
1

From Wikipedia, the free encyclopedia

Incomplete Beta Function – Used to obtain t and F Probabilities

The Beta Function:

The beta function is symmetric, meaning that

The Beta function is related to the Gamma Function by:

The incomplete beta function, a generalization of the beta function, is defined as

For x = 1, the incomplete beta function coincides with the
complete beta function. The relationship between the two
functions is like that between the gamma function and its
generalization the incomplete gamma function.

The regularized incomplete beta function (or regularized beta
function for short) is defined in terms of the incomplete beta
function and the complete beta function:

Working out the integral (one can use integration by parts to do
that) for integer values of a and b, one finds:

2

The regularized incomplete beta function can be used to evaluate
the cumulative density function of a random variable X from a
binomial distribution, where the "probability of success" is p
and the sample size is n:

Properties

From Numerical Recipes in C

3

4

5

ols_read_svd_general.c (30 August 2009)

/*
c:/mingw/bin/gcc -I"c:/program files/R/R-2.9.0/include" -L"C:/Program
Files/R/R-2.9.0/bin" -Wall %1.c -o %1.exe -lRlapack -lRblas

General OLS program. Reads matrix created by writedata_ols.c

The only parameters the user has to set are the number of rows and
columns -- nrow and ncol below. The number of columns counts a column
of "1"s used for the intercept term. All memory is then dynamically
allocated using nrow and ncol.

This version does a Singular Value Decomposition on the input matrix
*/
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <R_ext/Lapack.h>
#include <R_ext/BLAS.h>
#define MAXIT 100
#define EPS 3.0e-7
#define FPMIN 1.0e-30
/* Prototypes for Incomplete Beta Distribution – use to get probabilities for
t and F values */
double betai(double a, double b, double x);
double betacf(double a, double b, double x);
double gammln(double xx);

void xsvd(int kpnp, int kpnq, double *, double *, double *, double *);
void xrsquare(double *sse, double *tss, int nrow, int ncol, double *Y, double
*X, double *coef);

FILE *fp;
FILE *jp;

int main(){

 int i, j, info, errno;
 char trans = 't', notrans ='n';
 double alpha = 1.0, beta=0.0;
 int nrow=1000, ncol=25;
 int one=1;
 double *X, *Y, *XprimeX, *XXinv, *XXinvX, *coef, *xxinvdiag;
 double *u, *lambda, *vt;
 int *ipiv;
 double time1, time2, timedif;
 double sse, tss, stderrest=0.0, pearsonrsquare, betastderror;
 double vvv, aaa, bbb, ttt, xxx, tinvprob, vvv1, vvv2, fff, finvprob,
totallnl;

 X = (double *) malloc (nrow*ncol*sizeof(double));
 Y = (double *) malloc (nrow*sizeof(double));

6

 XprimeX = (double *) malloc (ncol*ncol*sizeof(double));
 XXinv = (double *) malloc (ncol*ncol*sizeof(double));
 XXinvX = (double *) malloc (nrow*ncol*sizeof(double));
 coef = (double *) malloc (ncol*sizeof(double));
 xxinvdiag = (double *) malloc (ncol*sizeof(double));
 ipiv = (int *) malloc (ncol*sizeof(int));
 u = (double *) malloc (nrow*nrow*sizeof(double));
 lambda = (double *) malloc (ncol*ncol*sizeof(double));
 vt = (double *) malloc (ncol*ncol*sizeof(double));
/* clock() is part of time.h -- returns the implementation's
 * best approximationto the processor time elapsed since the
 * program was invoke, divide by CLOCKS_PER_SEC to get the time
 * in seconds */
 time1 = (double) clock(); /* get initial time */
 time1 = time1 / CLOCKS_PER_SEC; /* in seconds */

 printf("\nnumber of rows = %d number of columns = %d\n\n",nrow,ncol);

 jp = fopen("c:/docs_c_summer_course/data_ols_svd.txt","w");

 if((fp = fopen("c:/docs_c_summer_course/data_ols.txt","r"))==NULL)
 {
 printf("\nUnable to open file OLS_DATA.TXT: %s\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 else {

 fprintf(jp," Y and X = \n");
 for(i=0;i<nrow;i++)
 {
 fscanf(fp,"%lf",&Y[i]);
 for(j=0;j<ncol;j++)
 {
 fscanf(fp,"%lf",&X[i+j*nrow]);
 }
 fprintf(jp,"%10d %12.6f", i,Y[i]);
 for(j=0;j<ncol;j++)
 {
 fprintf(jp,"%12.6f",X[i+j*nrow]);
 }
 fprintf(jp,"\n");
 }
 }
/* Call Singular Value Decomposition Routine to look at the colinearity
 * in X */
/* Clock the SVD Routine*/

 time2 = (double) clock(); /* get initial time */
 time2 = time2 / CLOCKS_PER_SEC; /* in seconds */
 xsvd(nrow,ncol,X,u,lambda,vt);
 printf("Singular Values\n");
 for(j=0;j<ncol;j++)
 {
 printf("%d %f\n",j,lambda[j]);

7

 }
 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time2;
 printf("SVD took %12.3f seconds\n", timedif);
 fprintf(jp,"SVD took %12.3f seconds\n", timedif);

 dgemm_(&trans,¬rans,&ncol,&ncol,&nrow,&alpha,X,&nrow,X,&nrow,&beta,
XprimeX,&ncol);
 fprintf(jp,"\n\nX'X = \n");
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 fprintf(jp,"%12.6f",XprimeX[i+j*ncol]);
 }
 fprintf(jp,"\n");
 }
/* Initialize the Identity matrix */
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 XXinv[i+j*ncol]=0.0;
 if(i == j)XXinv[i+j*ncol]=1.0;
 }
 }
 dgesv_(&ncol,&ncol,XprimeX,&ncol,ipiv,XXinv,&ncol,&info);
 fprintf(jp,"\n\n(X'X)-1 = \n");
 for(i=0;i<ncol;i++)
 {
 for(j=0;j<ncol;j++)
 {
 fprintf(jp,"%12.6f",XXinv[i+j*ncol]);
/* Save Diagonal of (X'X)-1 */
 if(i == j)xxinvdiag[i] = XXinv[i+j*ncol];
 }
 fprintf(jp,"\n");
 }

//XXinv is 2x2
//X' is 2x5
//X is 5x2

 dgemm_(¬rans,&trans,&ncol,&nrow,&ncol,&alpha,XXinv,&ncol,X,&nrow,&b
eta,XXinvX,&ncol);

//XXinvX is 2x5
//Y is 5x1

 dgemm_(¬rans,¬rans,&ncol,&one,&nrow,&alpha,XXinvX,&ncol,Y,&nrow,
&beta,coef,&ncol);
/* Get Sum of Squared Error */
 xrsquare(&sse, &tss, nrow, ncol, Y, X, coef);
 /* Standard Error of the Estimate */
 stderrest = sqrt(sse/(double)(nrow-ncol));
/* Write out Coefficient Vector and Standard Errors */

8

 fprintf(jp,"\n\nCoefficient Vector = ");
 printf("\n\nCoefficient Vector = ");
 vvv = (double)(nrow-ncol);
 aaa = vvv/2.0;
 bbb = 0.5;
 for(i=0;i<ncol;i++)
 {
 betastderror = stderrest*sqrt(xxinvdiag[i]);
 ttt = coef[i]/betastderror;
 xxx = vvv/(vvv+ttt*ttt);
 tinvprob = betai(aaa, bbb, xxx);
 printf("\n%d %12.6f %12.6f %12.6f %12.6f", i, coef[i],
betastderror, ttt, tinvprob);
 fprintf(jp,"\n%d %12.6f %12.6f %12.6f %12.6f", i, coef[i],
betastderror, ttt, tinvprob);
 }
 printf("\n\n");
 fprintf(jp,"\n\n");

 fprintf(jp,"SSE = %12.7g\n",sse);
 printf("SSE = %12.7g\n",sse);
 fprintf(jp,"TSS = %12.7g\n",tss);
 printf("TSS = %12.7g\n",tss);
 fprintf(jp,"Standard Error of the Estimate = %12.7g\n",stderrest);
 printf("Standard Error of the Estimate = %12.7g\n",stderrest);
// Compute F(ncol-1, nrow-ncol) Using the Incomplete Beta Function
 vvv1 = ncol - 1;
 vvv2 = nrow - ncol;
 aaa = vvv2/2.0;
 bbb = vvv1/2,0;
// Overall F = {[TSS - SSE]/(ncol-1)}/{SSE/(nrow-ncol)}
 fff = ((tss - sse)/(double)(ncol -1))/(sse/(double)(nrow-ncol));
 xxx = vvv2/(vvv2 + vvv1*fff);
 finvprob = betai(aaa, bbb, xxx);
 fprintf(jp," F,ncol-1,nrow-ncol = %12.7g, Prob > F = %12.7g\n",fff,
finvprob);
 printf(" F,ncol-1,nrow-ncol = %12.7g, Prob > F = %12.7g\n",fff,
finvprob);
// Log-Likelihood
 totallnl = -(nrow/2.0)*log(2.0*3.1415926536) - nrow*log(stderrest) -
sse/(2*stderrest*stderrest);
 fprintf(jp,"Log-Likelihood = %12.7g\n",totallnl);
 printf("Log-Likelihood = %12.7g\n",totallnl);
// Pearson r-square
 pearsonrsquare = 1.0 - sse/tss;
 fprintf(jp,"Pearson R Squared = %12.7g\n",pearsonrsquare);
 printf("Pearson R Squared = %12.7g\n",pearsonrsquare);

 free(X);
 free(Y);
 free(XprimeX);
 free(XXinvX);
 free(coef);
 free(xxinvdiag);
 free(ipiv);

9

 free(u);
 free(lambda);
 free(vt);
 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time1;
 printf("The total elapsed time of the program is %12.3f seconds\n",
timedif);
 fprintf(jp,"\nThe total elapsed time of the program is %12.3f
seconds\n", timedif);

 fclose(jp);
 fclose(fp);
 return(0);

}
/*
 * Pearson R-Square Subroutine -- Computes r-square for simple OLS
 */
void xrsquare(double *sse, double *tss, int nrow, int ncol, double *Y, double
*X, double *coef)
{
 int i, j;
 double sum, sum2, sum3, ymean;
 /* Calculate Y */
 sum2=0.0;
 ymean=0.0;
 for(i=0;i<nrow;i++)
 {
 ymean=ymean+Y[i];
 sum=0.0;
 for(j=0;j<ncol;j++)
 {
 sum=sum+coef[j]*X[i+j*nrow];
 }
/* Calculate the SSE here*/
 sum2=sum2+(sum - Y[i])*(sum - Y[i]);
 }
 ymean=ymean/(double)(nrow);
 sum3=0.0;
 for(i=0;i<nrow;i++)
 {
/* Calculate the TSS here*/
 sum3=sum3+(Y[i]-ymean)*(Y[i]-ymean);
 }
 *sse = sum2;
 *tss = sum3;
//return(sse);

}
/*

Singular Value Decomposition Subroutine

*/
void xsvd(int kpnp, int kpnq, double *y, double *u, double *lambda, double
*vt) {

10

/*
*/

 double *a, *work;
 double sumulv, svd_error_sum, svd_error_sum_2;
 int i, j, jj;
 int info = 12;
 int lwork= kpnp*kpnp+kpnq*kpnq;
 int lda,ldu,ldvt;

 a = calloc(kpnp*kpnq, sizeof(double));
 work = calloc(lwork, sizeof(double));

 lda = kpnp;
 ldu = kpnp;
 ldvt = kpnq;
 for (i=0;i<lwork;i++){
 work[i] = 0;
 }

 fprintf(jp,"lwork=%i\n",lwork);

 for (j=0;j<kpnq;j++) {
 for (i=0;i<kpnp;i++) {
 a[(j*kpnp)+i] = y[(j*kpnp)+i];
 }
 }

 dgesvd_("A","A", &kpnp, &kpnq, a, &lda, lambda,
 u, &ldu, vt, &ldvt, work, &lwork, &info);

 fprintf(jp,"Info = %i\n",info);
 printf("Info = %i\n",info);
 fprintf(jp,"Singular Values\n");
 printf("Singular Values\n");
 for(jj=0;jj<kpnq;jj++)
 {
 fprintf(jp,"%d %f\n",jj,lambda[jj]);
 printf("%d %f\n",jj,lambda[jj]);
 }
/*
 Do simple check of SVD

*/
 svd_error_sum=0.0;
 svd_error_sum_2=0.0;
 for (i=0;i<kpnp;i++)
 {
 for (jj=0;jj<kpnq;jj++)
 {
 sumulv=0.0;
 for (j=0;j<kpnq;j++)
 {

11

 sumulv+=u[(j*kpnp)+i]*lambda[j]*vt[j+(jj*kpnq)];
 }
 svd_error_sum+=(y[i+(jj*kpnp)]-sumulv)*(y[i+(jj*kpnp)]-
sumulv);
 svd_error_sum_2+=fabs(y[i+(jj*kpnp)]-sumulv);
 }
 }
 fprintf(jp,"SVD Error Check = %12.7g
%12.7g\n",svd_error_sum,svd_error_sum_2);
 printf("SVD Error Check = %12.7g
%12.7g\n",svd_error_sum,svd_error_sum_2);
 free(work);
 free(a);
}
/* Incomplete Beta Distribution Function -- Use to obtain t and F
 * distribution Probabilities (p-values) */
double betai(double a, double b, double x)
{
 double betacf(double a, double b, double x);
 double gammln(double xx);
// void nrerror(char error_text[]);
 double bt;

 if (x < 0.0 || x > 1.0)
 {
 printf("Bad x in routine betai");
 exit(EXIT_FAILURE);
 }
 if (x == 0.0 || x == 1.0) bt=0.0;
 else
 bt=exp(gammln(a+b)-gammln(a)-gammln(b)+a*log(x)+b*log(1.0-x));
 if (x < (a+1.0)/(a+b+2.0))
 return bt*betacf(a,b,x)/a;
 else
 return 1.0-bt*betacf(b,a,1.0-x)/b;
}

double betacf(double a, double b, double x)
{
// void nrerror(char error_text[]);
 int m,m2;
 double aa,c,d,del,h,qab,qam,qap;

 qab=a+b;
 qap=a+1.0;
 qam=a-1.0;
 c=1.0;
 d=1.0-qab*x/qap;
 if (fabs(d) < FPMIN) d=FPMIN;
 d=1.0/d;
 h=d;
 for (m=1;m<=MAXIT;m++) {
 m2=2*m;
 aa=m*(b-m)*x/((qam+m2)*(a+m2));

12

 d=1.0+aa*d;
 if (fabs(d) < FPMIN) d=FPMIN;
 c=1.0+aa/c;
 if (fabs(c) < FPMIN) c=FPMIN;
 d=1.0/d;
 h *= d*c;
 aa = -(a+m)*(qab+m)*x/((a+m2)*(qap+m2));
 d=1.0+aa*d;
 if (fabs(d) < FPMIN) d=FPMIN;
 c=1.0+aa/c;
 if (fabs(c) < FPMIN) c=FPMIN;
 d=1.0/d;
 del=d*c;
 h *= del;
 if (fabs(del-1.0) < EPS) break;
 }
 if (m > MAXIT)
 {
 printf("a or b too big, or MAXIT too small in betacf");
 exit(EXIT_FAILURE);
 }
 return h;
}
double gammln(double xx)
{
 double x,y,tmp,ser;
 static double cof[6]={76.18009172947146,-86.50532032941677,
 24.01409824083091,-1.231739572450155,
 0.1208650973866179e-2,-0.5395239384953e-5};
 int j;

 y=x=xx;
 tmp=x+5.5;
 tmp -= (x+0.5)*log(tmp);
 ser=1.000000000190015;
 for (j=0;j<=5;j++) ser += cof[j]/++y;
 return -tmp+log(2.5066282746310005*ser/x);
}

	From Wikipedia, the free encyclopedia
	Incomplete Beta Function – Used to obtain t and F Probabilities
	Properties

