Sort_structure_1.c

/*

sort_structure.c -- shows simple double sort using gsort
*/

#include <stdlib_h>

#include <stdio.h>

#define MAX 100
/* The "typedef" keyword creates a synonym for a structure -- in this
* case "kpsorter'™. Hence, when the word "kpsorter™ is used below the
* compiler knows that you mean "struct kpsorter'. Also "kpsorter"
* becomes a word like "int", "double™, or "char'" so you can declare
* something as a structure of type kpsorter (see below)*/
typedef struct {int icount;
double data;

} Kpsorter;
int structcomparison(const void *vl1, const void *v2);

int main(void)
{ o
int i;
double arr[MAX], arrsort[MAX];
/* Declare recordset as a structure defined by the label kpsorter */
kpsorter recordset[MAX];
srand(17);
printF("'RAND_MAX=%10d\n", RAND_MAX); /* check operating
system limit value */
for(i=0; i<MAX;i++)

{
arr[i] = rand()/((double)RAND MAX + 1); /* Fill arr[,] with
random doubles*/
arrsort[i]=arr[i];
recordset[i].icount=i;
recordset[i].data=arr[i];
}
gsort(recordset, MAX, sizeof(kpsorter), structcomparison);
for(i=0; i<MAX;i++)

{
printf('%10d %10d arr[%10.6F] arrsort[%10.6F]\n", 1,
recordset[i].icount, arrsort[i], recordset[i].data);

}
printf(""\n\n"");

return(0);
}
int structcomparison(const void *v1, const void *v2)
{
/* Again, "kpsorter" is a declaration of a type like "int" or "double"

* Here we declare two pointers pl and p2 of type "kpsorter'™ and set
* them equal to the pointers vl and v2. Note the "(kpsorter *)'" CASTS
* vl and v2 as pointers of type structure as defined by kpsorter above*/
kpsorter *pl=(kpsorter *)vl;
kpsorter *p2=(kpsorter *)v2;
/* The "->" is special to structures -- it is "aiming" at the data

1

element of the structure */
if(pl->data < p2->data)
return -1;
else if (pl->data == p2->data)
return O;
else
return 1;

Sort_structure_2.c

/*

sort_structure.c -- shows simple double sort using gsort
*/

#include <stdlib_h>

#include <stdio.h>

#define MAX 100
// Declare structure here -- the structure tag is "kpsorter"™
struct kpsorter {

int icount;

double data;

33
int structcomparison(const void *vl1, const void *v2);

int main(void)

{

/* Declare Structure here of type kpsorter -- you need to use the
* "struct" keyword because "typedef'" was not used above -- recordset
* Is now a structure according to the kpsorter template above*/
struct kpsorter recordset[MAX];
int 1;
double arr[MAX], arrsort[MAX];
srand(17);
printf("'RAND_MAX=%10d\n", RAND_MAX); /* check operating
system limit value */
for(i=0; i<MAX;i++)

{
arr[i] = rand()/((double)RAND MAX + 1); /* Fill arr[,] with
random doubles*/
arrsort[i]=arr[i];
recordset[i].icount=i;
recordset[i].data=arr[i];

/* Either of these sorting commands will work*/

// gsort(recordset, MAX, sizeof(struct kpsorter), structcomparison);
gsort(recordset, MAX, sizeof(recordset[0]), structcomparison);
for(i=0; i<MAX;i++)

{
printf('%10d %10d arr[%10.6F] arrsort[%10.6F]J\n"", 1,
recordset[i].icount, arrsort[i], recordset[i].data);

printf(""\n\n"");

return(0);
int structcomparison(const void *v1l, const void *v2)
{
/* these two sets of commands do the same thing: This */
// struct kpsorter *pl=(struct kpsorter *)vl;
// struct kpsorter *p2=(struct kpsorter *)v2;

/* and this: */
struct kpsorter *pl, *p2;

pl=(struct kpsorter *)vl; /* the "(struct kpsorter *)'" CASTS vl and

v2 */
p2=(struct kpsorter *)v2; /* as pointers of type structure as
* defined by kpsorter above */
if(pl->data < p2->data)
return -1;
else if (pl->data == p2->data)
return O;
else
return 1;
}

Read_sen110.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
Function to pull a string variable out of a string record given a column
position range for the string (the first character of string is
referenced as 0). The function then returns the string with a
terminating character (0)

*/

void getstrbypos(char *buf, int start, int stop, char *res) {

strncpy(res,buf+start,stop-start+l); /* get substring field from buf
*/

}

/*
Function to pull and an integer out of a string record given
a column position range for the integer.
*/
void getintbypos(char *buf, int start,int stop, int *res) {
char field[100];
/* Call function getstrbypos to extract the character string that will
Be converted to an integer. This character string is returned in field*/
getstrbypos(buf,start,stop, field);

res[stop-start+l] = 0; /* Add end of string character */

/*SSCANF - formatted input conversion -- ''sscanf(s, format [, pl, p2, .--]1)"
reads input from the string "s" and assigns it to the areas of memory pointed
to by the pointers "pl™, "p2'", and so on. The "format" string indicates how

to interpret the characters being read in. Below “field” is our character
string; “%i”, @s our format statement, and “res” is our memory address.
*/

}

sscanf(field,"%i'"",res); /* copy Ffield to res as integer */

int main(void) {
FILE *fp;
int cong, icpsr,state,district,party;
char statename[10], Iname[20], fname[50];
char buf[80];

it ((fp=fopen(*'senll0_names.txt","r'))==NULL) {
printf('Cannot open filel\n");
exit(l);

}

/* read row from data (up to 80 chars wide) */
while (fgets(buf,80,fp) = NULL) {
/* write row from data (up to 80 chars wide) to screen */
printf('%s\n",buf);

getintbypos(buf,0,3,&cong);
getintbypos(buf,4,15,&icpsr);

5

getintbypos(buf,16,24,&state);
getintbypos(buf,25,26,&district);
getstrbypos(buf,28,36,statename);
getintbypos(buf,37,39,&party);
getstrbypos(buf,41,53, Iname);
getstrbypos(buf,54,80, fname);

printf('Cong
printf(""1CPSR
printf("'State
printfF('Dist
printf(*'Staten
printf('Party
printf('Iname
printf("*fname

%i\n",cong);
%i\n",icpsr);
%i\n",state);
%i\n",district);
%s\n",statename);
%i\n',party);
%s\n'", Iname) ;
%s\n\n"", fname) ;

return(0);

