
1

Writedata_ols.c

/* writedata_ols.c -- Writes out a file for ols_read.c. The X matrix
 * is random data, the BETA vector is pre-set, and Y vector ix X*BETA.
 * The first column is Y, the second is a column of "1"s for the
 * intercept, and the remaing columns are drawn from the rand()
 * function. User sets number of columns and number of rows below. */
#include <stdlib.h>
#include <stdio.h>
/* Declare pointer to the output file */
FILE *kp;

int main(void){

 int nrow=1000, ncol=25;
 double *X, *Y, *BETA;
 double sum;
 int i = 0;
 int j = 0;

 X = (double *) malloc (nrow*ncol*sizeof(double));
 Y = (double *) malloc (nrow*sizeof(double));
 BETA = (double *) malloc (nrow*sizeof(double));

/* Open the output file */
 kp = fopen("data_ols.txt","w");

 printf("\nnumber of rows = %d number of columns = %d\n\n",nrow,ncol);

/* Initialize BETA vector -- Note that the Constant term will be
 * affected by the means of the variables when OLS.c is run */
 for(j=0;j<ncol;j++)
 {
 BETA[j] = 1;
 }

 srand(14);
/* Fill X matrix with random numbers*/
 for(i=0;i<nrow*ncol;i++){
 X[i] = ((double)rand() / ((double)(RAND_MAX)+(double)(1)));
 }
/* Put "1"s in first Column of X -- Columns are stacked in vector X */
 for(i=0;i<nrow;i++)
 {
 X[i] = 1;
 }
/* Calculate Y */
 for(i=0;i<nrow;i++)
 {
 sum=0.0;
 for(j=0;j<ncol;j++)
 {
 sum=sum+BETA[j]*X[i+j*nrow];
 }
 Y[i]=sum;

2

 }

/* For loops for writing out Y and X */
 for(i=0;i<nrow;i++)
 {
 fprintf(kp, "%7.3f",Y[i]);
 for(j=0;j<ncol;j++)
 {
 fprintf(kp, "%7.3f",X[i+j*nrow]);
 }
/* This is the line feed -- newline at the end of the the jth row */
 fprintf(kp,"\n");
 }
 fclose(kp);
 free(X);
 free(Y);
 free(BETA);
 return(0);
}

3

ols_read.c

/*
c:/mingw/bin/gcc -I"c:/program files/R/R-2.9.0/include" -L"C:/Program
Files/R/R-2.9.0/bin" -Wall %1.c -o %1.exe -lRlapack -lRblas

General OLS program. Reads matrix created by writedata_ols.c

The only parameters the user has to set are the number of rows and
columns -- nrow and ncol below. The number of columns counts a column
of "1"s used for the intercept term. All memory is then dynamically
allocated using nrow and ncol.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <R_ext/Lapack.h>
#include <R_ext/BLAS.h>
FILE *fp;

int main(){

 int i, j, info, errno;
 char trans = 't', notrans ='n';
 double alpha = 1.0, beta=0.0;
 int nrow=1000, ncol=25;
 int one=1;
 double *X, *Y, *XprimeX, *XXinv, *XXinvX, *coef;
 int *ipiv;

 X = (double *) malloc (nrow*ncol*sizeof(double));
 Y = (double *) malloc (nrow*sizeof(double));
 XprimeX = (double *) malloc (ncol*ncol*sizeof(double));
 XXinv = (double *) malloc (ncol*ncol*sizeof(double));
 XXinvX = (double *) malloc (nrow*ncol*sizeof(double));
 coef = (double *) malloc (ncol*sizeof(double));
 ipiv = (int *) malloc (ncol*sizeof(int));

 printf("\nnumber of rows = %d number of columns = %d\n\n",nrow,ncol);

 if((fp = fopen("c:/docs_c_summer_course/data_ols.txt","r"))==NULL)
 {
 printf("\nUnable to open file OLS_DATA.TXT: %s\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 else {

 printf(" Y and X = \n");
 for(i=0;i<nrow;i++)
 {
 fscanf(fp,"%lf",&Y[i]);
 for(j=0;j<ncol;j++)
 {
 fscanf(fp,"%lf",&X[i+j*nrow]);

4

 }
 printf("%10d %12.6f", i,Y[i]);
 for(j=0;j<ncol;j++)
 {
 printf("%12.6f",X[i+j*nrow]);
 }
 printf("\n");
 }
 }

 dgemm_(&trans,¬rans,&ncol,&ncol,&nrow,&alpha,X,&nrow,X,&nrow,&beta,
XprimeX,&ncol);
 printf("\n\nX'X = \n");
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 printf("%12.6f",XprimeX[i+j*ncol]);
 }
 printf("\n");
 }
/* Initialize the Identity matrix */
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 XXinv[i+j*ncol]=0.0;
 if(i == j)XXinv[i+j*ncol]=1.0;
 }
 }
 dgesv_(&ncol,&ncol,XprimeX,&ncol,ipiv,XXinv,&ncol,&info);
 printf("\n\n(X'X)-1 = \n");
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 printf("%12.6f",XXinv[i+j*ncol]);
 }
 printf("\n");
 }

//XXinv is 2x2
//X' is 2x5
//X is 5x2

 dgemm_(¬rans,&trans,&ncol,&nrow,&ncol,&alpha,XXinv,&ncol,X,&nrow,&b
eta,XXinvX,&ncol);

//XXinvX is 2x5
//Y is 5x1

 dgemm_(¬rans,¬rans,&ncol,&one,&nrow,&alpha,XXinvX,&ncol,Y,&nrow,
&beta,coef,&ncol);
 printf("\n\nCoefficient Vector = ");
 for(i=0;i<ncol;i++)

5

 {
 printf("\n%d %12.6f", i, coef[i]);
 }
 printf("\n\n");
 free(X);
 free(Y);
 free(XprimeX);
 free(XXinvX);
 free(coef);
 free(ipiv);

 fclose(fp);
 return(0);

}

6

ols_read_svd.c

/*
c:/mingw/bin/gcc -I"c:/program files/R/R-2.9.0/include" -L"C:/Program
Files/R/R-2.9.0/bin" -Wall %1.c -o %1.exe -lRlapack -lRblas

General OLS program. Reads matrix created by writedata_ols.c

The only parameters the user has to set are the number of rows and
columns -- nrow and ncol below. The number of columns counts a column
of "1"s used for the intercept term. All memory is then dynamically
allocated using nrow and ncol.

This version does a Singular Value Decomposition on the input matrix
*/
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <R_ext/Lapack.h>
#include <R_ext/BLAS.h>

void xsvd(int kpnp, int kpnq, double *, double *, double *, double *);

FILE *fp;
FILE *jp;

int main(){

 int i, j, info, errno;
 char trans = 't', notrans ='n';
 double alpha = 1.0, beta=0.0;
 int nrow=1000, ncol=25;
 int one=1;
 double *X, *Y, *XprimeX, *XXinv, *XXinvX, *coef;
 double *u, *lambda, *vt;
 int *ipiv;
 double time1, time2, timedif;

 X = (double *) malloc (nrow*ncol*sizeof(double));
 Y = (double *) malloc (nrow*sizeof(double));
 XprimeX = (double *) malloc (ncol*ncol*sizeof(double));
 XXinv = (double *) malloc (ncol*ncol*sizeof(double));
 XXinvX = (double *) malloc (nrow*ncol*sizeof(double));
 coef = (double *) malloc (ncol*sizeof(double));
 ipiv = (int *) malloc (ncol*sizeof(int));
 u = (double *) malloc (nrow*nrow*sizeof(double));
 lambda = (double *) malloc (ncol*ncol*sizeof(double));
 vt = (double *) malloc (ncol*ncol*sizeof(double));
/* clock() is part of time.h -- returns the implementation's
 * best approximationto the processor time elapsed since the
 * program was invoke, divide by CLOCKS_PER_SEC to get the time
 * in seconds */
 time1 = (double) clock(); /* get initial time */

7

 time1 = time1 / CLOCKS_PER_SEC; /* in seconds */

 printf("\nnumber of rows = %d number of columns = %d\n\n",nrow,ncol);

 jp = fopen("c:/docs_c_summer_course/data_ols_svd.txt","w");

 if((fp = fopen("c:/docs_c_summer_course/data_ols.txt","r"))==NULL)
 {
 printf("\nUnable to open file OLS_DATA.TXT: %s\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 else {

 fprintf(jp," Y and X = \n");
 for(i=0;i<nrow;i++)
 {
 fscanf(fp,"%lf",&Y[i]);
 for(j=0;j<ncol;j++)
 {
 fscanf(fp,"%lf",&X[i+j*nrow]);
 }
 fprintf(jp,"%10d %12.6f", i,Y[i]);
 for(j=0;j<ncol;j++)
 {
 fprintf(jp,"%12.6f",X[i+j*nrow]);
 }
 fprintf(jp,"\n");
 }
 }
/* Call Singular Value Decomposition Routine to look at the colinearity
 * in X */
/* Clock the SVD Routine*/

 time2 = (double) clock(); /* get initial time */
 time2 = time2 / CLOCKS_PER_SEC; /* in seconds */
 xsvd(nrow,ncol,X,u,lambda,vt);
 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time2;
 printf("SVD took %12.8f seconds\n", timedif);
 fprintf(jp,"SVD took %12.8f seconds\n", timedif);

 dgemm_(&trans,¬rans,&ncol,&ncol,&nrow,&alpha,X,&nrow,X,&nrow,&beta,
XprimeX,&ncol);
 fprintf(jp,"\n\nX'X = \n");
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 fprintf(jp,"%12.6f",XprimeX[i+j*ncol]);
 }
 fprintf(jp,"\n");
 }
/* Initialize the Identity matrix */
 for(i=0;i<ncol;i++)
 {

8

 for(j=0;j<ncol;j++)
 {
 XXinv[i+j*ncol]=0.0;
 if(i == j)XXinv[i+j*ncol]=1.0;
 }
 }
 dgesv_(&ncol,&ncol,XprimeX,&ncol,ipiv,XXinv,&ncol,&info);
 fprintf(jp,"\n\n(X'X)-1 = \n");
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 fprintf(jp,"%12.6f",XXinv[i+j*ncol]);
 }
 fprintf(jp,"\n");
 }

//XXinv is 2x2
//X' is 2x5
//X is 5x2

 dgemm_(¬rans,&trans,&ncol,&nrow,&ncol,&alpha,XXinv,&ncol,X,&nrow,&b
eta,XXinvX,&ncol);

//XXinvX is 2x5
//Y is 5x1

 dgemm_(¬rans,¬rans,&ncol,&one,&nrow,&alpha,XXinvX,&ncol,Y,&nrow,
&beta,coef,&ncol);
 fprintf(jp,"\n\nCoefficient Vector = ");
 printf("\n\nCoefficient Vector = ");
 for(i=0;i<ncol;i++)
 {
 printf("\n%d %12.6f", i, coef[i]);
 fprintf(jp,"\n%d %12.6f", i, coef[i]);
 }
 printf("\n\n");
 free(X);
 free(Y);
 free(XprimeX);
 free(XXinvX);
 free(coef);
 free(ipiv);
 free(u);
 free(lambda);
 free(vt);
 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time1;
 printf("The total elapsed time of the program is %12.8f seconds\n",
timedif);
 fprintf(jp,"\nThe total elapsed time of the program is %12.8f
seconds\n", timedif);

 fclose(fp);
 fclose(jp);
 return(0);

9

}
/*

Singular Value Decomposition Subroutine

*/
void xsvd(int kpnp, int kpnq, double *y, double *u, double *lambda, double
*vt) {
/*
*/

 double *a, *work;
 double sumulv, svd_error_sum, svd_error_sum_2;
 int i, j, jj;
 int info = 12;
 int lwork= kpnp*kpnp+kpnq*kpnq;
 int lda,ldu,ldvt;

 a = calloc(kpnp*kpnq, sizeof(double));
 work = calloc(lwork, sizeof(double));

 fprintf(jp,"entering svd...\n");

 lda = kpnp;
 ldu = kpnp;
 ldvt = kpnq;
 for (i=0;i<lwork;i++){
 work[i] = 0;
 }

 fprintf(jp,"lwork=%i\n",lwork);

 for (j=0;j<kpnq;j++) {
 for (i=0;i<kpnp;i++) {
 a[(j*kpnp)+i] = y[(j*kpnp)+i];
 }
 }

 dgesvd_("A","A", &kpnp, &kpnq, a, &lda, lambda,
 u, &ldu, vt, &ldvt, work, &lwork, &info);

 fprintf(jp,"Info = %i\n",info);
 printf("Info = %i\n",info);
 fprintf(jp,"Singular Values\n");
 printf("Singular Values\n");
 for(jj=0;jj<kpnq;jj++)
 {
 fprintf(jp,"%d %f\n",jj,lambda[jj]);
 printf("%d %f\n",jj,lambda[jj]);
 }
/*
 Do simple check of SVD

*/

10

 svd_error_sum=0.0;
 svd_error_sum_2=0.0;
 for (i=0;i<kpnp;i++)
 {
 for (jj=0;jj<kpnq;jj++)
 {
 sumulv=0.0;
 for (j=0;j<kpnq;j++)
 {

 sumulv+=u[(j*kpnp)+i]*lambda[j]*vt[j+(jj*kpnq)];
 }
 svd_error_sum+=(y[i+(jj*kpnp)]-sumulv)*(y[i+(jj*kpnp)]-
sumulv);
 svd_error_sum_2+=fabs(y[i+(jj*kpnp)]-sumulv);
 }
 }
 fprintf(jp,"SVD Error Check = %12.7g
%12.7g\n",svd_error_sum,svd_error_sum_2);
 printf("SVD Error Check = %12.7g
%12.7g\n",svd_error_sum,svd_error_sum_2);
 fprintf(jp,"Leaving svd...\n");
 free(work);
 free(a);
}

11

Subroutine DGESVD from LAPACK Library

 SUBROUTINE DGESVD(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
 $ WORK, LWORK, INFO)
*
* -- LAPACK driver routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
 CHARACTER JOBU, JOBVT
 INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
* ..
* .. Array Arguments ..
 DOUBLE PRECISION A(LDA, *), S(*), U(LDU, *),
 $ VT(LDVT, *), WORK(*)
* ..
*
* Purpose
* =======
*
* DGESVD computes the singular value decomposition (SVD) of a real
* M-by-N matrix A, optionally computing the left and/or right singular
* vectors. The SVD is written
*
* A = U * SIGMA * transpose(V)
*
* where SIGMA is an M-by-N matrix which is zero except for its
* min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
* V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
* are the singular values of A; they are real and non-negative, and
* are returned in descending order. The first min(m,n) columns of
* U and V are the left and right singular vectors of A.
*
* Note that the routine returns V**T, not V.
*
* Arguments
* =========
*
* JOBU (input) CHARACTER*1
* Specifies options for computing all or part of the matrix U:
* = 'A': all M columns of U are returned in array U:
* = 'S': the first min(m,n) columns of U (the left singular
* vectors) are returned in the array U;
* = 'O': the first min(m,n) columns of U (the left singular
* vectors) are overwritten on the array A;
* = 'N': no columns of U (no left singular vectors) are
* computed.
*
* JOBVT (input) CHARACTER*1
* Specifies options for computing all or part of the matrix
* V**T:
* = 'A': all N rows of V**T are returned in the array VT;
* = 'S': the first min(m,n) rows of V**T (the right singular

12

* vectors) are returned in the array VT;
* = 'O': the first min(m,n) rows of V**T (the right singular
* vectors) are overwritten on the array A;
* = 'N': no rows of V**T (no right singular vectors) are
* computed.
*
* JOBVT and JOBU cannot both be 'O'.
*
* M (input) INTEGER
* The number of rows of the input matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the input matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit,
* if JOBU = 'O', A is overwritten with the first min(m,n)
* columns of U (the left singular vectors,
* stored columnwise);
* if JOBVT = 'O', A is overwritten with the first min(m,n)
* rows of V**T (the right singular vectors,
* stored rowwise);
* if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
* are destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* S (output) DOUBLE PRECISION array, dimension (min(M,N))
* The singular values of A, sorted so that S(i) >= S(i+1).
*
* U (output) DOUBLE PRECISION array, dimension (LDU,UCOL)
* (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
* If JOBU = 'A', U contains the M-by-M orthogonal matrix U;
* if JOBU = 'S', U contains the first min(m,n) columns of U
* (the left singular vectors, stored columnwise);
* if JOBU = 'N' or 'O', U is not referenced.
*
* LDU (input) INTEGER
* The leading dimension of the array U. LDU >= 1; if
* JOBU = 'S' or 'A', LDU >= M.
*
* VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
* If JOBVT = 'A', VT contains the N-by-N orthogonal matrix
* V**T;
* if JOBVT = 'S', VT contains the first min(m,n) rows of
* V**T (the right singular vectors, stored rowwise);
* if JOBVT = 'N' or 'O', VT is not referenced.
*
* LDVT (input) INTEGER
* The leading dimension of the array VT. LDVT >= 1; if
* JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
*

13

* WORK (workspace/output) DOUBLE PRECISION array, dimension
(MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
* if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
* superdiagonal elements of an upper bidiagonal matrix B
* whose diagonal is in S (not necessarily sorted). B
* satisfies A = U * B * VT, so it has the same singular values
* as A, and singular vectors related by U and VT.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).
* For good performance, LWORK should generally be larger.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: if DBDSQR did not converge, INFO specifies how many
* superdiagonals of an intermediate bidiagonal form B
* did not converge to zero. See the description of WORK
* above for details.
*
* ===
*

