Writedata_ols.c

/* writedata ols.c -- Writes out a file for ols read.c. The X matrix
is random data, the BETA vector is pre-set, and Y vector ix X*BETA.
The first column is Y, the second is a column of "1"s for the
intercept, and the remaing columns are drawn from the rand()
function. User sets number of columns and number of rows below. */
#include <stdlib_h>

#include <stdio.h>

/* Declare pointer to the output file */

FILE *kp;

*

*

*

*

int main(void){

int nrow=1000, ncol=25;
double *X, *Y, *BETA;
double sum;

int i

0;
int 0;

i
X = (double *) malloc (nrow*ncol*sizeof(double));
Y = (double *) malloc (nrow*sizeof(double));
BETA = (double *) malloc (nrow*sizeof(double));
/* Open the output file */

kp = fopen(''data_ols.txt","w");

printf("\nnumber of rows = %d number of columns = %d\n\n",nrow,ncol);

/* Initialize BETA vector -- Note that the Constant term will be
* affected by the means of the variables when OLS.c is run */
for(§=0; j<ncol;j++)

BETA[j] = 1;
}

srand(14);
/* Fill X matrix with random numbers*/
for(i=0;i<nrow*ncol;i++){
X[i] = ((double)rand() / ((double)(RAND_MAX)+(double)(1)));

/* Put "1"s in first Column of X -- Columns are stacked in vector X */
for(i=0;i<nrow;i++)

X[i] = 1;

b
/* Calculate Y */
for(1=0;i<nrow;i++)
{
sum=0.0;
for(J=0;j<ncol;j++)
{

by
Y[i]=sum;

sum=sum+BETA[J]1*X[i+j*nrow];

}

/* For loops for writing out Y and X */
for(i=0;i<nrow;i++)
{
fprintf(kp, "%7.3F",Y[i]);
for(J=0;j<ncol;j++)
{

¥
/* This is the line feed -- newline at the end of the the jth row */

fprintf(kp, \n"");
by

fclose(kp);
free(X);
free(Y);
free(BETA);
return(0);

fprintf(kp, "%7.3F"',X[i+j*nrow]);

ols_read.c

/*
c:/mingw/bin/gcc -1"c:/program files/R/R-2.9.0/include™ -L"C:/Program
Files/R/R-2.9.0/bin" -Wall %1.c -o %l.exe -IRlapack -IRblas

General OLS program. Reads matrix created by writedata ols.c

The only parameters the user has to set are the number of rows and
columns -- nrow and ncol below. The number of columns counts a column
of "1"s used for the intercept term. All memory is then dynamically
allocated using nrow and ncol.

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <R_ext/Lapack.h>

#include <R_ext/BLAS.h>

FILE *fp;

int main(){

int i, j, info, errno;

char trans = "t", notrans ="n";
double alpha = 1.0, beta=0.0;
int nrow=1000, ncol=25;

int one=1;

double *X, *Y, *XprimeX, *XXinv, *XXinvX, *coef;
int *ipiv;

double *) malloc (nrow*ncol*sizeof(double));
double *) malloc (nrow*sizeof(double));

eX = (double *) malloc (ncol*ncol*sizeof(double));
XXinv = (double *) malloc (nhcol*ncol*sizeof(double));

S AN

XXinvX = (double *) malloc (nrow*ncol*sizeof(double));
coef = (double *) malloc (ncol*sizeof(double));
ipiv = (int *) malloc (ncol*sizeof(int));

printf(""\nnumber of rows = %d number of columns = %d\n\n",nrow,ncol);
if((fp = fopen(''c:/docs_c_summer_course/data _ols.txt","r"))==NULL)

printfF(C"\nUnable to open file OLS DATA.TXT: %s\n",
strerror(errno));
exit(EXIT_FAILURE);
}

else {

printf("" Y and X = \n"");
for(i=0;i<nrow;i++)
{
Ffscanf(fp, "Wl ,&Y[i]);
for(§=0;j<ncol;j++)
{
fscanf(fp, "%l ', &X[i+)*nrow]);

3

}
printf('%10d %12.6Ff", i1,Y[i]);
for(§=0;j<ncol;j++)

printfF(C'%12.6F" ,X[i+j*nrow]);

}
printf("\n");
3
3

dgemm_(&trans,¬rans, &ncol ,&ncol ,&nrow,&alpha,X,&nrow, X, &nrow, &beta,
XprimeX,&ncol);

printf("\n\nX*X = \n"");
for(i=0;i<ncol;i++)
{

for(J=0;j<ncol;j++)

{

printfF("'%12.6F" ,XprimeX[i+j*ncol]);

s
printf(’'\n"");

/* Initialize the ldentity matrix */
for(i=0;i<ncol;i++)

{
for(J=0;j<ncol;j++)
{
XXinv[i+j*ncol]=0.0;
iT(== j)XXinv[Li+j*ncol]=1.0;
}
}

dgesv_(&ncol,&ncol ,XprimeX,&ncol, ipiv,XXinv,&ncol,&info);
printfFC\n\n(X"X)-1 = \n"");
for(i=0;i<ncol;i++)

{
for(§=0;j<ncol;j++)
{
printf("%12.6F" ,XXinv[i+j*ncol]);
ks
printf("’\n"");
3
//XXinv is 2x2
//X" is 2x5
//X 1s 5x2

dgemm_(¬rans, &trans, &ncol ,&nrow, &ncol,&alpha, XXinv,&ncol ,X,&nrow, &b
eta, XXinvX,&ncol);

//7XXinvX 1s 2x5
/7Y is 5x1

dgemm_(¬rans,¬rans,&ncol,&one,&nrow,&alpha, XXinvX,&ncol,Y,&nrow,
&beta,coef,&ncol);

printf("\n\nCoefficient Vector = ");

for(i=0;i<ncol;i++)

printf("'\nkd %12.6F", i, coef[i]);

}
printf("\n\n"");
free(X);
free(Y);
free(XprimeXx);
free(XXinvX);
free(coef);
free(ipiv);

fclose(fp);
return(0);

ols_read_svd.c

/*
c:/mingw/bin/gcc -1"c:/program files/R/R-2.9.0/include™ -L"C:/Program
Files/R/R-2.9.0/bin" -Wall %1.c -o %l.exe -IRlapack -IRblas

General OLS program. Reads matrix created by writedata ols.c

The only parameters the user has to set are the number of rows and
columns -- nrow and ncol below. The number of columns counts a column
of "1"s used for the intercept term. All memory is then dynamically
allocated using nrow and ncol.

This version does a Singular Value Decomposition on the input matrix
*/

#include <math.h>

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <R_ext/Lapack.h>

#include <R_ext/BLAS.h>

void xsvd(int kpnp, int kpng, double *, double *, double *, double *);

FILE *fp;
FILE *jp;

int main(){

int i, j, info, errno;

char trans = "t", notrans ="n-;
double alpha = 1.0, beta=0.0;
int nrow=1000, ncol=25;

int one=1;

double *X, *Y, *XprimeX, *XXinv, *XXinvX, *coef;
double *u, *lambda, *vt;

int *ipiv;

double timel, time2, timedif;

X (double *) malloc (nrow*ncol*sizeof(double));

Y (double *) malloc (nrow*sizeof(double));

XprimeX = (double *) malloc (nhcol*ncol*sizeof(double));
XXinv = (double *) malloc (hcol*ncol*sizeof(double));

XXinvX = (double *) malloc (nrow*ncol*sizeof(double));
coef = (double *) malloc (ncol*sizeof(double));

ipiv = (int *) malloc (ncol*sizeof(int));

u = (double *) malloc (nrow*nrow*sizeof(double));
lambda = (double *) malloc (hcol*ncol*sizeof(double));
vt = (double *) malloc (ncol*ncol*sizeof(double));

/* clock() is part of time.h -- returns the implementation”s
* best approximationto the processor time elapsed since the
* program was invoke, divide by CLOCKS PER _SEC to get the time
* in seconds */
timel = (double) clock(); /* get initial time */

timel = timel / CLOCKS_PER_SEC; /* in seconds */

printf("\nnumber of rows = %d number of columns = %d\n\n',nrow,ncol);

Jp = fopen('c:/docs_c_summer_course/data ols_svd.txt","w™);

if((fp = fopen(‘'c:/docs_c_summer_course/data ols.txt","r"))==NULL)
printf("\nUnable to open file OLS_DATA._TXT: %s\n",

strerror(errno));
exit(EXIT_FAILURE);

}
else {
fprintfF p,” Y and X = \n"");
Ffor(i=0;i<nrow;i++)
{
fscanf(fp, "%, &Y[i]);
for(J=0;j<ncol;j++)
{
Ffscanf(fp, " %I, &X[i+J*nrow]);
3
fprintf(p,"%10d %12.6F", i,Y[i]);
for(J=0;j<ncol;j++)
{
fprintf(p,"'%12.6F" ,X[i+J*nrow]);
3
fprintf(gp,'"\n"");
¥
/* Call Singular Value Decomposition Routine to look at the colinearity
* in X */
/* Clock the SVD Routine*/
time2 = (double) clock(); /* get initial time */
time2 = time2 / CLOCKS_PER_SEC; /* in seconds */

xsvd(nrow,ncol ,X,u, lambda,vt);

timedif = (((double) clock()) / CLOCKS_PER_SEC) - time2;
printf('SVD took %12.8F seconds\n', timedif);
fprintfF(p,""SVD took %12.8F seconds\n', timedif);

dgemm_(&trans,¬rans,&ncol,&ncol ,&nrow,&alpha, X, &nrow, X, &nrow,&beta,
XprimeX,&ncol);

fprintfFp, "\n\nX*X = \n"");

for(i=0;i<ncol;i++)

{
for(§=0;j<ncol;j++)
{
fprintf(p,""%12.6F" ,XprimeX[i+j*ncol]);
}

fprintf(p,'"\n");

/* Initialize the ldentity matrix */
for(i=0;i<ncol;i++)

{

for(J=0;j<ncol;j++)
{
XXinv[i+j*ncol]=0.0;
if(i == pHXXinv[i+j*ncol]=1.0;
}
¥
dgesv_(&ncol ,&ncol,XprimeX,&ncol, ipiv,XXinv,&ncol,&info);
fprintfgp, " "\n\n(X*X)-1 = \n"");
for(i=0;i<ncol;i++)

{
Tfor(J=0;j<ncol;j++)
{
fprintf(gp,"%12.6F" ,XXinv[i+j*ncol]);
}
fprintfFQgp,'"\n");
}
//XXinv is 2x2
//X" is 2x5
//X is 5x2

dgemm_(¬rans, &trans, &ncol,&nrow,&ncol ,&alpha, XXinv,&ncol ,X,&nrow, &b
eta, XXinvX,&ncol);

//XXinvX is 2x5
//Y is 5x1

dgemm_(¬rans,¬rans,&ncol ,&one,&nrow, &alpha, XXinvX,&ncol,Y,&nrow,
&beta,coef,&ncol);
fprintfp, "\n\nCoefficient Vector = ");
printf('"\n\nCoefficient Vector = ");
for(i=0;i<ncol;i++)
{
printf(""\nkd %12.6Ff", i, coef[i]);
fprintf(p, "\n%d %12_6F", i, coef[i]);

}

printf(C"\n\n"");

free(X);

free(Y);

free(XprimeX);

free(XXinvX);

free(coef);

free(ipiv);

free(u);

free(lambda) ;

free(vt);

timedif = (((double) clock()) 7/ CLOCKS PER_SEC) - timel;

printf("'The total elapsed time of the program is %12.8F seconds\n',
timedif);

fprintf(p,'"\nThe total elapsed time of the program is %12.8f
seconds\n", timedif);

fclose(fp);

fclose(jp);
return(0);

}
/*

Singular Value Decomposition Subroutine

*/

void xsvd(int kpnp, int kpng, double *y, double *u, double *lambda, double
*vt) {

/*

*/

double *a, *work;

double sumulv, svd_error_sum, svd_error_sum_2;
int i, j, jj;

int info = 12;

int lIwork= kpnp*kpnp+kpng*kpng;

int |lda,ldu,ldvt;

a
work

calloc(kpnp*kpnq, sizeof(double));
calloc(lwork, sizeof(double));

fprintf(p, 'entering svd..._\n");

lda kpnp;

1du kpnp;

ldvt kpng;

for (i=0;i<lwork;i++){
work[i] = O;

}

fprintf(p, "lwork=%i\n"", lwork);

for (§=0;j<kpng;j++) {
for (i=0;i<kpnp;i++) {
) af*kpnp)+i] = y[*kpnp)+i];

}

dgesvd_("A","A", &kpnp, &kpnq, a, &lda, lambda,
u, &ldu, vt, &ldvt, work, &lwork, &info);

fprintf(p, " Info = %i\n",info);
printf(""Info = %i\n",info);
fprintfF(p, " 'Singular Values\n');
printf("'Singular Values\n');
Ffor(3j=0;3i<kpng;jj++)
{
fprintf(p,"%d %F\n",jj,lambdal[jjil);
printf("'%d %f\n",jj,lambda[jj]);

}
/*
Do simple check of SVD

*/

svd_error_sum=0.0;
svd_error_sum_2=0.0;
for (i=0;i<kpnp;i++)
{
for (3J=0;3j<kpng;jj++)
{
sumulv=0.0;
for (3=0;j<kpnqg;j++)
{

sumullv+=u[(*kpnp)+i]*lambda[j]1*vt[1+Gi*kpnq)];
¥

svd_error_sum+=(y[i+j*kpnp)]-sumulv)*(y[i+(j*kpnp)]-
sumulv);
svd_error_sum_2+=Fabs(y[i+(j*kpnp)]-sumulv);
¥
by
fprintfF(p,"SVD Error Check = %12.7¢g
%12.7g\n",svd_error_sum,svd_error_sum 2);
printf('SVD Error Check = %12.79g
%12.7g\n",svd_error_sum,svd_error_sum_2);
fprintf(p, 'Leaving svd..._\n");
free(work);
free(a);

10

*oX b % ok X %

*

*ox ok X

o R % b % X ok X b X b X o X b X %

ok ok k% X X X X X o ok ok ok ok ¥

Subroutine DGESVD from LAPACK Library

SUBROUTINE DGESVD(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,

$

WORK, LWORK, INFO)

-— LAPACK driver routine (version 3.2) --
-- LAPACK is a software package provided by Univ. of Tennessee,

-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--

November 2006

.. Scalar Arguments ..
CHARACTER

INTEGER

JOBU, JOBVT
INFO, LDA, LDU, LDVT, LWORK, M, N

.. Array Arguments ..
DOUBLE PRECISION AC LDA, *), SC *), uC Lbu, *),

Purpo

se

VT(LDVT, *), WORK(*)

DGESVD computes the singular value decomposition (SVD) of a real

M-by-N matrix A, optionally computing the left and/or right singular
vectors. The SVD

is written

A = U * SIGMA * transpose(V)

where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.

Note that the routine returns V**T, not V.

Argum

JOBVT

ents

(input) CHARACTER*1
Specifies options for computing all or part of the matrix U:

AT
"ST:

"0":

"N

all M columns of U are returned in array U:

the first min(m,n) columns of U (the left singular
vectors) are returned in the array U;

the first min(m,n) columns of U (the left singular
vectors) are overwritten on the array A;

no collumns of U (no left singular vectors) are
computed.

(input) CHARACTER*1
Specifies options for computing all or part of the matrix
V**T:

AT
"ST:

all N rows of V**T are returned in the array VT;
the first min(m,n) rows of V**T (the right singular

11

% R % b 3k b ok b 3 X ok X b X b X b X b X b 3 b % 3k X o X b X b X b X b % b X % X ok % b X b X ok X ok X %

LDA

LDU

VT

LDVT

vectors) are returned in the array VT;

= "0": the first min(m,n) rows of V**T (the right singular

vectors) are overwritten on the array A;
= "N": no rows of V**T (no right singular vectors) are
computed.

JOBVT and JOBU cannot both be "0~.

(input) INTEGER
The number of rows of the input matrix A. M >= 0.

(input) INTEGER
The number of columns of the input matrix A. N >= 0.

(input/output) DOUBLE PRECISION array, dimension (LDA,N)

On entry, the M-by-N matrix A.

On exit,

if JOBU = "0", A is overwritten with the Ffirst min(m,n)
columns of U (the left singular vectors,
stored columnwise);

if JOBVT = "0", A is overwritten with the first min(m,n)
rows of V**T (the right singular vectors,
stored rowwise);

if JOBU .ne. "0" and JOBVT .ne. "0", the contents of A
are destroyed.

(input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

(output) DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+l).

(output) DOUBLE PRECISION array, dimension (LDU,UCOL)
(LDU,M) if JOBU = *"A" or (LDU,min(M,N)) if JOBU = "S-".

I JOBU = "A", U contains the M-by-M orthogonal matrix U;
if JOBU = *"S", U contains the first min(m,n) columns of U
(the left singular vectors, stored columnwise);

if JOBU = "N or "0", U is not referenced.

(input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBU = *S* or "A", LDU >= M.

(output) DOUBLE PRECISION array, dimension (LDVT,N)

IT JOBVT = "A", VT contains the N-by-N orthogonal matrix
V**T;

if JOBVT = *"S", VT contains the first min(m,n) rows of
V**T (the right singular vectors, stored rowwise);

if JOBVT = "N* or "0", VT is not referenced.

(input) INTEGER

The leading dimension of the array VT. LDVT >= 1; if
JOBVT = "A", LDVT >= N; if JOBVT = "S", LDVT >= min(M,N).

12

* WORK
(MAX(L,LWOR
*

*

*

*

*

*

*

* LWORK
*

*

*

*

*

*

*

*

*

* INFO
*

*

*

*

*

*

*

*

*

(workspace/output) DOUBLE PRECISION array, dimension

)]

On exit, if INFO = 0, WORK(1) returns the optimal LWORK;

it INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix B

whose diagonal is In S (not necessarily sorted). B

satisfies A= U * B * VT, so it has the same singular values
as A, and singular vectors related by U and VT.

(input) INTEGER

The dimension of the array WORK.

LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).

For good performance, LWORK should generally be larger.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

(output) INTEGER

= 0: successful exit.

< 0: 11f INFO = -i, the i-th argument had an illegal value.

> 0: i1f DBDSQR did not converge, INFO specifies how many
superdiagonals of an intermediate bidiagonal form B
did not converge to zero. See the description of WORK
above for details.

13

