Xamoeba_xpowell_probit.c

/**/
/**/
/* xamoeba_xpowell.c -- C code is from NUMERICAL RECIPES IN C --
* Additional code written by Keith Poole
* September - October 2009
Amoeba -- Uses Nedler-Mead downhill simplex method to find a minimum/maximum

of a multi-dimensional function
| ->amotry->func
Main -> amoeba --|
| ->func

Amoeba initializes the simplex and calls func for each
point in the simplex. The simplex starts at the usual
triangluar definition plus the origin -- ndim +1.

func is the user defined function being
minimized/maximized;

Amotry -- (from description in NUMERICAL RECIPES)
Extrapolates by a factor, fac, through the face of the
simplex across from a high point, tries, and replaces
the high point if the new point is better. */
/* Powell Routine:
Uses Powell"s Quadratically Convergent Method to find a minimum/maximum
of a multi-dimensional function

| ->func
Main -> powell --] | ->mnbrak]
|->linmin->]
| ->brent->fldim->func
Powell minimizes a function of n variables. The
starting values are in the vector p[1:n] and an n by n
matrix of directions -- normally a simplex.

func is the user defined function being
minimized/maximized;

linmin -- Finds the minimum on a line joining p and Xi.

mnbrak -- Used by linmin. It finds three points that bracket the

minimum.
brent -- Given the 3 points from mnbrak, it finds the
minimum
*/
/*
* NUMERICAL DERIVATIVES
Main -> dfridr -- This computes the first derivatives using simple
(f(x+h) - f(x-h))/2h
-> dfridr2nd -- This computes the 2nd derivatives

df/dxdy = (F(x+h,y+h) - F(x+h,y-h) - F(x-h,y+h) + F(x-h,y-h))/(4*h*h)
d2f/dx2 = (f(x+2h) + F(x-2h) - 2F(x))/4h"2

Probit estimates

Log likelihood = -13

0.12789

Number of obs
LR chi2(7)
Prob > chi2
Pseudo R2

432
338.29
0.0000
0.5652

black00 -.02

85973 .0097913

south
hispanic00
income
owner00
dwnomln
dwnom2n
_cons

|

+

|

| .7695862
| -.0089458
| -.0241489
| .0235461
| 2.761974
| 1.136417
| -.9697998

.2545783
.0069163
.0126394
.0143687
.2619813
.2339829
1.077738

.0477878
.2706219
.0225015
.0489217
.0046161

2.2485
.6778186
-3.082127

[95% Conf.

-.0094067

Interval]

1.268551
.0046099
.0006239
.0517083

3.275448

1.595015
1.142528

#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stddef.h>
<stdlib.h>
<string.h>
<math.h>
<time.h>
<R_ext/Lapack.h>
<R_ext/BLAS.h>

//

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

NDIM 8

NMAX 10000

ITMAX 2000

nrowX 432

ncolX 8

FTOL 0.000000001

TOL 0.0002

GOLD 1.618034

GLIMIT 100.0

TINY 1.0e-10

CON 1.4

BIG 1.0e30

NTAB 10

SAFE 2.0

#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
static double maxargl,maxarg2;

#define FMAX(a,b) (maxargl=(a),maxarg2=(b),(maxargl) > (maxarg2) ? (maxargl) : (maxarg2))
#define CGOLD 0.3819660

typedef struct {
int counter;
double xminimum[NDIM];
double loglikelihood;
} kpsorter;

int structcomparison(const void *v1, const void *v2);
/* Driver for routine powell */

void powell(double pp[], double **xi, int n, double ftol,
double (*func)(double [1));

void linmin(double pp[], double xi[], int n, double *fret, double (*func)(double []));

void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
double (*func)(double));

double brent(double ax, double bx, double cx, double (*f)(double), double tol,
double *xmin);

double fldim(double x);

int *iter, double *fret,

void amoeba(double **p, double y[], int ndim, double ftol,

double (*funk)(double []), int *nfunk);
double amotry(double **p, double y[], double psum[], int ndim,

double (*funk)(double []), int ihi, double fac);

double dfridr(double (*func)(double []), double x[], double h, double *err, int i
double dfridr2nd(double (*func)(double []), double x[], double h, double *err, in
iiii:
void xsvd(int kpnp, int kpng, double *, double *, double *, double *);
double keithrules(double x[1);

iii)
tii

i, int

double func(double x[])

{

return keithrules(x);
b
int ncom;

double *pcom,*xicom, (*nrfunc)(double [1);
static double *Y,*X;

FILE *fp;

FILE *jp;

FILE *kp;

int main(void)

static double *pp;

int i,info,iter,j,iiii,jjjj,.ntrials;

int nfunc,ndim=NDIM;

double h,dx,dx2nd,err;

double fret,**xi;

double *x,*y,*ppjunk,**p,*firstderv,*secondderv;
double *XXinv, *xxinvdiag;

double *u, *lambda, *vt;

double timel, time2, timedif;

int *ipiv;

//
X = (double *) malloc (nrowX*ncolX*sizeof(double));
Y = (double *) malloc (nrowX*sizeof(double));

X

(double *) malloc ((NDIM+1)*sizeof(double));

Ffirstderv = (double *) malloc ((NDIM)*sizeof(double));
secondderv = (double *) malloc ((NDIM)*(NDIM)*sizeof(double));
y = (double *) malloc ((NDIM+1+1l)*sizeof(double));

XXinv = (double *) malloc (NDIM*NDIM*sizeof(double));

ipiv = (int *) malloc (NDIM*sizeof(int));

xxinvdiag = (double *) malloc (NDIM*sizeof(double));

u = (double *) malloc (NDIM*NDIM*sizeof(double));
lambda = (double *) malloc (NDIM*NDIM*sizeof(double));
vt = (double *) malloc (NDIM*NDIM*sizeof(double));

/* Dynamic Allocation of a Matrix: */

/* First, allocate pointers to rows */

/* Second, allocate rows and set pointers to them -- note that p[0] is
* a pointer to p[0][0:n] -- that is a row -- so the syntax below is
* p[O]1[0:nrow*ncol] */

/* Third, form the matrix from step two -- the pointer to the kth row,
* p[k] is set equal to the memory
* location of the number of nrows-1 times the number of columns plus
* the memory location of p[0] */

p= (double **) malloc((NDIM+1+1)*sizeof(double*));
p[0]=(double *) malloc((NDIM+1)*(NDIM+1+1)*sizeof(double));
for (i=0;i<NDIM+1+1;i++)p[i]=p[0]+i*(NDIM+1);

//
/* Dynamically allocate memory to big data structure
* ntrials is equal to the number of solutions from Amoeba --
* NDIM+1 plus the number of solutions from Powell -- in this
* case NDIM+1+10
*/
ntrials=NDIM+1+NDIM+1+10;
kpsorter *recordset;
recordset = (kpsorter *)malloc(ntrials * sizeof(kpsorter));
//

/* clock() is part of time.h -- returns the implementation®s
* best approximationto the processor time elapsed since the
* program was invoke, divide by CLOCKS PER_SEC to get the time

* in seconds */
timel = (double) clock(); /* get initial time */
timel = timel / CLOCKS_PER_SEC; /* in seconds */
srand(122);
//
Jjp = fopen(*'c:/docs_c_summer_course/data_optim.txt","w");
kp = fopen(‘'c:/docs_c_summer_course/data_optim_2._txt","w");
iT((fp = fopen(*'c:/docs_c_summer_course/bush2000.txt","r""))==NULL)
{
printf(""\nUnable to open Ffile BUSH2000.TXT: %s\n', strerror(errno));
exit(EXIT_FAILURE);
else {
fprintfF(p,"” Y and X = \n");
for(i=0; i<nrowX;i++)
{
fscanf(fp,"%If",&Y[i]1);
for(J=0;j<ncolX;j++)
{
fscanf(fp, "%l ", &X[i+j*nrowX]);
3
fprintf(p,"%10d %12.6F", i,Y[il);
for(J=0;j<ncolX;j++)
fprintf(p,"%12.6F" , X[i+j*nrowX]);
3
fprintfFgp,'"\n"");
}
3
//
// AMOEBA MINIMIZATION 1S DONE FIRST
//

/* if 1 == (J+1) is true then the value of x[j] = 1.0, otherwise =0.0 */
for (i=1;i<=NDIM+1;i++) {
for (J=1;j<=NDIM;j++)
xb1=p[i101=G == +1) ? 1.0 : 0.0);
y[i1=func();

amoeba(p,y,ndim,FTOL, func,&nfunc);
printf(""\nNumber of function evaluations: %3d\n',nfunc);
fprintf(Jp, "\nNumber of function evaluations: %3d\n',nfunc);
printf(*"Vertices of final 3-d simplex and\n™);
fprintf(p,'"Vertices of final 3-d simplex and\n");
printf(*"function values at the vertices:\n\n");
fprintf(p, " function values at the vertices:\n\n");
printf(""%3s %10s %12s %12s %l4s\n\n‘,
L UxeltL vyt vz, function'™) ;

for (i=1;i<=NDIM+1;i++) {

printf("'%3d ",i1);

fporintf(gp,"%3d ",i);

for (J=1;j<=NDIM;j++) {

fprintfgp,"%12.6F ", p[i10D):;

//

// store solution in x[]

//

xO1=pLi1101:
recordset[i-1].xminimum[j-1]=x[j];
}
printf("%12.6RA\n",y[i]);
fprintf(p, %12.6A\n",y[i]);
recordset[i-1].loglikelihood=y[i];
recordset[i-1].counter=i;
3
//

// POWELL MINIMIZATION 1S DONE SECOND -- first, the NDIM+1 (ndim + 1)
// solutions are checked and, second, 10 random starts are checked

//
for(iiii=1;iiii <= NDIM+1+10; iiii++)
{
pp = (double *) malloc ((NDIM+1l)*sizeof(double));
ppjunk = (double *) malloc ((NDIM+1)*sizeof(double));
/*
Get Uniform (-1, +1) Numbers for starts
*/
pp[0]=0-0;
Ffor(i=1;i < NDIM+1;i++)
{
if(iiii <= NDIM+1) pp[i] = p[iiii][i];
if(iiii > NDIM+1) pp[i] = 2.0*(C (double)rand() 7/ ((double)(RAND_MAX)+1))-1.0;
ppjunk[i] = pp[i];
3
//

/* Dynamic Allocation of a Matrix: */
/* First, allocate pointers to rows */
/* Second, allocate rows and set pointers to them -- note that p[0] is
* a pointer to p[0][0:n] -- that is a row -- so the syntax below is
* p[O1[0O:nrow*ncol] */
/* Third, form the matrix from step two -- the pointer to the kth row,
* p[k] is set equal to the memory
* location of the number of nrows-1 times the number of columns plus
* the memory location of p[0] */
xi= (double **) malloc((NDIM+1)*sizeof(double*));
xi[0]=(double *) malloc((NDIM+1)*(NDIM+1)*sizeof(double));
for (i=0;i<NDIM+1;i++)xi[i]=xi[0]+i*(NDIM+1);
//
for (i=1;i<=NDIM;i++)
for (J=1;j<=NDIM;j++)
xi[ilg]1=(i == 3 ? 1.0 : 0.0);
/* if 1 == j is true then the value of x[i][j] = 1.0, otherwise =0.0 */
powel 1 (pp,xi,NDIM,FTOL,&iter,&Ffret,func);
fprintf(p, " Iterations: %3d\n\n",iter);

// printf("lterations: %3d\n\n",iter);
fprintfF(@p, "Minimum found at: \n");
// printf("Minimum found at: \n");

for (i=1;i<=NDIM;i++) {
fprintf(p,"%5d %12.6F %12.6F\n",i, pp[il., ppjunk[i]);
// printf("%5d %12.6F %12.6F\n", i, pp[il, ppjunk[i]);
recordset[iiii-1+NDIM+1] . xminimum[i-1]=pp[i];

3
fprintfF(@p, "\n\n%5d Minimum function value = %12_.6F \n\n",i1iii,fret);

printf(""%5d Minimum function value = %12_.6F \n",iiii,fret);
recordset[iiii-1+NDIM+1] . loglikelihood=fret;

recordset[iiii-1+NDIM+1].counter=iiii+NDIM+1;

free(xi);
free(pp);
free(ppjunk);
¥
gsort(recordset, ntrials, sizeof(kpsorter), structcomparison);
for(i=0;i<ntrials;i++)
//
// Pass Best Solution to Numerical Derivatives
//
if(i == 0){
for(J=1;j<=NDIM; j++)
{
x[J]=recordset[i].xminimum[j-1];
by

fprintf(kp,"%5d %5d %14.6F", i,
recordset[i].counter,recordset[i].loglikelihood);

for(J=0;J<NDIM;j++)

{

fprintf(kp,"%12.6F",recordset[i].xminimum[j]);
b
fprintf(kp, ' \n™);

3
fprintf(kp, " \n\n");
h = 0.01;
// 1st derivatives
for(iiii=1;iiii<=NDIM;iiii++){

h = 0.01;
dx=dfridr(func,x,h,&err,iiii);
fprintf(p,"dfridr = %5d %5d %12.6F %12.6F %12.6F\n",iiii,iiii,dx,h,err);

firstderv[iiii-1]=dx;
// 2nd derivatives
For(JJii=1:J3iJ<=NDIM; jjjj++){
h = 0.01;
dx2nd=dfridr2nd(func,x,h,&err,iiii,jjjj);
fprintf(p,"dfrid2nd = %5d %5d %12.6Ff %12.6F
%12_6F\n",iiii,jjjj,.dx2nd,h,err);
secondderv[iiii-1 + (Jjjj-1)*NDIM]=dx2nd;
}

fprintfF(p, "\n\nFirst Derivatives \n\n"");
Ffor(iiii=0;iiii<NDIM;iidi++){
fprintf(p," %5d %12.6F %12.6F\n",iiii,Firstderv[iiii], x[iiii+l]);

by
fprintfF(p, '"\n\nSecond Derivatives \n\n"");
for(iiii=0;iiii<NDIM;iidi++){
For(3ig=0;55JJ<NDIM;jjj++){
fprintf(p, %14 .6F",secondderv[iiii + (Jjjj)*NDIM]D);
3
fprintf(@p,"™\n");

/* Call Singular Value Decomposition Routine to look at the rank
* the Hessian*/
/* Clock the SVD Routine*/

time2 = (double) clock(); /* get initial time */
time2 = time2 / CLOCKS_PER_SEC; /* in seconds */
xsvd(NDIM,NDIM, secondderv,u, lambda,vt);

printf("'Singular Values\n");

for(J=0;j<NDIM;j++)

{

printf("%5d %16.6F\n",j, lambda[j]);

}
timedif = (((double) clock()) /7 CLOCKS PER_SEC) - time2;
printf(*'SVD took %12.3f seconds\n", timedif);
fprintf(Jp,"SVD took %12.3F seconds\n", timedif);
fprintf(kp,"SVD took %12.3f seconds\n', timedif);
/*
Check to make certain the Hessian is non-singular
*/
if(lambda[NDIM-1]<=TOL){
fprintfF(Jp," Error: Hessian Matrix is Singular!™);
fprintf(kp," Error: Hessian Matrix is Singular!');
printf(*"" Error: Hessian Matrix is Singular!™);

}
if(lambda[NDIM-1]>TOL){
/* Initialize the ldentity matrix */
for(i=0; i<NDIM;i++)
{
Ffor(§=0;j<NDIM;j++)

XXinv[i+j*NDIM]=0.0;
if(i == jHXXinv[i+j*NDIM]=1.0;
3
dgesv_(&ndim,&ndim,secondderv,&ndim, ipiv,XXinv,&ndim,&info);

fprintf(kp, ' \n\nlnverse Hessian = \n");
Ffor(i=0;i<NDIM;i++)

for(J=0;j<NDIM;j++)
{

fprintf(kp, %12 6F" , XXinv[i+j*NDIM]);

/* Save Diagonal of Inverse Hessian */

if(i == j)xxinvdiag[i] = XXinv[i+j*NDIM];
by
fprintf(kp,"\n");
fprintf(kp, ' "\n\nFirst Derivatives, Coefficients, and Standard Errors \n\n");

Ffor(iiii=O;iiii<NDIM;iiii++){
fprintf(kp,™ %5d %12.6F %12.6F

%12.6F\n", iiii,Firstderv[iiii],x[iiii+1],sqrt(xxinvdiag[iiii]));

7/

3

3

free(Y);
free(X);
free(x);
free(firstderv);
free(secondderv);
free(y);
free(XXinv);
free(ipiv);
free(xxinvdiag);
free(u);
free(lambda);
free(vt);
free(p);

timedif = (((double) clock()) 7/ CLOCKS_PER_SEC) - timel;

printf(""The total elapsed time of the program is %12.3Ff seconds\n", timedif);
fprintfF(gp, "\nThe total elapsed time of the program is %12.3f seconds\n", timedif);
fprintf(kp,'"\nThe total elapsed time of the program is %12.3f seconds\n", timedif);

fclose(p);
fclose(fp);
return O;

Etc. etc. etc.

double keithrules(double X[1)

{

int i, j, ki, kO, 11, 10;
double sum=0;

double phi=0.0;

double xphi=0.0;

double sumsquared=0;

k1=0;

k0=0;

Ffor(i=0; i<nrowX;i++)

{
sum=0.0;
for(J=0;j<ncolX;j++)
{

sum=sum+X[i+j*nrowX]*x[j+1];

3
phi = (erf(fabs(sum)/sqrt(2.0)))/2.0 + 0.5;

xphi = phi;
if(sum < 0.0)phi=1.0-xphi;
Xxphi = phi;

if(xphi > 0.99999999)phi=0.9999999;
if(xphi < 0.00000001)phi=0.0000001;

// Voted for Bush
if(Y[i] >= 50.0){

11=1;

10=0;

k1l=k1+1;

sumsquared = sumsquared + log(phi);

// Voted for Gore
if(Y[i] < 50.0){

11=0;
10=1;
k0=kO0+1;
sumsquared = sumsquared + log(1.0 - phi);
}
+
// printf("%If\n", -sumsquared) ;

return -sumsquared;

