
1

optimization_machine_MDS.c – Analyzes Color Circle Data From Ekman
(1954)

 434 INDIGO 100 86 42 42 18 6 7 4 2 7 9 12 13 16
 445 BLUE 86 100 50 44 22 9 7 7 2 4 7 11 13 14
 465 42 50 100 81 47 17 10 8 2 1 2 1 5 3
 472 BLUE-GREEN 42 44 81 100 54 25 10 9 2 1 0 1 2 4
 490 18 22 47 54 100 61 31 26 7 2 2 1 2 0
 504 GREEN 6 9 17 25 61 100 62 45 14 8 2 2 2 1
 537 7 7 10 10 31 62 100 73 22 14 5 2 2 0
 555 YELLOW-GREEN 4 7 8 9 26 45 73 100 33 19 4 3 2 2
 584 2 2 2 2 7 14 22 33 100 58 37 27 20 23
 600 YELLOW 7 4 1 1 2 8 14 19 58 100 74 50 41 28
 610 9 7 2 0 2 2 5 4 37 74 100 76 62 55
 628 ORANGE-YELLOW 12 11 1 1 1 2 2 3 27 50 76 100 85 68
 651 ORANGE 13 13 5 2 2 2 2 2 20 41 62 85 100 76
 674 RED 16 14 3 4 0 1 0 2 23 28 55 68 76 100

*/

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <R_ext/Lapack.h>
#include <R_ext/BLAS.h>
//
#define NDIM 28
#define NMAX 100000
#define ITMAX 2000
#define nrowX 14
#define ncolX 14

…..etc etc etc

2

THE PLUGIN FOR METRIC MDS
/*
 Setup for Metric Multidimensional Scaling -- No Constraints on the
 Coordinates
*/

double keithrules(double x[])
{
 int i, j;
 double sum=0;
 double sumsquared=0;
 double circledist, circledisthat;
 for(i=0;i<nrowX;i++)
 {
 for(j=0;j<ncolX;j++)
 {
 sum=0.0;
 circledist = (100.0 - X[i+j*nrowX])/50.0;
 circledisthat = sqrt(pow((x[i+1]-x[j+1]),2.0) +
pow((x[i+1+nrowX]-x[j+1+nrowX]),2.0));
 sumsquared=sumsquared+pow((circledist-
circledisthat),2.0);
 }
 }
// printf("%lf\n",-sumsquared);
 return sumsquared;

}

AMOEBA DOES NOT ALWAYS WORK!!!
//
// AMOEBA MINIMIZATION IS DONE FIRST
//
/* if i == (j+1) is true then the value of x[j] = 1.0, otherwise =0.0 */
 for (i=1;i<=NDIM+1;i++) {
 for (j=1;j<=NDIM;j++)
 x[j]=p[i][j]=(i == (j+1) ? 1.0 : 2.0*((double)rand() /
((double)(RAND_MAX)+1))-1.0);
// x[j]=p[i][j]=(i == (j+1) ? 1.0 : -1.0);
 y[i]=func(x);
 printf("%5d initial function value = %15.6f \n",i,y[i]);
 }
 amoeba(p,y,ndim,FTOL,func,&nfunc);

3

optimization_machine_king.c – Analyzes King Data on U.K. elections (1990)

VOTE SHARES -- CONSERVATIVE, LABOR, 3rd
.4341994, .4610934, .1047072,
.4797144, .4877813, .0325043,
.4974225, .4635792, .0389983,
.4935235, .4384425, .0680339,
.4339797, .4413256, .1246946,
.4187992, .4803503, .1008505,
.4637579, .430723, .1055191,
.3788168, .3715876, .2495956,
.3584408, .3925122, .249047,
.4387356, .3693695, .1918949,
.4242528, .2757294, .3000178,
.423 .308, .269

SEATS -- CONSERVATIVES, LABOR, 3rd

300, 315, 12,
325, 295, 9,
345, 277, 8,
365, 258, 7,
304, 317, 9,
253, 364, 13,
330, 288, 12,
297, 301, 37,
277, 319, 39,
339, 269, 27,
397, 209, 45,
376, 229, 45

THE MLE RESULTS
> results
 [,1] [,2] [,3] [,4]
[1,] 1.14217375 0.08810331 12.964027 1.187315e-06
[2,] -0.04587087 0.02420965 -1.894735 9.473289e-02
[3,] -1.60468315 0.09017014 -17.796169 1.017642e-07
> model
$par
[1] 1.14217375 -0.04587087 -1.60468315

$value
[1] 6118.279

$counts
function gradient
 264 NA

$convergence
[1] 0

$message
NULL

4

$hessian
 [,1] [,2] [,3]
[1,] 254.92549 -45.61907 -171.2843
[2,] -45.61907 1866.32262 -112.0308
[3,] -171.28432 -112.03083 249.0333

*/

THE PLUGIN FOR KING PROBLEM

double keithrules(double x[])
{
 int i, j, nelection;
 double sum=0;
 double *lambda;
 double sumsquared=0;
 double rho_0, rhox;
 nelection = nrowX/2;
 lambda = (double *) malloc ((ncolX+1)*sizeof(double));
 rho_0 = x[1];
 lambda[1] = 0.0;
 lambda[2] = x[2];
 lambda[3] = x[3];
/**/
 for(i=0;i<nelection;i++)
 {
 rhox = rho_0;
 sum = 0.0;
 for(j=0;j<ncolX;j++)
 {
/*
Calculate constant term -- TT = Vote Share -- first 12 rows of
 king_data.txt
 -- T = Seats -- rows 13 - 24 of
 king_data.txt
*/
 sum = sum + exp(lambda[j+1] + rhox*log(X[i+j*nrowX]));
 }
 for(j=0;j<ncolX;j++)
 {
/*
Calculate Row
*/
 sumsquared = sumsquared + X[i+nelection+j*nrowX]*(lambda[j+1]
+ rhox*log(X[i+j*nrowX]) - log(sum));
 }
 }
 free(lambda);
 return(-sumsquared);

