
1

OLS.c

/*
*/
#include <stdio.h>
#include <R_ext/Lapack.h>
#include <R_ext/BLAS.h>

int main(){

 int i,info, ipiv[2];
 char trans = 't', notrans ='n';
 double alpha = 1.0, beta=0.0;
 int ncol=2;
 int nrow=5;
 int one=1;
 double XprimeX[4];
 double X[10] = {1,1,1,1,1,0.3,-0.2,0.4,-0.5,0.3};
 double Y[5] = {0.7,-0.5,0.9,-1.1,0.7};
 double XXinv[4] = {1,0,0,1};
 double XXinvX[10];
 double coef[2];

 printf("\n\nX = ");
 for(i=0;i<5;i++) printf("\n%f %f", X[i],X[i+5]);
 printf("\n\nY = ");
 for(i=0;i<5;i++) printf("\n%f", Y[i]);

 dgemm_(&trans,¬rans,&ncol,&ncol,&nrow,&alpha,X,&nrow,X,&nrow,&beta,
XprimeX,&ncol);
 printf("\n\nX'X = ");
 for(i=0;i<2;i++) printf("\n%f %f",XprimeX[i], XprimeX[i+2]);

 dgesv_(&ncol,&ncol,XprimeX,&ncol,ipiv,XXinv,&ncol,&info);
 printf("\n\n(X'X)-1 = ");
 for(i=0;i<2;i++) printf("\n%f %f",XXinv[i], XXinv[i+2]);

//XXinv is 2x2
//X' is 2x5
//X is 5x2

 dgemm_(¬rans,&trans,&ncol,&nrow,&ncol,&alpha,XXinv,&ncol,X,&nrow,&b
eta,XXinvX,&ncol);

//XXinvX is 2x5
//Y is 5x1

 dgemm_(¬rans,¬rans,&ncol,&one,&nrow,&alpha,XXinvX,&ncol,Y,&nrow,
&beta,coef,&nrow);
 printf("\n\nB0 = %f", coef[0]);
 printf("\nB1 = %f\n\n", coef[1]);

 return(0);
}

2

OLS.c (annotated)

/*

C:\docs_c_summer_course>gcc -I"c:/program files/R/R-2.9.0/include" -
L"C:/Program
 Files/R/R-2.9.0/bin" -Wall ols.c -o ols.exe -lRlapack -lRblas

C:\docs_c_summer_course>ols

X =
1.000000 0.300000
1.000000 -0.200000
1.000000 0.400000
1.000000 -0.500000
1.000000 0.300000

Y =
0.700000
-0.500000
0.900000
-1.100000
0.700000

X'X =
5.000000 0.300000
0.300000 0.630000

(X'X)-1 =
0.205882 -0.098039
-0.098039 1.633987

B0 = 0.003922
B1 = 2.267974

*/
#include <stdio.h>
/* Here is the path statement to the LAPACK and BLAS header files:
/* C:/Program Files/R/R-2.9.0/include/R_ext/ /*
#include <R_ext/Lapack.h>
#include <R_ext/BLAS.h>

int main(){

 int i,info, ipiv[2];
/* These are used in the function call for dgemm – it tells the function
whether or not the indicated matrices are to be transposed or not */
 char trans = 't', notrans ='n';
 double alpha = 1.0, beta=0.0;
 int ncol=2;
 int nrow=5;
 int one=1;
 double XprimeX[4];

3

 double X[10] = {1,1,1,1,1,0.3,-0.2,0.4,-0.5,0.3};
 double Y[5] = {0.7,-0.5,0.9,-1.1,0.7};
 double XXinv[4] = {1,0,0,1};
 double XXinvX[10];
 double coef[2];

 printf("\n\nX = ");
 for(i=0;i<5;i++) printf("\n%f %f", X[i],X[i+5]);
 printf("\n\nY = ");
 for(i=0;i<5;i++) printf("\n%f", Y[i]);
/* This BLAS function takes 3 matrices, A, B, and C, and two scalars, alpha
and beta, and computes: Y = alpha*(AB) + beta*C. Note that the result, the
matrix Y, is returned in C. Here A=X_transpose, B=X, C=XprimeX (note that
XprimeX is empty), alpha=1, beta=0. The function then returns
Y = (1.0)*(X_transpose*X) + (0.0)*XprimeX = X_transposeX */
 dgemm_(&trans,¬rans,&ncol,&ncol,&nrow,&alpha,X,&nrow,X,&nrow,&beta,
XprimeX,&ncol);
 printf("\n\nX'X = ");
 for(i=0;i<2;i++) printf("\n%f %f",XprimeX[i], XprimeX[i+2]);
/* This LAPACK function solves the linear system: Y=A*BETA, where A is a
square n by n matrix of real numbers, BETA is a matrix of coefficients that
is n by m (m<=n), and Y is an n by m matrix. The solution matrix, BETA, is
returned in Y. Here Y=I, that is, Y is set equal to the n by n identity
matrix, the result is that BETA = A_inverse is returned in Y. Below,
A=XprimeX, and XXinv=I when the function is called. The function returns
XprimeX_inverse in XXinv */
 dgesv_(&ncol,&ncol,XprimeX,&ncol,ipiv,XXinv,&ncol,&info);
 printf("\n\n(X'X)-1 = ");
 for(i=0;i<2;i++) printf("\n%f %f",XXinv[i], XXinv[i+2]);

//XXinv is 2x2
//X' is 2x5
//X is 5x2
/* Same BLAS function as above. Here A=(X’X)-1 (XXinv), B=X_transpose,
C=XXinvX (note that XXinvX is empty), alpha=1, beta=0. The function then
returns Y = (1.0)*[(X’X)-1]X’) + (0.0)*XXinvX = [(X’X)-1]X’) in XXinvX */

 dgemm_(¬rans,&trans,&ncol,&nrow,&ncol,&alpha,XXinv,&ncol,X,&nrow,&b
eta,XXinvX,&ncol);

//XXinvX is 2x5
//Y is 5x1
/* Same BLAS function as above. Here A=[(X’X)-1]X’) (XXinvX), B=Y, C=coef
(note that coef is empty), alpha=1, beta=0. The function then returns
Y = (1.0)*([(X’X)-1]X’)Y) + (0.0)*coef = coef, the two Beta coefficients */

 dgemm_(¬rans,¬rans,&ncol,&one,&nrow,&alpha,XXinvX,&ncol,Y,&nrow,
&beta,coef,&nrow);
 printf("\n\nB0 = %f", coef[0]);
 printf("\nB1 = %f\n\n", coef[1]);
 return(0);

}

4

Subroutine DGEMM from BLAS Library

OLS.C --dgemm_(&trans,¬rans,&ncol,&ncol,&nrow,&alpha,X,&nrow,X,&nrow,&beta,XprimeX,&ncol);

 SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
* .. Scalar Arguments ..
 DOUBLE PRECISION ALPHA,BETA
 INTEGER K,LDA,LDB,LDC,M,N
 CHARACTER TRANSA,TRANSB
* ..
* .. Array Arguments ..
 DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
* Purpose
* =======
*
* DGEMM performs one of the matrix-matrix operations
*
* C := alpha*op(A)*op(B) + beta*C,
*
* where op(X) is one of
*
* op(X) = X or op(X) = X',
*
* alpha and beta are scalars, and A, B and C are matrices, with op(A)
* an m by k matrix, op(B) a k by n matrix and C an m by n matrix.
*
* Arguments
* ==========
*
* TRANSA - CHARACTER*1.
* On entry, TRANSA specifies the form of op(A) to be used in
* the matrix multiplication as follows:
*
* TRANSA = 'N' or 'n', op(A) = A.
*
* TRANSA = 'T' or 't', op(A) = A'.
*
* TRANSA = 'C' or 'c', op(A) = A'.
*
* Unchanged on exit.
*
* TRANSB - CHARACTER*1.
* On entry, TRANSB specifies the form of op(B) to be used in
* the matrix multiplication as follows:
*
* TRANSB = 'N' or 'n', op(B) = B.
*
* TRANSB = 'T' or 't', op(B) = B'.
*
* TRANSB = 'C' or 'c', op(B) = B'.
*

5

* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix
* op(A) and of the matrix C. M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix
* op(B) and the number of columns of the matrix C. N must be
* at least zero.
* Unchanged on exit.
*
* K - INTEGER.
* On entry, K specifies the number of columns of the matrix
* op(A) and the number of rows of the matrix op(B). K must
* be at least zero.
* Unchanged on exit.
*
* ALPHA - DOUBLE PRECISION.
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - DOUBLE PRECISION array of DIMENSION (LDA, ka), where ka is
* k when TRANSA = 'N' or 'n', and is m otherwise.
* Before entry with TRANSA = 'N' or 'n', the leading m by k
* part of the array A must contain the matrix A, otherwise
* the leading k by m part of the array A must contain the
* matrix A.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. When TRANSA = 'N' or 'n' then
* LDA must be at least max(1, m), otherwise LDA must be at
* least max(1, k).
* Unchanged on exit.
*
* B - DOUBLE PRECISION array of DIMENSION (LDB, kb), where kb is
* n when TRANSB = 'N' or 'n', and is k otherwise.
* Before entry with TRANSB = 'N' or 'n', the leading k by n
* part of the array B must contain the matrix B, otherwise
* the leading n by k part of the array B must contain the
* matrix B.
* Unchanged on exit.
*
* LDB - INTEGER.
* On entry, LDB specifies the first dimension of B as declared
* in the calling (sub) program. When TRANSB = 'N' or 'n' then
* LDB must be at least max(1, k), otherwise LDB must be at
* least max(1, n).
* Unchanged on exit.
*
* BETA - DOUBLE PRECISION.
* On entry, BETA specifies the scalar beta. When BETA is

6

* supplied as zero then C need not be set on input.
* Unchanged on exit.
*
* C - DOUBLE PRECISION array of DIMENSION (LDC, n).
* Before entry, the leading m by n part of the array C must
* contain the matrix C, except when beta is zero, in which
* case C need not be set on entry.
* On exit, the array C is overwritten by the m by n matrix
* (alpha*op(A)*op(B) + beta*C).
*
* LDC - INTEGER.
* On entry, LDC specifies the first dimension of C as declared
* in the calling (sub) program. LDC must be at least
* max(1, m).
* Unchanged on exit.
*
*
* Level 3 Blas routine.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*

7

Subroutine DGESV from LAPACK Library

CALLED IN OLS.C: dgesv_(&ncol,&ncol,XprimeX,&ncol,ipiv,XXinv,&ncol,&info);

 SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
*
* -- LAPACK driver routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
 INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
 INTEGER IPIV(*)
 DOUBLE PRECISION A(LDA, *), B(LDB, *)
* ..
*
* Purpose
* =======
*
* DGESV computes the solution to a real system of linear equations
* A * X = B,
* where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
*
* The LU decomposition with partial pivoting and row interchanges is
* used to factor A as
* A = P * L * U,
* where P is a permutation matrix, L is unit lower triangular, and U is
* upper triangular. The factored form of A is then used to solve the
* system of equations A * X = B.
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of linear equations, i.e., the order of the
* matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the N-by-N coefficient matrix A.
* On exit, the factors L and U from the factorization
* A = P*L*U; the unit diagonal elements of L are not stored.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (output) INTEGER array, dimension (N)
* The pivot indices that define the permutation matrix P;
* row i of the matrix was interchanged with row IPIV(i).

8

*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
* On entry, the N-by-NRHS matrix of right hand side matrix B.
* On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero. The factorization
* has been completed, but the factor U is exactly
* singular, so the solution could not be computed.
*
* ===
*

