*(a-x) |l p >= g*(b-x))
d=CGOLD*(e=(x >= xm ? a-X : b-x));
else {
d=p/q;
u=x+d;
if (u-a < tol2 || b-u < tol2)
d=SIGN(toll,xm-x);
} else {
d=CGOLD*(e=(x >= xm ? a-X : b-x));
3
u=(fabs(d) >= toll ? x+d : x+SIGN(toll,d));
fu=CPH (W;
if (fu <= fx) {
if (u >= x) a=x; else b=x;
SHFT(v,w,X,u)
SHFT(fv, fw, fx,fu)
} else {
if (u < x) a=u; else b=u;
if (fu<=fw ||l w=x){
V=w;
w=u;
fv=fw;
fw=Ffu;
Yelse if (fu<=Ffv |] v=x]] v=w {
V=u;
fv=Ffu;
}
¥
printf(*"Too many iterations in brent™);
exit(EXIT_FAILURE);
*XMin=x;
return fx;
3
double fldim(double x)
€ o
int j;

double F,*xt;

15

xt = (double *) malloc ((ncom+l)*sizeof(double));
for (J=1;j<=ncom;j++) xt[jl=pcom[j]+x*xicom[j];
f=C*nrfunc) (xt);

free(xt);

return f;

}

double keithrules(double x[])
{
int i, j;
double sum=0;
double sumsquared=0;
for(i=0; i<nrowX;i++)
{
sum=0.0;
for(J=0;j<ncolX;j++)
sum=sum+X[i+j*nrowX]*x[j+1];
}

sumsquared = sumsquared + (Y[i]-sum)*(Y[i]-sum);

}
printf("%IF\n",sumsquared) ;
return sumsquared;

16

Error function

From Wikipedia, the free encyclopedia

Jump to: navigation, search

- ¥

Plot of the error function

In mathematics, the error function (also called the Gauss error function) is a special function
(non-elementary) of sigmoid shape which occurs in probability, statistics, materials science, and
partial differential equations. It is defined as:

erte)= 7= [

The complementary error function, denoted erfc, is defined in terms of the error function:

erfe(z) = 1 — erf(x)

:f/

The complex error function, denoted w(x), (also known as the Faddeeva function) is also
defined in terms of the error function:

w(x) = E_EEEI'fC(—iI).
17

The error function is essentially identical to the standard normal cumulative distribution
function, denoted @, as they differ only by scaling and translation. Indeed,

‘EIJ'(:I:]l:1 1 terf| — zlerfc 2

> 2] T2 NG

or rearranged for erf and erfc:
erf(x) = 2® (I\/E) -1
erfe(x) =2 [1 — & (I\/ﬁ)} :

xamoeba_test_bush_probit.c

/**/

/* xamoeba test.c -- C code is from NUMERICAL RECIPES IN C —-
* Additional code written by Keith Poole
* September - October 2009

*

Uses Nedler-Mead downhill simplex method to find a minimum/maximum
of a multi-dimensional function
| ->amotry->func
Main -> amoeba --|
| ->func

Amoeba initializes the simplex and calls func for each
point in the simplex. The simplex starts at the usual
triangluar definition plus the origin -- ndim +1.

func is the user defined function being
minimized/maximized;

Amotry -- (from description in NUMERICAL RECIPES)
Extrapolates by a factor, fac, through the face of the
simplex across from a high point, tries, and replaces
the high point if the new point is better.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define NRANSI

#define MP 9
#define NP 8
#define nrowX 432

18

#define ncolX 8
#define FTOL 0.0000001
#define TINY 1.0e-10
#define NMAX 10000

ETCETCETC

The Function the Calculates the probit

double keithrules(double X[])
{
int i, j, ki1, kO, 11, 10;
double sum=0;
double phi=0.0;
double xphi=0.0;
double sumsquared=0;
k1=0;
k0=0;
for(i=0; i<nrowX; i++)
{
sum=0.0;
for(J=0;j<ncolX;j++)

sum=sum+X[i+j*nrowX]*x[j+1];

by
phi = (erf(fabs(sum)/sqrt(2.0)))/2.0 + 0.5;

Xxphi = phi;
if(sum < 0.0)phi=1.0-xphi;
xphi = phi;

iT(xphi > 0.99999999)phi=0.9999999;
if(xphi < 0.00000001)phi=0.0000001;
// Voted for Bush

if(Y[i] >= 50.0){
11=1;
10=0;
kl=k1+1;
sumsquared = sumsquared + log(phi);

}
// Voted for Gore
if(Y[i] < 50.0){
11=0;
10=1;
kO=k0+1;
sumsquared = sumsquared + log(1.0 - phi);

}

printf(""%IF\n"",-sumsquared) ;
return -sumsquared;

19

STATA Probit Output

file C:\docs_c_summer_course\hdmgl106_2009_fixed.dta saved

. probit ybush blackOO south hispanicO0 income owner0OO0 dwnomln dwnom2n

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

O WNEO

log
log
log
log
log
log
log

Probit estimates

likelihood
likelihood
likelihood
likelihood
likelihood
likelihood
likelihood

Log likelihood = -130.10873

Number of obs

432
338.33
0.0000
0.5653

black00
south
hispanic00
income
owner00
dwnomln
dwnom2n
_cons

Interval]

-.0285248
.7685989
-.0089129
-.0240403
.0236413

2
1

.760012
.136143

-.9799419 1

= -299.27289
= -155.22888
= -134.72283
= -130.45346
= -130.1108
= -130.10873
= -130.10873
td. Err
.0098015 -2.
.2545868
.0069185 -1.
.0126564 -1.
.0143807
.2621742 10.
.2339367 4
.079705 -0.

LR chi2(7) =

Prob > chi2 =

Pseudo R2 =
P>]z] [95% Conf.
0.004 -.0477354
0.003 .269618
0.198 -.0224729
0.058 -.0488463
0.100 -.0045444
0.000 2.24616
0.000 6776357
0.364 -3.096126

note: 1 failure and O successes completely determined.

-.0093142
1.26758
.004647

.0007658
.0518271
3.273864
1.594651
1.136242

. probit ygore blackO0 south hispanicO0 income ownerOO dwnomln dwnom2n

Iteration O:
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

O WNE

log
log
log
log
log
log
log

Probit estimates

likelihood
likelihood
likelihood
likelithood
likelihood
likelihood
likelihood

Log likelihood = -123.48326

-296.
-149.
-128.
-123.
-123.
-123.
-123.

05574
55538
23315
81516
48492
48326
48326

Number of obs

432
345.14
0.0000
0.5829

black00
south
hispanic00
income
owner00
dwnomln
dwnom2n
_cons

Interval]

-.5341551
.0142289
.0331017

-.0321204

-2

-.8584056

.037454

-590046

.6039696 1

.0096159
.2623903
-0068103
.0128455
.0135469
.2538889
.2325336

.017087

LR chi2(7) =

Prob > chi2 =

Pseudo R2 =
P>]z] [95% Conf.
0.000 .0186072
0.042 -1.048431
0.037 .000881
0.010 .007925
0.018 -.0586718
0.000 -3.087659
0.000 -1.314163
0.553 -1.389484

note: O failures and 1 success completely determined.

20

.0563007
-.0198796
.0275768
.0582783
-.005569
-2.092433
-.4026481
2.597424

