optimization_machine_MDS.c — Analyzes Color Circle Data From Ekman

(1954)

434 IND
445 BLU
465
472 BLU
490
504 GRE
537
555 YEL
584
600 YEL
610
628 ORA
651 ORA
674 RED

*/

#include
#include
#include
#include
#include
#include
#include
#include
//
#define
#define
#define
#define
#define

... -etc

1GO 100 86 42 42 18
E 86 100 50 44 22
42 50 100 81 47
E-GREEN 42 44 81 100 54
18 22 47 54 100
EN 6 9 17 25 61
7 7 10 10 31
LOW-GREEN 4 7 8 9 26
2 2 2 2 7
Low 7 4 1 1 2
9 7 2 0 2
NGE-YELLOW 12 11 1 1 1
NGE 13 13 5 2 2
16 14 3 4 O
<stdio.h>
<stddef.h>
<stdlib.h>
<string.h>
<math.h>
<time.h>
<R_ext/Lapack.h>
<R_ext/BLAS_h>
NDIM 28
NMAX 100000
ITMAX 2000
nrowX 14
ncolX 14
etc etc

6

9
17
25
61
100
62
45

=
RPNNNOM

7
7
10
10
31
62
100
73
22
14

ONNO

N
o OWoN»

45
73
100
33
19

NN WA

~NDNNNDN

14
22
33
100
58
37
27
20
23

13

=
NNNNNOTW

12
11
1
1
1
2
2
3
27 20
50
76 62
100 85
85 100
68 76 100

16
14
3
4
0
1
0
2
23
28
55
68
76

THE PLUGIN FOR METRIC MDS
/*
Setup for Metric Multidimensional Scaling -- No Constraints on the
Coordinates
*/

double keithrules(double X[1)
{
int i, j;
double sum=0;
double sumsquared=0;
double circledist, circledisthat;
Ffor(i=0; i<nrowX;i++)
{
for(J=0;j<ncolX;j++)
{
sum=0.0;
circledist = (100.0 - X[i+j*nrowx])/50.0;
circledisthat = sqrt(pow((x[i+1]-x[j+1]).,2.-0) +
pow((x[i+1+nrowX]-x[j+1+nrowxX]),2.0));
sumsquared=sumsquared+pow((circledist-
circledisthat),2.0);

}
}
// printf("%IF\n",-sumsquared);
return sumsquared;
}
AMOEBA DOES NOT ALWAYS WORK!II1
//

// AMOEBA MINIMIZATION IS DONE FIRST
//
/* if i1 == (J+1) is true then the value of x[j]
for (i=1;i<=NDIM+1;i++) {
for (§J=1;j<=NDIM;j++)
xO1=p[i101=G == (g+1) ? 1.0 : 2.0*((double)rand() 7/
((double) (RAND_MAX)+1))-1.0);
1/ x(1=plil1=G == g+1) ? 1.0 : -1.0);
yLi]=func(x);
printf('%5d initial function value = %15.6F \n",i,y[i]);

1.0, otherwise =0.0 */

}
amoeba(p,y,ndim,FTOL,func,&nfunc);

optimization_machine_king.c — Analyzes King Data on U.K. elections (1990)

VOTE SHARES -- CONSERVATIVE, LABOR, 3rd
4341994, .4610934, .1047072,
4797144, 4877813, .0325043,
4974225, 4635792, .0389983,
.4935235, .4384425, .0680339,
.4339797, .4413256, .1246946,
-4187992, .4803503, .1008505,
-4637579, .430723, .1055191,
.3788168, .3715876, .2495956,
.3584408, .3925122, .249047,
-4387356, .3693695, .1918949,
.4242528, .2757294, .3000178,
-423 -308, .269

SEATS -- CONSERVATIVES, LABOR, 3rd

300, 315, 12,
325, 295, 9,
345, 277, 8,
365, 258, 7,
304, 317, 9,
253, 364, 13,
330, 288, 12,
297, 301, 37,
277, 319, 39,
339, 269, 27,
397, 209, 45,
376, 229, 45

HFHHFHFHHFHFHHFEHRF R HREHRTEHRERS

THE MLE RESULTS

[.1] [.2] [.3] [.4]
[1,] 1.14217375 0.08810331 12.964027 1.187315e-06

[2,]1 -0.04587087 0.02420965 -1.894735 9.473289e-02
[3,1 -1.60468315 0.09017014 -17.796169 1.017642e-07
> model

$par

[1] 1.14217375 -0.04587087 -1.60468315

> results

$value
[1] 6118.279

$counts
function gradient
264 NA

$convergence

[1] O

$message
NULL

$hessian

[.1] [.2] [.3]1
[1,1 254.92549 -45.61907 -171.2843
[2,]1 -45.61907 1866.32262 -112.0308
[3,1 -171.28432 -112.03083 249.0333

*/

THE PLUGIN FOR KING PROBLEM

double keithrules(double X[1])

{
int 1, j, nelection;
double sum=0;
double *lambda;
double sumsquared=0;
double rho 0, rhox;
nelection = nrowX/2;
lambda = (double *) malloc ((ncolX+1l)*sizeof(double));
rho_0 = x[1];
lambda[1] 0.0;
lambda[2] x[2];
lambda[3] X[3];

for(i=0;i<nelection;i++)

{

/**/

rhox = rho_O;
sum = 0.0;
for(J=0;j<ncolX;j++)
{
/*
Calculate constant term -- TT = Vote Share -- first 12 rows of
king_data.txt
-- T = Seats -- rows 13 - 24 of
king_data.txt
*/
sum = sum + exp(lambda[j+1] + rhox*log(X[i+j*nrowX]));

}
for(§=0; j<ncolX;j++)

/*
Calculate Row
*/
sumsquared = sumsquared + X[i+nelection+j*nrowX]*(lambda[j+1]
+ rhox*log(X[i+j*nrowX]) - log(sum));
}

}
free(lambda);
return(-sumsquared) ;

