
1

Xamoeba_xpowell_probit.c

/**/
/**/
/* xamoeba_xpowell.c -- C code is from NUMERICAL RECIPES IN C --
 * Additional code written by Keith Poole
 * September - October 2009
 *
 Amoeba -- Uses Nedler-Mead downhill simplex method to find a minimum/maximum
 of a multi-dimensional function
 |->amotry->func
Main -> amoeba --|
 |->func

 Amoeba initializes the simplex and calls func for each
 point in the simplex. The simplex starts at the usual
 triangluar definition plus the origin -- ndim +1.

 func is the user defined function being
 minimized/maximized;

 Amotry -- (from description in NUMERICAL RECIPES)
 Extrapolates by a factor, fac, through the face of the
 simplex across from a high point, tries, and replaces
 the high point if the new point is better. */
/* Powell Routine:
 Uses Powell's Quadratically Convergent Method to find a minimum/maximum
 of a multi-dimensional function

 |->func
Main -> powell --| | ->mnbrak|
 |->linmin->| |
 |->brent->f1dim->func

 Powell minimizes a function of n variables. The
 starting values are in the vector p[1:n] and an n by n
 matrix of directions -- normally a simplex.

 func is the user defined function being
 minimized/maximized;

 linmin -- Finds the minimum on a line joining p and xi.

 mnbrak -- Used by linmin. It finds three points that bracket the
 minimum.

 brent -- Given the 3 points from mnbrak, it finds the
 minimum

 */
/*
 * NUMERICAL DERIVATIVES

 Main -> dfridr -- This computes the first derivatives using simple
 (f(x+h) - f(x-h))/2h
 -> dfridr2nd -- This computes the 2nd derivatives
 df/dxdy = (f(x+h,y+h) - f(x+h,y-h) - f(x-h,y+h) + f(x-h,y-h))/(4*h*h)
 d2f/dx2 = (f(x+2h) + f(x-2h) - 2f(x))/4h^2

2

Probit estimates Number of obs = 432
 LR chi2(7) = 338.29
 Prob > chi2 = 0.0000
Log likelihood = -130.12789 Pseudo R2 = 0.5652

--
 y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 black00 | -.0285973 .0097913 -2.92 0.003 -.0477878 -.0094067
 south | .7695862 .2545783 3.02 0.003 .2706219 1.268551
 hispanic00 | -.0089458 .0069163 -1.29 0.196 -.0225015 .0046099
 income | -.0241489 .0126394 -1.91 0.056 -.0489217 .0006239
 owner00 | .0235461 .0143687 1.64 0.101 -.0046161 .0517083
 dwnom1n | 2.761974 .2619813 10.54 0.000 2.2485 3.275448
 dwnom2n | 1.136417 .2339829 4.86 0.000 .6778186 1.595015
 _cons | -.9697998 1.077738 -0.90 0.368 -3.082127 1.142528
--
*/

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <R_ext/Lapack.h>
#include <R_ext/BLAS.h>
//
#define NDIM 8
#define NMAX 10000
#define ITMAX 2000
#define nrowX 432
#define ncolX 8
#define FTOL 0.000000001
#define TOL 0.0002
#define GOLD 1.618034
#define GLIMIT 100.0
#define TINY 1.0e-10
#define CON 1.4
#define BIG 1.0e30
#define NTAB 10
#define SAFE 2.0
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
static double maxarg1,maxarg2;
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1) > (maxarg2) ? (maxarg1) : (maxarg2))
#define CGOLD 0.3819660

typedef struct {
 int counter;
 double xminimum[NDIM];
 double loglikelihood;
} kpsorter;

int structcomparison(const void *v1, const void *v2);

/* Driver for routine powell */

void powell(double pp[], double **xi, int n, double ftol, int *iter, double *fret,
 double (*func)(double []));
void linmin(double pp[], double xi[], int n, double *fret, double (*func)(double []));
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
 double (*func)(double));
double brent(double ax, double bx, double cx, double (*f)(double), double tol,
 double *xmin);
double f1dim(double x);

3

void amoeba(double **p, double y[], int ndim, double ftol,
 double (*funk)(double []), int *nfunk);
double amotry(double **p, double y[], double psum[], int ndim,
 double (*funk)(double []), int ihi, double fac);
double dfridr(double (*func)(double []), double x[], double h, double *err, int iiii);
double dfridr2nd(double (*func)(double []), double x[], double h, double *err, int iiii, int
jjjj);
void xsvd(int kpnp, int kpnq, double *, double *, double *, double *);
double keithrules(double x[]);

double func(double x[])
{
 return keithrules(x);
}
int ncom;
double *pcom,*xicom,(*nrfunc)(double []);
static double *Y,*X;
FILE *fp;
FILE *jp;
FILE *kp;

int main(void)
{
 static double *pp;
 int i,info,iter,j,iiii,jjjj,ntrials;
 int nfunc,ndim=NDIM;
 double h,dx,dx2nd,err;
 double fret,**xi;
 double *x,*y,*ppjunk,**p,*firstderv,*secondderv;
 double *XXinv, *xxinvdiag;
 double *u, *lambda, *vt;
 double time1, time2, timedif;
 int *ipiv;
//
 X = (double *) malloc (nrowX*ncolX*sizeof(double));
 Y = (double *) malloc (nrowX*sizeof(double));
 x = (double *) malloc ((NDIM+1)*sizeof(double));
 firstderv = (double *) malloc ((NDIM)*sizeof(double));
 secondderv = (double *) malloc ((NDIM)*(NDIM)*sizeof(double));
 y = (double *) malloc ((NDIM+1+1)*sizeof(double));
 XXinv = (double *) malloc (NDIM*NDIM*sizeof(double));
 ipiv = (int *) malloc (NDIM*sizeof(int));
 xxinvdiag = (double *) malloc (NDIM*sizeof(double));
 u = (double *) malloc (NDIM*NDIM*sizeof(double));
 lambda = (double *) malloc (NDIM*NDIM*sizeof(double));
 vt = (double *) malloc (NDIM*NDIM*sizeof(double));
/* Dynamic Allocation of a Matrix: */
/* First, allocate pointers to rows */
/* Second, allocate rows and set pointers to them -- note that p[0] is
 * a pointer to p[0][0:n] -- that is a row -- so the syntax below is
 * p[0][0:nrow*ncol] */
/* Third, form the matrix from step two -- the pointer to the kth row,
 * p[k] is set equal to the memory
 * location of the number of nrows-1 times the number of columns plus
 * the memory location of p[0] */
 p= (double **) malloc((NDIM+1+1)*sizeof(double*));
 p[0]=(double *) malloc((NDIM+1)*(NDIM+1+1)*sizeof(double));
 for (i=0;i<NDIM+1+1;i++)p[i]=p[0]+i*(NDIM+1);
//
 /* Dynamically allocate memory to big data structure
 * ntrials is equal to the number of solutions from Amoeba --
 * NDIM+1 plus the number of solutions from Powell -- in this
 * case NDIM+1+10
 */
 ntrials=NDIM+1+NDIM+1+10;
 kpsorter *recordset;
 recordset = (kpsorter *)malloc(ntrials * sizeof(kpsorter));
//

4

/* clock() is part of time.h -- returns the implementation's
 * best approximationto the processor time elapsed since the
 * program was invoke, divide by CLOCKS_PER_SEC to get the time
 * in seconds */
 time1 = (double) clock(); /* get initial time */
 time1 = time1 / CLOCKS_PER_SEC; /* in seconds */

 srand(122);
//
 jp = fopen("c:/docs_c_summer_course/data_optim.txt","w");
 kp = fopen("c:/docs_c_summer_course/data_optim_2.txt","w");
 if((fp = fopen("c:/docs_c_summer_course/bush2000.txt","r"))==NULL)
 {
 printf("\nUnable to open file BUSH2000.TXT: %s\n", strerror(errno));
 exit(EXIT_FAILURE);
 }
 else {

 fprintf(jp," Y and X = \n");
 for(i=0;i<nrowX;i++)
 {
 fscanf(fp,"%lf",&Y[i]);
 for(j=0;j<ncolX;j++)
 {
 fscanf(fp,"%lf",&X[i+j*nrowX]);
 }
 fprintf(jp,"%10d %12.6f", i,Y[i]);
 for(j=0;j<ncolX;j++)
 {
 fprintf(jp,"%12.6f",X[i+j*nrowX]);
 }
 fprintf(jp,"\n");
 }
 }
//
// AMOEBA MINIMIZATION IS DONE FIRST
//
/* if i == (j+1) is true then the value of x[j] = 1.0, otherwise =0.0 */
 for (i=1;i<=NDIM+1;i++) {
 for (j=1;j<=NDIM;j++)
 x[j]=p[i][j]=(i == (j+1) ? 1.0 : 0.0);
 y[i]=func(x);
 }
 amoeba(p,y,ndim,FTOL,func,&nfunc);
 printf("\nNumber of function evaluations: %3d\n",nfunc);
 fprintf(jp,"\nNumber of function evaluations: %3d\n",nfunc);
 printf("Vertices of final 3-d simplex and\n");
 fprintf(jp,"Vertices of final 3-d simplex and\n");
 printf("function values at the vertices:\n\n");
 fprintf(jp,"function values at the vertices:\n\n");
 printf("%3s %10s %12s %12s %14s\n\n",
 "i","x[i]","y[i]","z[i]","function");
 for (i=1;i<=NDIM+1;i++) {
 printf("%3d ",i);
 fprintf(jp,"%3d ",i);
 for (j=1;j<=NDIM;j++) {
 fprintf(jp,"%12.6f ",p[i][j]);
//
// store solution in x[]
//
 x[j]=p[i][j];
 recordset[i-1].xminimum[j-1]=x[j];
 }
 printf("%12.6f\n",y[i]);
 fprintf(jp,"%12.6f\n",y[i]);
 recordset[i-1].loglikelihood=y[i];
 recordset[i-1].counter=i;
 }
//

5

// POWELL MINIMIZATION IS DONE SECOND -- first, the NDIM+1 (ndim + 1)
// solutions are checked and, second, 10 random starts are checked
//
 for(iiii=1;iiii <= NDIM+1+10; iiii++)
 {
 pp = (double *) malloc ((NDIM+1)*sizeof(double));
 ppjunk = (double *) malloc ((NDIM+1)*sizeof(double));
 /*
 Get Uniform (-1, +1) Numbers for starts
 */
 pp[0]=0.0;
 for(i=1;i < NDIM+1;i++)
 {
 if(iiii <= NDIM+1) pp[i] = p[iiii][i];
 if(iiii > NDIM+1) pp[i] = 2.0*((double)rand() / ((double)(RAND_MAX)+1))-1.0;
 ppjunk[i] = pp[i];
 }
//
/* Dynamic Allocation of a Matrix: */
/* First, allocate pointers to rows */
/* Second, allocate rows and set pointers to them -- note that p[0] is
 * a pointer to p[0][0:n] -- that is a row -- so the syntax below is
 * p[0][0:nrow*ncol] */
/* Third, form the matrix from step two -- the pointer to the kth row,
 * p[k] is set equal to the memory
 * location of the number of nrows-1 times the number of columns plus
 * the memory location of p[0] */
 xi= (double **) malloc((NDIM+1)*sizeof(double*));
 xi[0]=(double *) malloc((NDIM+1)*(NDIM+1)*sizeof(double));
 for (i=0;i<NDIM+1;i++)xi[i]=xi[0]+i*(NDIM+1);
//
 for (i=1;i<=NDIM;i++)
 for (j=1;j<=NDIM;j++)
 xi[i][j]=(i == j ? 1.0 : 0.0);
/* if i == j is true then the value of x[i][j] = 1.0, otherwise =0.0 */
 powell(pp,xi,NDIM,FTOL,&iter,&fret,func);
 fprintf(jp,"Iterations: %3d\n\n",iter);
// printf("Iterations: %3d\n\n",iter);
 fprintf(jp,"Minimum found at: \n");
// printf("Minimum found at: \n");
 for (i=1;i<=NDIM;i++) {
 fprintf(jp,"%5d %12.6f %12.6f\n",i, pp[i], ppjunk[i]);
// printf("%5d %12.6f %12.6f\n",i, pp[i], ppjunk[i]);
 recordset[iiii-1+NDIM+1].xminimum[i-1]=pp[i];
 }
 fprintf(jp,"\n\n%5d Minimum function value = %12.6f \n\n",iiii,fret);
 printf("%5d Minimum function value = %12.6f \n",iiii,fret);
 recordset[iiii-1+NDIM+1].loglikelihood=fret;
 recordset[iiii-1+NDIM+1].counter=iiii+NDIM+1;
 free(xi);
 free(pp);
 free(ppjunk);
}
 qsort(recordset, ntrials, sizeof(kpsorter), structcomparison);
 for(i=0;i<ntrials;i++)
 {
//
// Pass Best Solution to Numerical Derivatives
//
 if(i == 0){
 for(j=1;j<=NDIM;j++)
 {
 x[j]=recordset[i].xminimum[j-1];
 }
 }
 fprintf(kp,"%5d %5d %14.6f", i,
recordset[i].counter,recordset[i].loglikelihood);
 for(j=0;j<NDIM;j++)
 {

6

 fprintf(kp,"%12.6f",recordset[i].xminimum[j]);
 }
 fprintf(kp,"\n");
 }
 fprintf(kp,"\n\n");
 h = 0.01;
// 1st derivatives
 for(iiii=1;iiii<=NDIM;iiii++){
 h = 0.01;
 dx=dfridr(func,x,h,&err,iiii);
 fprintf(jp,"dfridr = %5d %5d %12.6f %12.6f %12.6f\n",iiii,iiii,dx,h,err);
 firstderv[iiii-1]=dx;
// 2nd derivatives
 for(jjjj=1;jjjj<=NDIM;jjjj++){
 h = 0.01;
 dx2nd=dfridr2nd(func,x,h,&err,iiii,jjjj);
 fprintf(jp,"dfrid2nd = %5d %5d %12.6f %12.6f
%12.6f\n",iiii,jjjj,dx2nd,h,err);
 secondderv[iiii-1 + (jjjj-1)*NDIM]=dx2nd;
 }
 }
 fprintf(jp,"\n\nFirst Derivatives \n\n");
 for(iiii=0;iiii<NDIM;iiii++){
 fprintf(jp," %5d %12.6f %12.6f\n",iiii,firstderv[iiii],x[iiii+1]);
 }
 fprintf(jp,"\n\nSecond Derivatives \n\n");
 for(iiii=0;iiii<NDIM;iiii++){
 for(jjjj=0;jjjj<NDIM;jjjj++){
 fprintf(jp,"%14.6f",secondderv[iiii + (jjjj)*NDIM]);
 }
 fprintf(jp,"\n");
 }
/* Call Singular Value Decomposition Routine to look at the rank
 * the Hessian*/
/* Clock the SVD Routine*/

 time2 = (double) clock(); /* get initial time */
 time2 = time2 / CLOCKS_PER_SEC; /* in seconds */
 xsvd(NDIM,NDIM,secondderv,u,lambda,vt);
 printf("Singular Values\n");
 for(j=0;j<NDIM;j++)
 {
 printf("%5d %16.6f\n",j,lambda[j]);
 }
 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time2;
 printf("SVD took %12.3f seconds\n", timedif);
 fprintf(jp,"SVD took %12.3f seconds\n", timedif);
 fprintf(kp,"SVD took %12.3f seconds\n", timedif);
/*
 Check to make certain the Hessian is non-singular
*/
 if(lambda[NDIM-1]<=TOL){
 fprintf(jp," Error: Hessian Matrix is Singular!");
 fprintf(kp," Error: Hessian Matrix is Singular!");
 printf(" Error: Hessian Matrix is Singular!");
 }
 if(lambda[NDIM-1]>TOL){
/* Initialize the Identity matrix */
 for(i=0;i<NDIM;i++)
 {
 for(j=0;j<NDIM;j++)
 {
 XXinv[i+j*NDIM]=0.0;
 if(i == j)XXinv[i+j*NDIM]=1.0;
 }
 }
 dgesv_(&ndim,&ndim,secondderv,&ndim,ipiv,XXinv,&ndim,&info);
 fprintf(kp,"\n\nInverse Hessian = \n");
 for(i=0;i<NDIM;i++)

7

 {
 for(j=0;j<NDIM;j++)
 {
 fprintf(kp,"%12.6f",XXinv[i+j*NDIM]);
/* Save Diagonal of Inverse Hessian */
 if(i == j)xxinvdiag[i] = XXinv[i+j*NDIM];
 }
 fprintf(kp,"\n");
 }
 fprintf(kp,"\n\nFirst Derivatives, Coefficients, and Standard Errors \n\n");
 for(iiii=0;iiii<NDIM;iiii++){
 fprintf(kp," %5d %12.6f %12.6f
%12.6f\n",iiii,firstderv[iiii],x[iiii+1],sqrt(xxinvdiag[iiii]));
 }
 }
 free(Y);
 free(X);
 free(x);
 free(firstderv);
 free(secondderv);
 free(y);
 free(XXinv);
 free(ipiv);
 free(xxinvdiag);
 free(u);
 free(lambda);
 free(vt);
 free(p);
//
 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time1;
 printf("The total elapsed time of the program is %12.3f seconds\n", timedif);
 fprintf(jp,"\nThe total elapsed time of the program is %12.3f seconds\n", timedif);
 fprintf(kp,"\nThe total elapsed time of the program is %12.3f seconds\n", timedif);

 fclose(jp);
 fclose(fp);
 return 0;
}

Etc. etc. etc.

double keithrules(double x[])
{
 int i, j, k1, k0, l1, l0;
 double sum=0;
 double phi=0.0;
 double xphi=0.0;
 double sumsquared=0;
 k1=0;
 k0=0;
 for(i=0;i<nrowX;i++)
 {
 sum=0.0;
 for(j=0;j<ncolX;j++)
 {
 sum=sum+X[i+j*nrowX]*x[j+1];
 }
 phi = (erf(fabs(sum)/sqrt(2.0)))/2.0 + 0.5;
 xphi = phi;
 if(sum < 0.0)phi=1.0-xphi;
 xphi = phi;

8

 if(xphi > 0.99999999)phi=0.9999999;
 if(xphi < 0.00000001)phi=0.0000001;
// Voted for Bush
 if(Y[i] >= 50.0){
 l1=1;
 l0=0;
 k1=k1+1;
 sumsquared = sumsquared + log(phi);
 }
// Voted for Gore
 if(Y[i] < 50.0){
 l1=0;
 l0=1;
 k0=k0+1;
 sumsquared = sumsquared + log(1.0 - phi);
 }
 }
// printf("%lf\n",-sumsquared);
 return -sumsquared;

}

