
1

optimization_machine_probit_bush106.c
/**/
/**/
. probit ybush black00 south hispanic00 income owner00 dwnom1n dwnom2n

Iteration 0: log likelihood = -299.27289
Iteration 1: log likelihood = -154.89847
Iteration 2: log likelihood = -134.46169
Iteration 3: log likelihood = -130.43351
Iteration 4: log likelihood = -130.12954
Iteration 5: log likelihood = -130.12789
Iteration 6: log likelihood = -130.12789

Probit regression Number of obs = 432
 LR chi2(7) = 338.29
 Prob > chi2 = 0.0000
Log likelihood = -130.12789 Pseudo R2 = 0.5652

--
 ybush | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 black00 | -.0285973 .0097913 -2.92 0.003 -.0477878 -.0094067
 south | .7695862 .2545783 3.02 0.003 .2706219 1.268551
 hispanic00 | -.0089458 .0069163 -1.29 0.196 -.0225015 .0046099
 income | -.0241489 .0126394 -1.91 0.056 -.0489217 .0006239
 owner00 | .0235461 .0143687 1.64 0.101 -.0046161 .0517083
 dwnom1n | 2.761974 .2619813 10.54 0.000 2.2485 3.275448
 dwnom2n | 1.136417 .2339829 4.86 0.000 .6778186 1.595015
 _cons | -.9697998 1.077738 -0.90 0.368 -3.082127 1.142528
--

double keithrules(double x[])
{
 int i, j, k1, k0, l1, l0;
 double sum=0;
 double phi=0.0;
 double xphi=0.0;
 double sumsquared=0;
 k1=0;
 k0=0;
 for(i=0;i<nrowX;i++)
 {
// sum=0.0;
// Kludge for Intercept Term
 sum=x[1];
 for(j=0;j<ncolX;j++)
 {
 sum=sum+X[i+j*nrowX]*x[j+2]; // Note Change Here
 }
 phi = (erf(fabs(sum)/sqrt(2.0)))/2.0 + 0.5;
 xphi = phi;
 if(sum < 0.0)phi=1.0-xphi;
 xphi = phi;
 if(xphi > 0.99999999)phi=0.9999999;
 if(xphi < 0.00000001)phi=0.0000001;

2

// Voted for Bush
 if(Y[i] == 1.0){
 l1=1;
 l0=0;
 k1=k1+1;
 sumsquared = sumsquared + log(phi);
 }
// Voted for Gore
 if(Y[i] != 1.0){
 l1=0;
 l0=1;
 k0=k0+1;
 sumsquared = sumsquared + log(1.0 - phi);
 }
 }
// printf("%lf\n",-sumsquared);
 return -sumsquared;

}

3

optimization_machine_logit_bush106.c
/**/
/**/
. logit ybush black00 south hispanic00 income owner00 dwnom1n dwnom2n

Iteration 0: log likelihood = -299.27289
Iteration 1: log likelihood = -158.05142
Iteration 2: log likelihood = -136.72201
Iteration 3: log likelihood = -131.48217
Iteration 4: log likelihood = -130.9258
Iteration 5: log likelihood = -130.9181
Iteration 6: log likelihood = -130.91809

Logistic regression Number of obs = 432
 LR chi2(7) = 336.71
 Prob > chi2 = 0.0000
Log likelihood = -130.91809 Pseudo R2 = 0.5625

--
 ybush | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 black00 | -.0464407 .0172166 -2.70 0.007 -.0801846 -.0126969
 south | 1.299006 .4635389 2.80 0.005 .3904866 2.207526
 hispanic00 | -.0151759 .0117134 -1.30 0.195 -.0381337 .007782
 income | -.0447155 .0224499 -1.99 0.046 -.0887165 -.0007144
 owner00 | .0451916 .0258457 1.75 0.080 -.0054651 .0958483
 dwnom1n | 4.839516 .5025589 9.63 0.000 3.854518 5.824513
 dwnom2n | 1.98889 .422375 4.71 0.000 1.16105 2.81673
 _cons | -1.941606 1.944121 -1.00 0.318 -5.752014 1.868802
--

double keithrules(double x[])
{
 int i, j;
 double sum=0;
 double phi=0.0;
 double xphi=0.0;
 double sumsquared=0;
 k1=0;
 k0=0;
 for(i=0;i<nrowX;i++)
 {
// Kludge for Intercept Term
 sum=x[1];
 for(j=0;j<ncolX;j++)
 {
 sum=sum+X[i+j*nrowX]*x[j+2]; // Note Change Here
 }
// Logit Setup
 phi=1.0/(1.0 + exp(-sum));
 xphi = phi;
 xphi = phi;
 if(xphi > 0.99999999)phi=0.9999999;
 if(xphi < 0.00000001)phi=0.0000001;
// Voted for Bush
 if(Y[i] == 1.0){
 sumsquared = sumsquared + log(phi);

4

 }
// Voted for Gore
 if(Y[i] != 1.0){
 sumsquared = sumsquared + log(1.0 - phi);
 }
 }
// printf("%lf\n",-sumsquared);
 return -sumsquared;

}

5

junk_probit_2.c
/**/
/**/
. summ

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 partyid | 1421 2.377903 2.06071 0 6
 incomecat | 1421 21.12386 7.76314 10 35
 incomequint | 1421 3.001407 1.415208 1 5
 race | 1421 .1491907 .3564018 0 1
 sex | 1421 .5622801 .4962807 0 1
-------------+--
 south | 1421 .3019001 .4592438 0 1
 education | 1421 1.414497 .7154538 1 3
 age | 1421 46.00774 16.05494 20 90
 voted | 1421 1.231527 .9310102 0 3

. oprobit partyid incomequint race sex south education age

Iteration 0: log likelihood = -2633.5601
Iteration 1: log likelihood = -2494.5207
Iteration 2: log likelihood = -2494.0641
Iteration 3: log likelihood = -2494.0641

Ordered probit regression Number of obs = 1421
 LR chi2(6) = 278.99
 Prob > chi2 = 0.0000
Log likelihood = -2494.0641 Pseudo R2 = 0.0530

--
 partyid | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 incomequint | .0141518 .0226314 0.63 0.532 -.0302049 .0585086
 race | -1.130843 .0903177 -12.52 0.000 -1.307862 -.9538234
 sex | .0239784 .057164 0.42 0.675 -.088061 .1360178
 south | -.3237482 .0632066 -5.12 0.000 -.4476307 -.1998656
 education | .232688 .0417371 5.58 0.000 .1508848 .3144911
 age | .0032912 .0018515 1.78 0.075 -.0003377 .00692
-------------+--
 /cut1 | -.5671707 .1471578 -.8555948 -.2787466
 /cut2 | .2302907 .1451673 -.054232 .5148135
 /cut3 | .4976995 .1452729 .2129699 .7824291
 /cut4 | .794375 .146057 .5081085 1.080642
 /cut5 | 1.084038 .14739 .7951585 1.372917
 /cut6 | 1.735149 .1525477 1.436161 2.034137
--

//
// Set up for Ordered Probit -- N-chotomous Probit
//
double keithrules(double x[])
{
 int i, j, jj;
 double sum=0;
 double phi=0.0;
 double erfarg;
 double xphi=0.0;
 double sumsquared=0;
 double *phicuts;
 double *phicutsmu;
 phicuts = (double *) malloc ((nkotp+1)*sizeof(double));
 phicutsmu = (double *) malloc ((nkotp+1)*sizeof(double));
 for(i=0;i<nrowX;i++)
 {

6

/* Setup For Ordinary dichotomous Probit here
 * */
 if(nkotp==2){
/* 2-Choice Probit Uses an Intercept Term*/
 sum=x[1];
 for(j=0;j<ncolX;j++)
 {
 sum=sum+X[i+j*nrowX]*x[j+2]; // Note Change Here
 }
 phi = (erf(fabs(sum)/sqrt(2.0)))/2.0 + 0.5;
 xphi = phi;
 if(sum < 0.0)phi=1.0-xphi;
 xphi = phi;
 if(xphi > 0.99999999)phi=0.9999999;
 if(xphi < 0.00000001)phi=0.0000001;
// Choice 1
 if(Y[i] == 1.0){
 sumsquared = sumsquared + log(phi);
 }
// Choice 0
 if(Y[i] != 1.0){
 sumsquared = sumsquared + log(1.0 - phi);
 }
 }
//
// There is No intercept Term in ordered Probit -- the first
// ncolX entries in x[] -- x[1] to x[ncolX] -- are the
// coefficients on the independent variables
//
 if(nkotp > 2)
 {
 phicutsmu[1] = -.5671707;
 phicutsmu[2] = .2302907;
 phicutsmu[3] = .4976995;
 phicutsmu[4] = .794375;
 phicutsmu[5] = 1.084038;
 phicutsmu[6] = 1.735149;
 sum=0.0;
 for(j=0;j<ncolX;j++)
 {
 sum=sum+X[i+j*nrowX]*x[j+1]; // Note Change Here

 }
//
// In Ordered Probit y_hat is treated as the MEAN of the normal -- the
// cutpoints are treated like "x's"
//
 for(jj=1;jj<nkotp;jj++)
 {
/* Compute Probability from -oo to (cutpoint - Y_hat)
 * */
 erfarg = (phicutsmu[jj]-sum);
 phi = (erf(fabs(erfarg)/sqrt(2.0)))/2.0 + 0.5;
 xphi = phi;
 if(erfarg < 0.0)phi=1.0-xphi;
 xphi = phi;
 if(xphi > 0.99999999)phi=0.9999999;
 if(xphi < 0.00000001)phi=0.0000001;
 phicuts[jj]=phi;
 }
 phicuts[nkotp]=1.0;
 if(Y[i] == 0)phi = phicuts[1];

7

 if(1 <= Y[i] <= nkotp-1)phi = phicuts[(int)Y[i]+1]-
phicuts[(int)Y[i]];
//
 xphi = phi;
 if(xphi > 0.99999999)phi=0.9999999;
 if(xphi < 0.00000001)phi=0.0000001;
 }
 sumsquared = sumsquared + log(phi);
 }
 printf("%lf\n",-sumsquared);
 free(phicuts);
 free(phicutsmu);
 return -sumsquared;

}

