From Wikipedia, the free encyclopedia

Box—Muller transform

Diagram of the Box Muller transform. The initial circles, uniformly spaced about the origin, are mapped
to another set of circles about the origin that are closely spaced near the origin but quickly spread out.
The largest circles in the domain map to the smallest circles in the range and vice versa.

A Box—Muller transform (by George Edward Pelham Box and Mervin Edgar Muller 1958)™ is
a method of generating pairs of independent standard normally distributed (zero expectation, unit
variance) random numbers, given a source of uniformly distributed random numbers.

It is commonly expressed in two forms. The basic form as given by Box and Muller takes two
samples from the uniform distribution on the interval (0, 1] and maps them to two normally
distributed samples. The polar form takes two samples from a different interval, [-1, +1], and
maps them to two normally distributed samples without the use of sine or cosine functions.

One could use the inverse transform sampling method to generate normally-distributed random
numbers instead; the Box—Muller transform was developed to be more computationally
efficient.””) The more efficient Ziggurat algorithm can also be used.

http://en.wikipedia.org/wiki/File:Box_Muller.svg�

Basic form

Suppose U; and U, are independent random variables that are uniformly distributed in the
interval (0, 1]. Let

Zy = Rcos(©) = /=2 Inl; cos(2nl);)

and

Zy = Rsin(©) = /-2 In U; sin(27ls).

Then Z, and Z; are independent random variables with a normal distribution of standard
deviation 1.

The derivation® is based on the fact that, in a two-dimensional Cartesian system where X and Y
coordinates are described by two independent and normally distributed random variables, the

random variables for R? and © (shown above) in the corresponding polar coordinates are also
independent and can be expressed as

RE =—-2-In 'U-]_
and

(_'T') = Q'J'T'[f'rg.

Polar form

R? u + v
.ﬁ' U (y
] cosf = —
y L [I
"
sinfl = —
5

Two uniformly distributed values, u and v are used to produce the value s = R?, which is likewise
uniformly distributed. The definitions of the sine and cosine are then applied to the basic form of the
Box—Muller transform in order to avoid using trigonometric functions.

The poIar{f}orm is attributed by Devroye[4] to Marsaglia. It is also mentioned without attribution
in Carter.l®

Given u and v, independent and uniformly distributed in the closed interval [-1, +1], set
s=R=u?+V2 (Clearly B=v5) If s= 0 or s > 1, throw u and v away and try another pair (u, v).
Continue until a pair with s in the open interval (0, 1) is found. Because u and v are uniformly
distributed and because only points within the unit circle have been admitted, the values of s will
be uniformly distributed in the open interval (0, 1), too. The latter can be seen by calculating the
cumulative distribution function for s in the interval (0, 1). This is the area of a circle with radius
v'sdivided by «. From this we find the probability density function to have the constant value 1
on the interval (0, 1). Equally so, the angle 8 divided by 2xis uniformly distributed in the open
interval (0, 1) and independent of s.

We now identify the value of s with that of U; and #/(2m)with that of U, in the basic form. As
shown in the figure, the values of cos t=cos 2nl72and sin #=sin 27 L72in the basic form can be
replaced with the ratios cos #=u/R=u//sand sin f=v/ R=v/\/s respectively. The advantage is
that calculating the trigonometric functions directly can be avoided. This is helpful when they are
comparatively more expensive than the single division that replaces each one.

Just as the basic form produces two standard normal deviates, so does this alternate calculation.

http://en.wikipedia.org/wiki/File:BoxMullerTransformUsingPolarCoordinates.png�

) —2Ins
= - _
\ 5

z1 = —2InU;sin(27xU;) = v —2In s (V%) = - 1,’%.

Contrasting the two forms

Sl=

zo = —2In Ui cos(2nl;) = v —21ns (

and

The polar method differs from the basic method in that it is a type of rejection sampling. It
throws away some generated random numbers, but it is typically faster than the basic method
because it is simpler to compute Sprovided that the random number generator is relatively fast)
and is more numerically robust.® It avoids the use of trigonometric functions, which are
comparatively expensive in many computing environments. It throws away 1 — n/4 = 21.46% of
the total input uniformly distributed random number pairs generated, i.e. throws away

4/t — 1 = 27.32% uniformly distributed random number pairs per Gaussian random number pair
generated, requiring 4/n ~ 1.2732 input random numbers per output random number.

The basic form requires three multiplications, one logarithm, one square root, and one
trigonometric function for each normal variate.®!

The polar form requires two multiplications, one logarithm, one square root, and one division for
each normal variate. The effect is to replace one multiplication and one trigonometric function
with a single division.

From Numerical Recipes in C

Normal (Gaussian) Deviates

Transformation methods generalize to more than one dimension. If zy,xs,

. are random deviates with a joint probability distribution p(zq,z2,...)

dzidzs ..., and if yy,ys,... are each functions of all the z’s (same number of
y’s as z’s), then the joint probability distribution of the y’s is

B(ml,xg, -) ‘
—= | dydys . . . 7.2.8
a(yhyz;"') s ()

P(Y1, Y2, ---)dy1dyz - .. = p(x1,22,...) J

where |8()/8()| is the Jacobian determinant of the z’s with respect to the y’s
(or reciprocal of the Jacobian determinant of the y’s with respect to the x’s).

An important example of the use of (7.2.8) is the Box-Muller method for
generating random deviates with a normal (Gaussian) distribution,

p(y)dy = —=e¥2dy (7.29)

T

Consider the transformation between two uniform deviates on (0,1), z1, 2, and
two quantities 41, y2,

Y1 = v/ —2Inz; cos 2mxs

(7.2.10)
y2 = v/ —21nz; sin 2wz,
Equivalently we can write
1
Ty = exp [—5(9% +95)}
(7.2.11)
, 1 Y2
&9 = —arctan—
27 n
Now the Jacobian determinant can readily be calculated (try it!):
dxy dxy
O@1,23) _ |3 | = _ [_1 eﬁv?/z] [_1 e—vi/ﬁ] (7.2.12)
Oy1,y2) Waﬁ ﬁ Vor Var

Since this is the product of a function of y» alone and a function of 3; alone, we sce
that each y is independently distributed according to the normal distribution (7.2.9).

One further trick is useful in applying (7.2.10). Suppose that, instead of picking
uniform deviates z; and z» in the unit square, we instead pick v; and vs as the
ordinate and abscissa of a random point inside the unit circle around the origin. Then
the sum of their squares, R? = v} + 'U% is a uniform deviate, which can be used for z,
while the angle that (v1, v2) defines with respect to the v, axis can serve as the random
angle 2rxo. What's the advantage? It’s that the cosine and sine in (7.2.10) can now
be written as vy / VRZ and vy / VR2 , obviating the trigonometric function calls!

We thus have

#include <math.h>

float gasdev(long *idum)
Returns a normally distributed deviate with zero mean and unit variance, using ranl (idum)
as the source of uniform deviates.
£
float ranl(long *idum);
static int iset=0;
static float gset;
float fac,rsq,vl,v2;

if (*idum < 0) iset=0; Reinitialize.
if (iset == 0) { We don't have an extra deviate handy, so
do {
v1=2.0*ran1(idum)-1.0; pick two uniform numbers in the square ex-
v2=2.0%ranl1(idum)-1.0; tending from -1 to +1 in each direction,
rsg=vilksvi+v2*v2; see if they are in the unit circle,

} while (rsq >= 1.0 || rsq == 0.0); and if they are not, try again.
fac=sqrt(-2.0*log(rsq)/rsq);

Now make the Box-Muller transformation to get two normal deviates. Return one and
save the other for next time.

gset=vilxfac;

iset=1; Set flag.
return v2xfac;

} else { We have an extra deviate handy,
iset=0; so unset the flag,
return gset; and return it.

See Devroye [1] and Bratley [2] for many additional algorithms.

Writedata_ols_erf.c

/* writedata ols erf.c -- Writes out a file for ols read.c. The X matrix
* Is random data, the BETA vector is pre-set, and Y vector ix X*BETA.
The first column is Y, the second is a column of "1"s for the

* intercept, and the remaing columns are drawn from the rand()

* function. User sets number of columns and number of rows below. */
#include <stdlib_h>

#include <stdio.h>

#include <math.h>

/* Declare pointer to the output file */

FILE *kp;

FILE *jp;

*

int main(void){

int nrow=1000, ncol=25;

int normaldeviates = 10000;

double *X, *Y, *BETA, *xnorml, *Xxnorm2;

double sum, xuniforml, xuniform2, xhypot, fact;
int i = 0;
int j = 0;

X (double *) malloc (nrow*ncol*sizeof(double));

Y (double *) malloc (nrow*sizeof(double));

BETA = (double *) malloc (ncol*sizeof(double));

xnorml (double *) malloc (normaldeviates*sizeof(double));
Xxnorm2 (double *) malloc (normaldeviates*sizeof(double));

/* Open the output file */
kp = fopen(''data_ols.txt","w");
Jp = fopen('data_normal . txt","w™);

printf("\nnumber of rows = %d number of columns = %d\n\n",nrow,ncol);

/* Initialize BETA vector -- Note that the Constant term will be
affected by the means of the variables when OLS.c is run */
for(J=0;j<ncol;j++)

*

{

BETA[J] = 1;
by
srand(11);

/* Get Normal Deviates using Box-Muller Method*/
for(i=0;i<normaldeviates;i++)

{
do

{
xuniforml = 2.0*((double)rand() /
((double) (RAND_MAX)+1))-1.0;
xuniform2 = 2.0*((double)rand() /

((double) (RAND_MAX)+1))-1.0;
xhypot = xuniforml*xuniforml + xuniform2*xuniform2;

Iwhile (xhypot >= 1.0 || xhypot == 0.0);

fact=sqrt(-2.0*log(xhypot)/xhypot);

xnorml[i] = xuniforml*fact;

xnorm2[i] = xuniform2*fact;

fprintfQp,""%10d %12.6F %12.6F\n",i, xnorml[i],xnorm2[i]);

/* Fill X matrix with random numbers*/
for(i=0;i<nrow*ncol;i++){
X[i] = ((double)rand() / ((double)(RAND_MAX)+(double)(1)));

b

/* Put "1"s in first Column of X -- Columns are stacked in vector X */
for(i=0;i<nrow;i++)

{

X[i] = 1;

s
/* Calculate Y */
for(1=0;i<nrow;i++)
{

sum=0.0;

for(J=0;j<ncol;j++)

{

sum=sum+BETA[J]*X[i+j*nrow];

}
/* Add Normal (0, 1) error here*/
Y[Li]=sum + xnormi[i];
}

/* For loops for writing out Y and X */
for(i=0;i<nrow;i++)
{
fprintf(kp, "%7.3F",Y[i]);
for(J=0;j<ncol;j++)
{

}
/* This is the line feed -- newline at the end of the the jth row */

fprintf(kp,"\n");
}

fclose(kp);
free(X);
free(Y);
free(BETA);
free(xnorml);
free(xnorm2);
return(0);

fprintf(kp, "%7.3F",X[i+j*nrow]);

ols_read_svd_general.c

/*
c:/mingw/bin/gcc -1"c:/program files/R/R-2.9.0/include™ -L"C:/Program
Files/R/R-2.9.0/bin" -Wall %1.c -o %l.exe -IRlapack -IRblas

General OLS program. Reads matrix created by writedata ols.c

The only parameters the user has to set are the number of rows and
columns -- nrow and ncol below. The number of columns counts a column
of "1"s used for the intercept term. All memory is then dynamically
allocated using nrow and ncol.

This version does a Singular Value Decomposition on the input matrix
*/

#include <math.h>

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <R_ext/Lapack.h>

#include <R_ext/BLAS.h>

void xsvd(int kpnp, int kpng, double *, double *, double *, double *);
void xrsquare(double *sse, double *tss, int nrow, int ncol, double *Y, double
*X, double *coef);

FILE *fp;
FILE *jp;

int main(){

int i, J, info, errno;

char trans = "t", notrans ="n";

double alpha = 1.0, beta=0.0;

int nrow=1000, ncol=25;

int one=1;

double *X, *Y, *XprimeX, *XXinv, *XXinvX, *coef, *xxinvdiag;
double *u, *lambda, *vt;

int *ipiv;

double timel, time2, timedif;

double sse, tss, stderrest=0.0, pearsonrsquare, betastderror;

X (double *) malloc (nrow*ncol*sizeof(double));

Y (double *) malloc (nrow*sizeof(double));

XprimeX = (double *) malloc (nhcol*ncol*sizeof(double));
XXinv = (double *) malloc (ncol*ncol*sizeof(double));
XXinvX = (double *) malloc (nrow*ncol*sizeof(double));
coef = (double *) malloc (ncol*sizeof(double));
xxinvdiag = (double *) malloc (ncol*sizeof(double));
ipiv = (int *) malloc (nhcol*sizeof(int));

u = (double *) malloc (nrow*nrow*sizeof(double));
lambda = (double *) malloc (nhcol*ncol*sizeof(double));
vt = (double *) malloc (ncol*ncol*sizeof(double));

/* clock() is part of time.h -- returns the implementation®s
* best approximationto the processor time elapsed since the

* program was invoke, divide by CLOCKS PER_SEC to get the time

* In seconds */
timel (double) clock(); /* get initial time */
timel = timel / CLOCKS_PER_SEC; /* in seconds */

printf(C"\nnumber of rows = %d number of columns = %d\n\n",nrow,ncol);

Jjp = fopen('c:/docs_c_summer_course/data_ols_svd.txt","w™);

iT((fp = fopen('c:/docs_c_summer_course/data _ols.txt","r'"))==NULL)
printf(C"\nUnable to open file OLS DATA.TXT: %s\n",

strerror(errno));
exit(EXIT_FAILURE);

}
else {
fprintfgp," Y and X = \n");
for(i=0;i<nrow;i++)
{
fscanf(fp, "%, &Y[1]);
for(§=0;j<ncol;j++)
Ffscanf(fp, "%l ", &X[i+j*nrow]);
3
fprintf(p,"%10d %12.6F", i,Y[i]);
for(§=0;j<ncol;j++)
{
fprintf(p,"%12.6F" ,X[i+J*nrow]);
}
fprintfgp,'"\n"");
}
/* Call Singular Value Decomposition Routine to look at the colinearity
*in X */
/* Clock the SVD Routine*/
time2 = (double) clock(); /* get initial time */
time2 = time2 / CLOCKS_PER_SEC; /* in seconds */

xsvd(nrow,ncol ,X,u, lambda,vt);
printf('Singular Values\n');
for(§=0;j<ncol;j++)
{

printf("'%d %f\n",j,lambda[j]);

}

timedif = (((double) clock()) / CLOCKS PER SEC) - time2;
printf('SVD took %12.3f seconds\n', timedif);
fprintfF(p,"'SVD took %12.3f seconds\n", timedif);

dgemm_(&trans,¬rans,é&ncol,&ncol,&nrow,&alpha, X, &nrow, X, &nrow, &beta,
XprimeX,&ncol);

fprintfF@p, ""\n\nX"X = \n"");
for(i=0;i<ncol;i++)
{

for(J=0;j<ncol;j++)

{

fprintf(p,""%12.6F" ,XprimeX[i+j*ncol]);

10

}
fprintfgp, ™ \n");

}
/* Initialize the ldentity matrix */
for(i=0;i<ncol;i++)

for(J=0;j<ncol;j++)
{
XXinv[i+j*ncol]=0.0;
iT(1 == pPHXXinv[i+j*ncol]=1.0;
¥
by
dgesv_(é&ncol,&ncol ,XprimeX,&ncol, ipiv,XXinv,&ncol,&info);
fprintfFgp, " "\n\n(X*X)-1 = \n"");
for(i=0;i<ncol;i++)
{
for(J=0;j<ncol;j++)

{
fprintfF(gp,"%12.6F" ,XXinv[i+j*ncol]);
/* Save Diagonal of (X*X)-1 */
if(i == j)xxinvdiag[i] = XXinv[i+j*ncol];

s
fprintf(gp,"\n");
¥

//XXinv 1Is 2x2
//X" is 2x5
//X is 5x2

dgemm_(¬rans,&trans, &ncol ,&nrow, &ncol ,&alpha, XXinv,&ncol ,X,&nrow, &b
eta,XXinvX,&ncol);

//XXinvX is 2x5
/7Y is 5x1

dgemm_(¬rans,¬rans,&ncol,&one,&nrow, &alpha, XXinvX,&ncol,Y,&nrow,
&beta,coef,&ncol);
/* Get Sum of Squared Error */
xrsquare(&sse, &tss, nrow, ncol, Y, X, coef);
/* Standard Error of the Estimate */
stderrest = sqrt(sse/(double)(nrow-ncol));
/* Write out Coefficient Vector and Standard Errors */
fprintf(@p, " "\n\nCoefficient Vector = ");
printfF(C"\n\nCoefficient Vector = ");
for(i=0;i<ncol;i++)
{
betastderror = stderrest*sqrt(xxinvdiag[i]);
printf(C"\n%d %12.6F %12.6F", i, coef[i], betastderror);
fprintfFp, "\nkd %12.6F %12.6f", i, coef[i], betastderror);

}
printf("\n\n"");

fprintf(p,"'SSE = %12.7g\n"",sse);

printf("'SSE = %12.7g\n"",sse);

fprintf(Jp,"TSS = %12.7g\n",tss);

printfF(""TSS = %12.7g\n"",tss);

fprintf(gp, 'Standard Error of the Estimate = %12.7g\n",stderrest);

11

printf('Standard Error of the Estimate = %12.7g\n",stderrest);

pearsonrsquare = 1.0 - sse/tss;
fprintf(p, 'Pearson R Squared = %12.7g\n",pearsonrsquare);
printf("'Pearson R Squared = %12.7g\n",pearsonrsquare);

free(X);

free(Y);

free(XprimeX);

Ffree(XXinvX);

free(coef);

free(xxinvdiag);

free(ipiv);

free(u);

free(lambda);

free(vt);

timedif = (((double) clock()) / CLOCKS_PER_SEC) - timel;

printf("'The total elapsed time of the program is %12.3f seconds\n",
timedif);

fprintf(@p, "\nThe total elapsed time of the program is %12.3f
seconds\n", timedif);

fclose(p):;
fclose(fp);
return(0);
by
/*
* Pearson R-Square Subroutine -- Computes r-square for simple OLS
*/

void xrsquare(double *sse, double *tss, int nrow, int ncol, double *Y, double
*X, double *coef)
{

int i, j;

double sum, sum2, sum3, ymean;

/* Calculate Y */

sum2=0.0;

ymean=0.0;

for(i=0;i<nrow;i++)

{
ymean=ymean+Y[i];
sum=0.0;
for(J=0;j<ncol;j++)
{

sum=sum+coef[J1*X[i+j*nrow];

}
/* Calculate the SSE here*/
sum2=sum2+(sum - Y[i]PD*(sum - Y[i]);

}
ymean=ymean/ (double) (nrow);
sum3=0.0;

for(i=0;i<nrow;i++)

{
/* Calculate the TSS here*/
sum3=sum3+(Y[i]-ymean)*(Y[i]-ymean);
}

*sse = sum2;

12

*tss = sum3;

}
/*

Singular Value Decomposition Subroutine

*/

void xsvd(int kpnp, int kpng, double *y, double *u, double *lambda, double
*vt) {

/*

*/

double *a, *work;

double sumulv, svd_error_sum, svd_error_sum_2;
int i, j, jj;

int info = 12;

int lIwork= kpnp*kpnp+kpng*kpng;

int |lda,ldu,ldvt;

a
work

calloc(kpnp*kpnq, sizeof(double));
calloc(lwork, sizeof(double));

Ida kpnp;

Idu kpnp;

ldvt kpng;

for (i=0;i<lwork;i++){
work[i] = O;

}

fprintf(p, "lwork=%i\n"", lwork);

for (J=0;j<kpng;j++) {
for (i=0;i<kpnp;i++) {
) af*kpnp)+i] = y[*kpnp)+i];

}

dgesvd_("A","A", &kpnp, &kpng, a, &lda, lambda,
u, &ldu, vt, &ldvt, work, &lwork, &info);

fprintf(p,"Info = %i\n",info);
printf(""Info = %i\n",info);
fprintf(p, " 'Singular Values\n™);
printf("'Singular Values\n');
for(3j=0;3i<kpng;jj++)
{
fprintf(p,"%d %F\n",jj,lambdal[jjil);
printf("'%d %f\n",jj,lambdaljj]);

}
/*
Do simple check of SVD
*/
svd_error_sum=0.0;

svd_error_sum_2=0.0;
for (i=0;i<kpnp;i++)

13

for (3J=0;3j<kpng;jj++)

{
sumulv=0.0;
for (3=0;j<kpnqg;j++)
{

sumulv+=u[*kpnp)+i]*lambda[j1*vtLj+(j*kpng)];
}

svd_error_sum+=(y[i+(i*kpnp)]-sumulv)*(y[i+(Jj*kpnp)]-
sumulv);
svd_error_sum_2+=fFabs(y[i+(j*kpnp)]-sumulv);
}
by
fprintf(p,"'SVD Error Check = %12.79g
%12.7g\n",svd_error_sum,svd_error_sum 2);
printfF("'SVD Error Check = %12.7g
%12.7g\n",svd_error_sum,svd_error_sum 2);

free(work);
free(a);

14

	From Wikipedia, the free encyclopedia
	Box–Muller transform
	Basic form
	Polar form
	Contrasting the two forms

