Pointer_temperature.c (not annotated)

#include <stdio.h>
void convert(double *celsius);
int main(){
double temperature = 80;
printfF("\n\t80 degrees fahrenheit (before conversion) == %f
celsius", temperature);
convert(&temperature);
printF(C"\n\t80 degrees fahrenheit (after conversion) == %f
celsius\n\n"", temperature);
return(0);
}
void convert(double *celsius){
double temp;
temp = *celsius;
temp = (temp - 32)/1.8;
*celsius = temp;

Pointer_temperature.c (annotated)

/*

Illustrates Pointers
*/

#include <stdio.h>

/* Function Protype Statement for the convert function called from
main() -- "double *celsius'" means that a memory address of a double
variable is going to be passed to the function -- the word
“celsius™ is just a convenience for the programmer to remember what
the function is going to do!! */

/* Note that the statement

double *celsius;

means that celsius™ is a pointer of type double. This does not

initialize "celsius™. To do that would require a statement like:

celsius = &heat;

This would result in the pointer "celsius"™ pointing to the memory

location of the variable "heat".

*/

/* The "void" means that the function convert() does not return any value*/
/* This is the function prototype */

void convert(double *celsius);

int main(void){
double temperature = 80;
/* the \t is a Tab */
printfF('\n\t80 degrees fahrenheit (before conversion) == %f
celsius", temperature);
/* Pointer arguments enable a function to access and change objects in
* the function that calls it -- In this case, temperature in main()
* above gets changed in the convert() function by using a pointer to
* the memory location of temperature in main() */
/* "&temperature' means "'memory address of the variable temperature'*/
convert(&temperature);
printF('\n\t80 degrees fahrenheit (after conversion) == %f
celsius\n\n",temperature);
return(0);

void convert(double *celsius){
double temp;

/* temp is set to the value pointed to by "*celsius” -- that is, 80" */

temp = *celsius;

temp = (temp - 32)/1.8;
Applying the "*" operator to a pointer -- in this case "celsius" is a
pointer -- yields the value stored in
the pointed-to object. Here "celsius™ is a pointer to the memory
location of temperature in the main program -- the value "80".
"*celsius" replaces "80" with the value in temp, or ""26.6666" at the
memory location &temperature */

*celsius = temp;
/* Note that there is no "return”™ used because the function is declared
* as a "void" */

*

/

* ok % X X

Function_Example.c

/* Program illustrates two types of function calls -- one a simple math
* function the other uses pointers to swap two values of variables in
* memory */

/* Program also illustrates how the clock() function can be used to
* time portions of the program. */

#include <time._h>

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

/* Here are the two function prototypes that we use below -- Note that
* the first is passing the memory addresses of two double numbers while
* the second passes variable values */

void interchange(double * x, double * y);

double power_double(double x, double y);

FILE *kp;

int main(void)

/* use doubles to show small values of time */
double timel, time2, time3, timedif;
int i;
double temp[10000];
double temp2, temp3;
/* clock() is part of time.h -- returns the implementation®s
* best approximationto the processor time elapsed since the
program was invoke, divide by CLOCKS PER_SEC to get the time

*

* in seconds */
timel = (double) clock(Q); /* get initial time */
timel = timel / CLOCKS_PER_SEC; /* in seconds */
kp=fopen(*'function_example.dat","w');
srand(17);

/* check operating system limit value */
printf('RAND_MAX=%10d\n"", RAND_MAX);
for(i=0;i1<10000; i++){

/* convert RAND _MAX into double*/

temp[i] = rand()/((double)RAND_MAX + 1);

printf(""rand = %10.6F\n",temp[i]);

fprintf(kp,'rand = %10.6F\n",temp[i]);
printf("'i = %d\n",1);

timedif = (((double) clock()) 7/ CLOCKS_PER_SEC) - timel;
printf("The elapsed time is %12.8Ff seconds\n", timedif);
time2 = (double) clock();
time2 = time2 / CLOCKS_PER_SEC;
For(i=0;i1<10000; i++){
temp2 = rand()/((double)RAND_MAX + 1);
temp3 = power_double(temp[i], temp2);
fprintf(kp, "power_double %10.6F, %10.6F, %10.6F\n",temp[i],temp2,temp3);

}
timedif = (((double) clock()) /7 CLOCKS_PER_SEC) - time2;
printf("The elapsed time is %12.8Ff seconds\n", timedif);

time3 = (double) clock();
time3 = time3 / CLOCKS_PER_SEC;
for(i=0;i<10000; i++){
temp2 = rand()/((double)RAND_MAX + 1);
/* Note that two memory addresses are passed to the interchange function */
interchange(&temp[i],&temp2);
temp3 = power_double(temp[i], temp2);
fprintf(kp, ' 'power_double_interchange %10.6F, %10.6F,
%10.6F\n", temp[i], temp2, temp3);
3

timedif = (((double) clock()) / CLOCKS PER_SEC) - time3;
printf("'The elapsed time is %12.8F seconds\n", timedif);
timedif = (((double) clock()) / CLOCKS_PER_SEC) - timel;

3

printf(""The total elapsed time of the program is %12.8f seconds\n", timedif);
fclose(kp);
return(0);

by

double power_double(double x, double y){
double sum;
sum = pow(X,Y);
return sum;

void interchange(double * x, double * y){
double xchanger;
/* Put the value of the variable at x’s memory location into xchanger — Note dereferencing*/
xchanger = *x;
/* Put the value of the variable at y’s memory location into x’s memory location — dereferencing
*/
X:-
/* Put the value that was at x’s memory location into y’s memory location -- dereferencing*/
*y = xchanger;
}

writedata.c

/* writedata.c -- Writes out two files using the rand() function. One
* file i1s a simple column of data and the second file is a matrix of
* data*/

#include <stdlib.h>

#include <stdio.h>

/* Declare pointers to the two files */

FILE *fp;

FILE *kp;

int main(void){

double data[10];

int 1 = 0;
int j = 0;
srand(14);

/* Open the two Ffiles */
fp = fopen('data.txt,"w');
kp = fopen('data2.txt',"w');
for(i=0;i1<10;1++){
data[i] = ((double)rand() / ((double)(RAND_MAX)+(double)(1)));

Ffor(i=0;i1<10;1++){

/* fprintf(fp, "%7.3F\n", data[i]); */
fprintf(fp, "%F\n", data[i]);
}

/* For loops for writing out data[.] in 100 rows of 10 numbers per
* row */
for(J=0;j<100;j++)

for(i=0;i1<10;i++)

{
data[i] = ((double)rand() / ((double)(RAND_MAX)+1));
/* fprintf(kp, "%7.3F",data[i]); */
fprintf(kp, "%F',data[i]);
}

/* This is the line feed -- newline at the end of the the jth row */
fprintf(kp,'\n"");
}

fclose(fp);
fclose(kp);
return(0);

readdata.c (not annotated)

/*

gcc
#in
#in
#in

int

/*

-Wall %1.c -0 %1l.exe
*/
clude <stdlib.h>
clude <stdio.h>
clude <string.h>

main(void) {

int MAXNUMBERS = 10000;

FILE *fp;

numlist is a pointer of type double */

double *numlist;

char llist;

numlist = (double *) malloc (MAXNUMBERS*sizeof(double));
int 1;

if((fp = fopen('c:/docs_c_summer_course/data.txt”,"r'"))==NULL)

printf(""\nUnable to open file DATA.TXT: %s\n', strerror(errno));
exit(EXIT_FAILURE);

¥
else {
i=0;
while (1feof(fp)) {
fscanf(fp, "%chlF", &llist, &numlist[i]);
printfF('%7.3F\n", numlist[i]);
i++;
}
}
fclose(fp);

numlist = (double *) realloc(numlist, i* sizeof(double));
printf("\nAllocation OK, %i vector entries allocated.\n", 1);
free(numlist);

return(0);

readdata.c (annotated)

/*

gcc -Wall %1l.c -o %l.exe

0.003
0.828
0.281
0.355
0.677
0.038
0.585
0.735
0.373
0.307

*/

#include <stdlib.h>
#include <stdio.h>

/*

The string library includes the strerror() function*/

#include <string.h>

int main(void) {

int MAXNUMBERS = 10000;
FILE *fp;

/* numlist is a pointer of type double */

/*

*

/*

/*

/*

double *numlist;
Allocate memory 10000 doubles -- numlist points to the start of this
memory block*/

numlist = (double *) malloc (MAXNUMBERS*sizeof(double));

int 1;

if((fp = fopen(‘'c:/docs_c_summer_course/data.txt","r'"))==NULL)

function strerror(errno) returns a pointer to an
implementation-dependent error message string corresponding to the
error number stored in errno */

printf(""\nUnable to open file DATA.TXT: %s\n', strerror(errno));
Part of the stdlib.h library -- abnormal termination of program --
the equivalent is to use exit(l); The prototype is void exit(int
status) */

exit(EXIT_FAILURE);

else {
i=0;

Part of stdio.h library -- Tests for end of file --

* "Ifeof(fp)'" means "keep looping until you hit the end of

* the file*/

while (Ifeof(fp)) {

“%IF” means “long float”, that is, a doublel! */
fscanf(fp,"%lf", &numlist[i]);
printf('%7.3A\n", numlist[i]);

i++;

}

by

fclose(fp);

realloc changes the size of the block of memory pointed to by the
pointer "numlist" */

numlist = (double *) realloc(numlist, i* sizeof(double));

printF(C"\nAllocation OK, %i vector entries allocated.\n", i);
/* frees the space pointed by the numlist pointer -- this is good
* programming practice */

free(numlist);

return(0);

Readdata_eof.c (annotated)

/*

gcc -Wall %1l.c -o %l.exe

0.003
0.828
0.281
0.355
0.677
0.038
0.585
0.735
0.373
0.307

*/

#include <stdlib.h>
#include <stdio.h>

/*

The string library includes the strerror() function*/

#include <string.h>

int main(void) {

/*

/*

/*

/*

int MAXNUMBERS = 10000;

FILE *fp;
numlist is a pointer of type double */

double *numlist;
Allocate memory 10000 doubles -- numlist points to the start of this
memory block*/

numlist = (double *) malloc (MAXNUMBERS*sizeof(double));

int 1, k, kk, imax;

if((fp = fopen(‘'c:/docs_c_summer_course/data.txt","r'"))==NULL)

function strerror(errno) returns a pointer to an
implementation-dependent error message string corresponding to the
error number stored in errno */

printf("'\nUnable to open file DATA.TXT: %s\n", strerror(errno));

Part of the stdlib.h library -- abnormal termination of program --
the equivalent is to use exit(l); The prototype is void exit(int
status) */
exit(EXIT_FAILURE);
}
else {
for(i=0;;i++)
{
fscanf(fp, "Wl f", &numlist[i]);
if the end of the file is not reached feof returns 0. If the end

of the file iIs encountered then feof returns an integer that is not
zero. */
kk=Feof(fp);
printf("" 1 = %d, EOF = %d\n",i,kk);
if(kk 1= 0)
{

i=1i-1;
break is a keyword that causes program control to skip the rest of
9

/*

/*

/*

the loop and to resume with the next command following the loop */
break;

}
}

}

fclose(fp);
k is the number of ENTRIES in numlist[.] -- the counter "i" runs
from 0,1,2,3,4,5,6,7,8,9 —-- so we subtract "1" above and set it
equal to "imax in case we want to run another loop from O to imax */
imax = 1;

k =1+ 1;

realloc changes the size of the block of memory pointed to by the
pointer "numlist™ */

numlist = (double *) realloc(numlist, k* sizeof(double));
printf("\nAllocation OK, %d vector entries allocated.\n", Kk);
frees the space pointed by the numlist pointer -- this is good
programming practice */

free(numlist);

return(0);

10

Readdata_matrix.c (annotated)

/*

gcc -Wall %1.c -o %l.exe
*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main(void) {

int MAXNUMBERS = 10000;
FILE *fp;

/* numlist is a pointer of type double */
double *data;

/* Allocate memory 10000 doubles -- numlist points to the start of this

* memory block*/

data = (double *) malloc (MAXNUMBERS*sizeof(double));
int i, j, kk;

if((fp = fopen('c:/docs_c_summer_course/data2._txt","r'))==NULL)

printf('"\nUnable to open file DATA2.TXT: %s\n', strerror(errno));
exit(EXIT_FAILURE);

else {
/* Lazy way of reading in the datal!! But it works great if you know what
your data look like */
kk = 0;
for(J=0;j<100;j++)
{
for(i=0;i1<10;i++)
{
fscanf(fp, "%lf",&data[kk]);
kk = kk + 1;
}
}
printf("" total read = %d",kk);
¥
fclose(fp);

data = (double *) realloc(data, kk* sizeof(double));
printf("\nAllocation OK, %i vector entries allocated.\n", kk);

for(§=0;j<100; j++)
{
for(i=0;i<10;i++)
{
printf("'%7.3F",data[j*10 + i]);

3
printf('\n"");

}
free(data);
return(0);

11

