OLS.c

/*

*/

#include <stdio.h>
#include <R_ext/Lapack.h>
#include <R_ext/BLAS_h>

int main(){

int i,info, ipiv[2];

char trans = "t", notrans ="n";
double alpha = 1.0, beta=0.0;
int ncol=2;

int nrow=5;

int one=1;

double XprimeX[4];

double XJ[10] = {1,1,1,1,1,0.3,-
double Y[5] = {0.7,-0.5,0.9,-1.
double XXinv[4] = {1,0,0,1};
double XXinvX[10];

double coef[2];

.2,0.4,-0.5,0.3};
0.7%;

printfF(C"\n\nX = ");

for(i=0;1<5;i++) printf(C"\n%f %f", X[i],X[i+5]);
printf(C"\n\nY = ");

for(i=0;i1<5;i++) printf("\n%f", Y[i]);

dgemm_(&trans,¬rans,&ncol,&ncol,&nrow,&alpha, X, &nrow, X, &nrow, &beta,
XprimeX,&ncol);

printfF(C"\n\nX"X = ");

for(i=0;i1<2;i++) printf(""\nkf %F",XprimeX[i], XprimeX[i+2]);

dgesv_(&ncol,&ncol ,XprimeX,&ncol, ipiv,XXinv,&ncol,&info);
printfC\n\n(X"X)-1 = ");
for(i=0;1<2;i++) printf("\n%f %f" ,XXinv[i], XXinv[i+2]);

//7XXinv 1s 2x2
//X" is 2x5
//X is 5x2

dgemm_(¬rans, &trans,&ncol ,&nrow,&ncol,&alpha,XXinv,&ncol , X, &nrow, &b
eta, XXinvX,&ncol);

//7XXinvX is 2x5
/7Y is 5x1

dgemm_(¬rans,¬rans,&ncol,&one,&nrow,&alpha, XXinvX,&ncol,Y,&nrow,
&beta,coef,&nrow);

printf('\n\nB0 = %f", coef[0]);

printf("'\nB1 = %Ff\n\n", coef[1]);

return(0);

OLS.c (annotated)
/*

C:\docs_c_summer_course>gcc -I1"c:/program files/R/R-2.9.0/include" -
L'"C:/Program
Files/R/R-2.9.0/bin" -Wall ols.c -o ols.exe -IRlapack -IRblas

C:\docs_c_summer_course>ols

X =
1.000000 0.300000
1.000000 -0.200000
1.000000 0.400000
1.000000 -0.500000
1.000000 0.300000

Y =

0.700000
-0.500000
0.900000
-1.100000
0.700000

XX =
5.000000 0.300000
0.300000 0.630000

X"X)-1 =
0.205882 -0.098039
-0.098039 1.633987

BO = 0.003922
Bl = 2.267974
*/

#include <stdio.h>

/* Here is the path statement to the LAPACK and BLAS header files:
/* C:/Program Files/R/R-2.9.0/include/R_ext/ /*

#include <R_ext/Lapack.h>

#include <R_ext/BLAS.h>

int main(){

int i,info, ipiv[2];
/* These are used in the function call for dgemm — it tells the function
whether or not the indicated matrices are to be transposed or not */

char trans = "t", notrans ="n";

double alpha = 1.0, beta=0.0;

int ncol=2;

int nrow=5;

int one=1;

double Xprimex[4];

double X[10] = {1,1,1,1,1,0. 3 -0.2,0.4,-0.5,0.3}
double Y[5] = {0.7,-0.5,0.9,-1.1,0.7%};
double XXinv[4] = {1,0,0,1};

double XXinvX[10];
double coef[2];

printFC"\n\nX = ");

for(i=0;i<5;i++) printf("\n%f %F", X[i],X[i+5]);

printf('\n\nY = ");

for(i=0;i<5;i++) printfC\n%f", Y[i]);
/* This BLAS function takes 3 matrices, A, B, and C, and two scalars, alpha
and beta, and computes: Y = alpha*(AB) + beta*C. Note that the result, the
matrix Y, is returned in C. Here A=X transpose, B=X, C=XprimeX (note that
XprimeX is empty), alpha=1, beta=0. The function then returns

= (1.0)*(X_transpose*X) + (0.0)*XprimeX = X_transposeXx */

dgemm_(&trans,¬rans,&ncol ,&ncol,&nrow,&alpha, X, &nrow, X, &nrow, &beta,
XprimeX,&ncol);

printf(C"\n\nxX"X = ");

for(i=0;i1<2;i++) prlntf("\n%f %", XprimeX[i], XprimeX[i+2]);
/* This LAPACK functlon solves the linear system: Y=A*BETA, where A is a
square n by n matrix of real numbers, BETA is a matrix of coefficients that
is n by m (m<=n), and Y is an n by m matrix. The solution matrix, BETA, is
returned in Y. Here Y=1, that is, Y is set equal to the n by n identity
matrix, the result is that BETA = A _inverse is returned in Y. Below,
A=XprimeX, and XXinv=l when the function is called. The function returns
XprimeX_inverse in XXinv */

dgesv_(&ncol ,&ncol ,XprimeX,&ncol, ipiv,XXinv,&ncol,&info);

printFC\n\n(X"X)-1 = ");

for(i=0;i1<2;i++) printfF("\nkf %f" , XXinv[i], XXinv[i+2]);

//7XXinv Is 2x2

//X* is 2x5

//X is 5x2

/* Same BLAS function as above. Here A=(X’X)-1 (XXinv), B=X_transpose,
C=XXinvX (note that XXinvX is empty), alpha=1, beta=0. The function then
returns Y = (1.0)*[(X"X)-11X") + (0.0)*XXinvX = [(X”X)-1]1X") in XXinvX */

dgemm_(¬rans, &trans,&ncol ,&nrow,&ncol,&alpha,XXinv,&ncol, X, &nrow, &b
eta, XXinvX,&ncol);

//XXinvX is 2x5
//Y i1s 5x1
/* Same BLAS function as above. Here A=[(X’X)-1]1X") (XXinvX), B=Y, C=coef
(note that coef is empty), alpha=1, beta=0. The function then returns
= (1.0)*([(X*X)-11X7)Y) + (0.0)*coef = coef, the two Beta coefficients */

dgemm_(¬rans,¬rans,&ncol,&one,&nrow, &alpha, XXinvX,&ncol,Y,&nrow,
&beta,coef,&nrow);

printF(C"\n\nBO = %f", coef[0]);

printf(''\nB1 = %f\n\n", coef[1]);

return(0);

Subroutine DGEMM from BLAS Library

OLS.C --dgemm_(&trans,¬rans,&ncol,&ncol,&nrow,&alpha,X,&nrow,X,&nrow,&beta,XprimeX,&ncol);

SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
* .. Scalar Arguments ..

DOUBLE PRECISION ALPHA,BETA

INTEGER K,LDA,LDB,LDC,M,N

CHARACTER TRANSA, TRANSB
* .. Array Arguments ..

DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)

*

*

*

Purpose

*

DGEMM performs one of the matrix-matrix operations
C := alpha*op(A)*op(B) + beta*C,

where op(X) is one of
op(X)=X or op(X)=X",

alpha and beta are scalars, and A, B and C are matrices, with op(A)
an m by k matrix, op(B) a k by n matrix and C an m by n matrix.

% b % o X % % % ok % o X

Arguments

*

TRANSA - CHARACTER*1.
On entry, TRANSA specifies the form of op(A) to be used in
the matrix multiplication as follows:

TRANSA = "N" or "n", op(A) = A.
TRANSA = "T" or "t", op(A) = A".
TRANSA = "C" or "c", op(A) = A".

Unchanged on exit.

TRANSB - CHARACTER*1.
On entry, TRANSB specifies the form of op(B) to be used in
the matrix multiplication as follows:

TRANSB = "N" or "n®", op(B) = B.
TRANSB = *T" or "t", op(B) = B".
TRANSB = "C" or "c", op(B) =B".

% R X b X b X b X b % o % o % % 3k X % X % X

4

% b % b X b 3 b % b 3k b o % 3k X o X b X b X b 3 b % b 3k X ok X b X b X b X b X b 3 b X X % X 3k % ok X ok X

ALPHA

LDA

LDB

BETA

Unchanged on exit.

INTEGER.

On entry, M specifies the number of rows of the matrix
op(A) and of the matrix C. M must be at least zero.
Unchanged on exit.

INTEGER.

On entry, N specifies the number of columns of the matrix
op(B) and the number of columns of the matrix C. N must be
at least zero.

Unchanged on exit.

INTEGER.

On entry, K specifies the number of columns of the matrix
op(A) and the number of rows of the matrix op(B). K must
be at least zero.

Unchanged on exit.

DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.

DOUBLE PRECISION array of DIMENSION (LDA, ka), where ka is
k when TRANSA = *N" or "n®", and is m otherwise.

Before entry with TRANSA = "N" or "n", the leading m by k
part of the array A must contain the matrix A, otherwise
the leading k by m part of the array A must contain the
matrix A.

Unchanged on exit.

INTEGER.

On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When TRANSA = "N* or "n" then
LDA must be at least max(1, m), otherwise LDA must be at
least max(1, k).

Unchanged on exit.

DOUBLE PRECISION array of DIMENSION (LDB, kb), where kb is
n when TRANSB = *N" or "n", and is k otherwise.

Before entry with TRANSB = *N" or "n", the leading Kk by n
part of the array B must contain the matrix B, otherwise
the leading n by k part of the array B must contain the
matrix B.

Unchanged on exit.

INTEGER.

On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. When TRANSB = *"N* or "n" then
LDB must be at least max(1, k), otherwise LDB must be at
least max(1, n).

Unchanged on exit.

DOUBLE PRECISION.
On entry, BETA specifies the scalar beta. When BETA 1is

5

ok b ok ok 3k % 3k X ok X b X b X o X o X o X % X %

LDC

Level

supplied as zero then C need not be set on input.
Unchanged on exit.

DOUBLE PRECISION array of DIMENSION (LDC, n).

Before entry, the leading m by n part of the array C must
contain the matrix C, except when beta 1is zero, in which
case C need not be set on entry.

On exit, the array C 1is overwritten by the m by n matrix
(alpha*op(A)*op(B) + beta*C).

INTEGER.

On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max(1, m).

Unchanged on exit.

3 Blas routine.

-— Written on 8-February-1989.

Jack Dongarra, Argonne National Laboratory.

lain Duff, AERE Harwell.

Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.

Subroutine DGESV from LAPACK Library

CALLED IN OLS.C: dgesv_(&ncol,&ncol,XprimeX,&ncol,ipiv,XXinv,&ncol,&info);

* % X ok X ok X %

*ox ok X

ok ok % % % X ok X b X % X

*

% R X R % o X b X b X % % X % % ok %

SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

-- LAPACK driver routine (version 3.2) --

-- LAPACK is a software package provided by Univ. of Tennessee, --

-— Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
November 2006

.. Scalar Arguments ..

INTEGER INFO, LDA, LDB, N, NRHS
.. Array Arguments ..

INTEGER IPIVC *)

DOUBLE PRECISION A(LDA, *), B(LDB, *)

Purpose

DGESV computes the solution to a real system of linear equations
A * X =B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.

The LU decomposition with partial pivoting and row interchanges is
used to factor A as

A=P*L>*U,
where P is a permutation matrix, L is unit lower triangular, and U is
upper triangular. The factored form of A is then used to solve the
system of equations A * X = B.

Arguments

N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N coefficient matrix A.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

1PIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(Q).

7

X b % b 3k b X X % X ok X ok X o X

LDB

INFO

(input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS matrix of right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.

(input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).

(output) INTEGER

= 0: successful exit

< 0: 1f INFO = -i, the i-th argument had an illegal value

> 0: 1fF INFO = 1, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, so the solution could not be computed.

