
1

From Wikipedia, the free encyclopedia

Box–Muller transform

Diagram of the Box Muller transform. The initial circles, uniformly spaced about the origin, are mapped
to another set of circles about the origin that are closely spaced near the origin but quickly spread out.
The largest circles in the domain map to the smallest circles in the range and vice versa.

A Box–Muller transform (by George Edward Pelham Box and Mervin Edgar Muller 1958)[1] is
a method of generating pairs of independent standard normally distributed (zero expectation, unit
variance) random numbers, given a source of uniformly distributed random numbers.

It is commonly expressed in two forms. The basic form as given by Box and Muller takes two
samples from the uniform distribution on the interval (0, 1] and maps them to two normally
distributed samples. The polar form takes two samples from a different interval, [−1, +1], and
maps them to two normally distributed samples without the use of sine or cosine functions.

One could use the inverse transform sampling method to generate normally-distributed random
numbers instead; the Box–Muller transform was developed to be more computationally
efficient.[2] The more efficient Ziggurat algorithm can also be used.

http://en.wikipedia.org/wiki/File:Box_Muller.svg�

2

Basic form
Suppose U1 and U2 are independent random variables that are uniformly distributed in the
interval (0, 1]. Let

and

Then Z0 and Z1 are independent random variables with a normal distribution of standard
deviation 1.

The derivation[3] is based on the fact that, in a two-dimensional Cartesian system where X and Y
coordinates are described by two independent and normally distributed random variables, the
random variables for R2 and Θ (shown above) in the corresponding polar coordinates are also
independent and can be expressed as

and

3

Polar form

Two uniformly distributed values, u and v are used to produce the value s = R2, which is likewise
uniformly distributed. The definitions of the sine and cosine are then applied to the basic form of the
Box–Muller transform in order to avoid using trigonometric functions.

The polar form is attributed by Devroye[4] to Marsaglia. It is also mentioned without attribution
in Carter.[5]

Given u and v, independent and uniformly distributed in the closed interval [−1, +1], set
 s = R = u2 + v2. (Clearly .) If s = 0 or s > 1, throw u and v away and try another pair (u, v).
Continue until a pair with s in the open interval (0, 1) is found. Because u and v are uniformly
distributed and because only points within the unit circle have been admitted, the values of s will
be uniformly distributed in the open interval (0, 1), too. The latter can be seen by calculating the
cumulative distribution function for s in the interval (0, 1). This is the area of a circle with radius

divided by . From this we find the probability density function to have the constant value 1
on the interval (0, 1). Equally so, the angle θ divided by is uniformly distributed in the open
interval (0, 1) and independent of s.

We now identify the value of s with that of U1 and with that of U2 in the basic form. As
shown in the figure, the values of and in the basic form can be
replaced with the ratios and , respectively. The advantage is
that calculating the trigonometric functions directly can be avoided. This is helpful when they are
comparatively more expensive than the single division that replaces each one.

Just as the basic form produces two standard normal deviates, so does this alternate calculation.

http://en.wikipedia.org/wiki/File:BoxMullerTransformUsingPolarCoordinates.png�

4

and

Contrasting the two forms
The polar method differs from the basic method in that it is a type of rejection sampling. It
throws away some generated random numbers, but it is typically faster than the basic method
because it is simpler to compute (provided that the random number generator is relatively fast)
and is more numerically robust.[5] It avoids the use of trigonometric functions, which are
comparatively expensive in many computing environments. It throws away 1 − π/4 ≈ 21.46% of
the total input uniformly distributed random number pairs generated, i.e. throws away
4/π – 1 ≈ 27.32% uniformly distributed random number pairs per Gaussian random number pair
generated, requiring 4/π ≈ 1.2732 input random numbers per output random number.

The basic form requires three multiplications, one logarithm, one square root, and one
trigonometric function for each normal variate.[6]

The polar form requires two multiplications, one logarithm, one square root, and one division for
each normal variate. The effect is to replace one multiplication and one trigonometric function
with a single division.

From Numerical Recipes in C

5

6

7

Writedata_ols_erf.c

/* writedata_ols_erf.c -- Writes out a file for ols_read.c. The X matrix
 * is random data, the BETA vector is pre-set, and Y vector ix X*BETA.
 * The first column is Y, the second is a column of "1"s for the
 * intercept, and the remaing columns are drawn from the rand()
 * function. User sets number of columns and number of rows below. */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
/* Declare pointer to the output file */
FILE *kp;
FILE *jp;

int main(void){

 int nrow=1000, ncol=25;
 int normaldeviates = 10000;
 double *X, *Y, *BETA, *xnorm1, *xnorm2;
 double sum, xuniform1, xuniform2, xhypot, fact;
 int i = 0;
 int j = 0;

 X = (double *) malloc (nrow*ncol*sizeof(double));
 Y = (double *) malloc (nrow*sizeof(double));
 BETA = (double *) malloc (ncol*sizeof(double));
 xnorm1 = (double *) malloc (normaldeviates*sizeof(double));
 xnorm2 = (double *) malloc (normaldeviates*sizeof(double));

/* Open the output file */
 kp = fopen("data_ols.txt","w");
 jp = fopen("data_normal.txt","w");

 printf("\nnumber of rows = %d number of columns = %d\n\n",nrow,ncol);

/* Initialize BETA vector -- Note that the Constant term will be
 * affected by the means of the variables when OLS.c is run */
 for(j=0;j<ncol;j++)
 {
 BETA[j] = 1;
 }

 srand(11);
/* Get Normal Deviates using Box-Muller Method*/
 for(i=0;i<normaldeviates;i++)
 {
 do
 {
 xuniform1 = 2.0*((double)rand() /
((double)(RAND_MAX)+1))-1.0;
 xuniform2 = 2.0*((double)rand() /
((double)(RAND_MAX)+1))-1.0;
 xhypot = xuniform1*xuniform1 + xuniform2*xuniform2;
 }while (xhypot >= 1.0 || xhypot == 0.0);

8

 fact=sqrt(-2.0*log(xhypot)/xhypot);
 xnorm1[i] = xuniform1*fact;
 xnorm2[i] = xuniform2*fact;
 fprintf(jp,"%10d %12.6f %12.6f\n",i, xnorm1[i],xnorm2[i]);
 }
/* Fill X matrix with random numbers*/
 for(i=0;i<nrow*ncol;i++){
 X[i] = ((double)rand() / ((double)(RAND_MAX)+(double)(1)));
 }
 /* Put "1"s in first Column of X -- Columns are stacked in vector X */
 for(i=0;i<nrow;i++)
 {
 X[i] = 1;
 }
 /* Calculate Y */
 for(i=0;i<nrow;i++)
 {
 sum=0.0;
 for(j=0;j<ncol;j++)
 {
 sum=sum+BETA[j]*X[i+j*nrow];
 }
/* Add Normal (0, 1) error here*/
 Y[i]=sum + xnorm1[i];
 }

/* For loops for writing out Y and X */
 for(i=0;i<nrow;i++)
 {
 fprintf(kp, "%7.3f",Y[i]);
 for(j=0;j<ncol;j++)
 {
 fprintf(kp, "%7.3f",X[i+j*nrow]);
 }
/* This is the line feed -- newline at the end of the the jth row */
 fprintf(kp,"\n");
 }
 fclose(kp);
 free(X);
 free(Y);
 free(BETA);
 free(xnorm1);
 free(xnorm2);
 return(0);
}

9

 ols_read_svd_general.c

/*
c:/mingw/bin/gcc -I"c:/program files/R/R-2.9.0/include" -L"C:/Program
Files/R/R-2.9.0/bin" -Wall %1.c -o %1.exe -lRlapack -lRblas

General OLS program. Reads matrix created by writedata_ols.c

The only parameters the user has to set are the number of rows and
columns -- nrow and ncol below. The number of columns counts a column
of "1"s used for the intercept term. All memory is then dynamically
allocated using nrow and ncol.

This version does a Singular Value Decomposition on the input matrix
*/
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <R_ext/Lapack.h>
#include <R_ext/BLAS.h>

void xsvd(int kpnp, int kpnq, double *, double *, double *, double *);
void xrsquare(double *sse, double *tss, int nrow, int ncol, double *Y, double
*X, double *coef);

FILE *fp;
FILE *jp;

int main(){

 int i, j, info, errno;
 char trans = 't', notrans ='n';
 double alpha = 1.0, beta=0.0;
 int nrow=1000, ncol=25;
 int one=1;
 double *X, *Y, *XprimeX, *XXinv, *XXinvX, *coef, *xxinvdiag;
 double *u, *lambda, *vt;
 int *ipiv;
 double time1, time2, timedif;
 double sse, tss, stderrest=0.0, pearsonrsquare, betastderror;

 X = (double *) malloc (nrow*ncol*sizeof(double));
 Y = (double *) malloc (nrow*sizeof(double));
 XprimeX = (double *) malloc (ncol*ncol*sizeof(double));
 XXinv = (double *) malloc (ncol*ncol*sizeof(double));
 XXinvX = (double *) malloc (nrow*ncol*sizeof(double));
 coef = (double *) malloc (ncol*sizeof(double));
 xxinvdiag = (double *) malloc (ncol*sizeof(double));
 ipiv = (int *) malloc (ncol*sizeof(int));
 u = (double *) malloc (nrow*nrow*sizeof(double));
 lambda = (double *) malloc (ncol*ncol*sizeof(double));
 vt = (double *) malloc (ncol*ncol*sizeof(double));
/* clock() is part of time.h -- returns the implementation's
 * best approximationto the processor time elapsed since the

10

 * program was invoke, divide by CLOCKS_PER_SEC to get the time
 * in seconds */
 time1 = (double) clock(); /* get initial time */
 time1 = time1 / CLOCKS_PER_SEC; /* in seconds */

 printf("\nnumber of rows = %d number of columns = %d\n\n",nrow,ncol);

 jp = fopen("c:/docs_c_summer_course/data_ols_svd.txt","w");

 if((fp = fopen("c:/docs_c_summer_course/data_ols.txt","r"))==NULL)
 {
 printf("\nUnable to open file OLS_DATA.TXT: %s\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 else {

 fprintf(jp," Y and X = \n");
 for(i=0;i<nrow;i++)
 {
 fscanf(fp,"%lf",&Y[i]);
 for(j=0;j<ncol;j++)
 {
 fscanf(fp,"%lf",&X[i+j*nrow]);
 }
 fprintf(jp,"%10d %12.6f", i,Y[i]);
 for(j=0;j<ncol;j++)
 {
 fprintf(jp,"%12.6f",X[i+j*nrow]);
 }
 fprintf(jp,"\n");
 }
 }
/* Call Singular Value Decomposition Routine to look at the colinearity
 * in X */
/* Clock the SVD Routine*/

 time2 = (double) clock(); /* get initial time */
 time2 = time2 / CLOCKS_PER_SEC; /* in seconds */
 xsvd(nrow,ncol,X,u,lambda,vt);
 printf("Singular Values\n");
 for(j=0;j<ncol;j++)
 {
 printf("%d %f\n",j,lambda[j]);
 }
 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time2;
 printf("SVD took %12.3f seconds\n", timedif);
 fprintf(jp,"SVD took %12.3f seconds\n", timedif);

 dgemm_(&trans,¬rans,&ncol,&ncol,&nrow,&alpha,X,&nrow,X,&nrow,&beta,
XprimeX,&ncol);
 fprintf(jp,"\n\nX'X = \n");
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 fprintf(jp,"%12.6f",XprimeX[i+j*ncol]);

11

 }
 fprintf(jp,"\n");
 }
/* Initialize the Identity matrix */
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 XXinv[i+j*ncol]=0.0;
 if(i == j)XXinv[i+j*ncol]=1.0;
 }
 }
 dgesv_(&ncol,&ncol,XprimeX,&ncol,ipiv,XXinv,&ncol,&info);
 fprintf(jp,"\n\n(X'X)-1 = \n");
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 fprintf(jp,"%12.6f",XXinv[i+j*ncol]);
/* Save Diagonal of (X'X)-1 */
 if(i == j)xxinvdiag[i] = XXinv[i+j*ncol];
 }
 fprintf(jp,"\n");
 }

//XXinv is 2x2
//X' is 2x5
//X is 5x2

 dgemm_(¬rans,&trans,&ncol,&nrow,&ncol,&alpha,XXinv,&ncol,X,&nrow,&b
eta,XXinvX,&ncol);

//XXinvX is 2x5
//Y is 5x1

 dgemm_(¬rans,¬rans,&ncol,&one,&nrow,&alpha,XXinvX,&ncol,Y,&nrow,
&beta,coef,&ncol);
/* Get Sum of Squared Error */
 xrsquare(&sse, &tss, nrow, ncol, Y, X, coef);
 /* Standard Error of the Estimate */
 stderrest = sqrt(sse/(double)(nrow-ncol));
/* Write out Coefficient Vector and Standard Errors */
 fprintf(jp,"\n\nCoefficient Vector = ");
 printf("\n\nCoefficient Vector = ");
 for(i=0;i<ncol;i++)
 {
 betastderror = stderrest*sqrt(xxinvdiag[i]);
 printf("\n%d %12.6f %12.6f", i, coef[i], betastderror);
 fprintf(jp,"\n%d %12.6f %12.6f", i, coef[i], betastderror);
 }
 printf("\n\n");

 fprintf(jp,"SSE = %12.7g\n",sse);
 printf("SSE = %12.7g\n",sse);
 fprintf(jp,"TSS = %12.7g\n",tss);
 printf("TSS = %12.7g\n",tss);
 fprintf(jp,"Standard Error of the Estimate = %12.7g\n",stderrest);

12

 printf("Standard Error of the Estimate = %12.7g\n",stderrest);

 pearsonrsquare = 1.0 - sse/tss;
 fprintf(jp,"Pearson R Squared = %12.7g\n",pearsonrsquare);
 printf("Pearson R Squared = %12.7g\n",pearsonrsquare);

 free(X);
 free(Y);
 free(XprimeX);
 free(XXinvX);
 free(coef);
 free(xxinvdiag);
 free(ipiv);
 free(u);
 free(lambda);
 free(vt);
 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time1;
 printf("The total elapsed time of the program is %12.3f seconds\n",
timedif);
 fprintf(jp,"\nThe total elapsed time of the program is %12.3f
seconds\n", timedif);

 fclose(jp);
 fclose(fp);
 return(0);

}
/*
 * Pearson R-Square Subroutine -- Computes r-square for simple OLS
 */
void xrsquare(double *sse, double *tss, int nrow, int ncol, double *Y, double
*X, double *coef)
{
 int i, j;
 double sum, sum2, sum3, ymean;
 /* Calculate Y */
 sum2=0.0;
 ymean=0.0;
 for(i=0;i<nrow;i++)
 {
 ymean=ymean+Y[i];
 sum=0.0;
 for(j=0;j<ncol;j++)
 {
 sum=sum+coef[j]*X[i+j*nrow];
 }
/* Calculate the SSE here*/
 sum2=sum2+(sum - Y[i])*(sum - Y[i]);
 }
 ymean=ymean/(double)(nrow);
 sum3=0.0;
 for(i=0;i<nrow;i++)
 {
/* Calculate the TSS here*/
 sum3=sum3+(Y[i]-ymean)*(Y[i]-ymean);
 }
 *sse = sum2;

13

 *tss = sum3;
}
/*

Singular Value Decomposition Subroutine

*/
void xsvd(int kpnp, int kpnq, double *y, double *u, double *lambda, double
*vt) {
/*
*/

 double *a, *work;
 double sumulv, svd_error_sum, svd_error_sum_2;
 int i, j, jj;
 int info = 12;
 int lwork= kpnp*kpnp+kpnq*kpnq;
 int lda,ldu,ldvt;

 a = calloc(kpnp*kpnq, sizeof(double));
 work = calloc(lwork, sizeof(double));

 lda = kpnp;
 ldu = kpnp;
 ldvt = kpnq;
 for (i=0;i<lwork;i++){
 work[i] = 0;
 }

 fprintf(jp,"lwork=%i\n",lwork);

 for (j=0;j<kpnq;j++) {
 for (i=0;i<kpnp;i++) {
 a[(j*kpnp)+i] = y[(j*kpnp)+i];
 }
 }

 dgesvd_("A","A", &kpnp, &kpnq, a, &lda, lambda,
 u, &ldu, vt, &ldvt, work, &lwork, &info);

 fprintf(jp,"Info = %i\n",info);
 printf("Info = %i\n",info);
 fprintf(jp,"Singular Values\n");
 printf("Singular Values\n");
 for(jj=0;jj<kpnq;jj++)
 {
 fprintf(jp,"%d %f\n",jj,lambda[jj]);
 printf("%d %f\n",jj,lambda[jj]);
 }
/*
 Do simple check of SVD

*/
 svd_error_sum=0.0;
 svd_error_sum_2=0.0;
 for (i=0;i<kpnp;i++)

14

 {
 for (jj=0;jj<kpnq;jj++)
 {
 sumulv=0.0;
 for (j=0;j<kpnq;j++)
 {

 sumulv+=u[(j*kpnp)+i]*lambda[j]*vt[j+(jj*kpnq)];
 }
 svd_error_sum+=(y[i+(jj*kpnp)]-sumulv)*(y[i+(jj*kpnp)]-
sumulv);
 svd_error_sum_2+=fabs(y[i+(jj*kpnp)]-sumulv);
 }
 }
 fprintf(jp,"SVD Error Check = %12.7g
%12.7g\n",svd_error_sum,svd_error_sum_2);
 printf("SVD Error Check = %12.7g
%12.7g\n",svd_error_sum,svd_error_sum_2);
 free(work);
 free(a);
}

	From Wikipedia, the free encyclopedia
	Box–Muller transform
	Basic form
	Polar form
	Contrasting the two forms

