
1

2

Hello.c

/*

gcc -Wall %1.c -o %1.exe Everything between /*
and */ is a comment

 */

#include <stdio.h> Preprocessor statement

int main(void){ Main function, begin

 printf("\nHello world"); function call to screen

 return(0); value returned to OS

} end

The function prototype for printf in <stdio.h>:

 int printf(const char * restrict, ...)

3

fahrenheit.c

/* Program to Convert Fahrenheit to Celsius Degrees
 and write them out to the screen and a file

 Modified from the listing in Kernighan & Ritchie p. 9
Preprocessor Statement */
#include <stdio.h>
/* File Function, pointer to file */
FILE *kp;
int main(void)
{
/* File open, name & write */
 kp=fopen("fahrenheit.dat","w");
/* int is a keyword and a variable type */
 int fahr, celsius;
 int lower, upper, step;

 lower = 0; /* lower limit of temperature table */
 upper = 110; /* upper limit of temperature table */
 step = 5; /* step size */

 fahr = lower;
/* Same as R */
 while (fahr <= upper)
/* Begin Loop */
 {
 celsius = 5*(fahr-32)/9;
 printf("%6d %6d\n",fahr,celsius);
 fprintf(kp,"%6d %6d\n",fahr,celsius);
 fahr = fahr + step;
 }
/* end loop */
/* file close */
 fclose(kp);
 return(0);
}

4

Fahrenheit_real.c

/* Program to Convert Fahrenheit to Celsius Degrees
 and write them out to the screen and a file
 Modified from the listing in Kernighan & Ritchie p. 9

Preprocessor Statement */
#include <stdio.h>
/* File Function, pointer to file */
FILE *kp;
int main(void)
{
/* File open, name & write */
 kp=fopen("fahrenheit.dat","w");
/* switch to real numbers */
 double fahr, celsius;
 double lower, upper, step;

 lower = 0; /* lower limit of temperature table */
 upper = 110; /* upper limit of temperature table */
 step = 5; /* step size */

 fahr = lower;
 while (fahr <= upper)
 {
 celsius = 5*(fahr-32)/9;
/* Print real numbers */
 printf("%10.0f %10.4f\n",fahr,celsius);
 fprintf(kp,"%10.0f %10.4f\n",fahr,celsius);
 fahr = fahr + step;
 }
 fclose(kp);
 return(0);
 }
}

5

6

7

Vector.c

/*
Illustrates the use of vectors
 */
#include <stdio.h>
int main(void){
/* declare an array of length 4 */
 double numlist[4];
 int i;
/* set the values */
 numlist[0] = 3;
 numlist[1] = 4;
 numlist[2] = 5;
 numlist[3] = 10;

/* Simple Write to Screen*/

 printf("\n numlist[0] == %f", numlist[0]);
 printf("\n numlist[1] == %f", numlist[1]);
 printf("\n numlist[2] == %f", numlist[2]);
 printf("\n numlist[3] == %f", numlist[3]);

/* While Loop */
/* you need to initialize i */

 i=0;
 while(i < 4)
 {
 printf("\n %10.4f",numlist[i]);
/* old fashioned increment */
 i = i + 1;
 }

/* While Loop With ++ increment operator -- ++i same as i=i+1 */
 i=0;
 while(i < 4)
 {
 printf("\n Nerd %10.4f",numlist[i]);
 ++i;
 }
 printf("\n\n\n");

/* For Loop With ++ increment operator */
/* for loop -- for(initialize; test; update) */
/* loop begins with { */
 for(i=0;i<4;i++)
 {
 printf("Nerd For %10.4f\n",numlist[i]);
 }
/* end for loop */
 printf("\n\nWhy will numlist[4] give an error?");

 return(0);
}

8

Random_test.c

/* Illustrates Pseudo-Random Number Generation
 in the Range of 0 to 1
 srand() and rand() are part of the
 general utilities defined in stdlib.h
 srand() with an integer argument sets the
 random number seed and rand() draws a
 pseudo-random number between 1 and RAND_MAX
 */
#include <stdlib.h>
#include <stdio.h>

int main(void){

 double temp;
 int i;
 srand(17);
/* check operating system limit value, %u = unsigned integer */
 printf("RAND_MAX=%u\n", RAND_MAX);
 for(i=0;i<10;i++){
/* convert RAND_MAX into double*/
 temp = rand()/((double)RAND_MAX + 1);
 printf("rand = %f\n",temp);
 }
 return(0);
}

9

Array.c

/*
Illustrates the use of both an array/matrix and a vector
 to store data.
 */
#include <stdlib.h>
#include <stdio.h>

int main(void){
/* This somewhat awkward syntax is a matrix in C */
/* C is organized around vectors so that matrices need not be used*/
 double randMat[3][3];
 double temp[9];
 int i, j, k;
 srand(16);
 printf("RAND_MAX=%10d\n", RAND_MAX);
/* Store random numbers in a matrix and a vector -- print out matrix */
 k = 0;
 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 {
 randMat[i][j] = rand()/((double)RAND_MAX + 1);
 printf("\nrandMat[%d][%d] = %f", i,j,randMat[i][j]);
 temp[i+j*3] = randMat[i][j];
 k = k + 1;
 }
 }
/* Write total number of Random numbers drawn */
 printf("\n\nNumber of Random Numbers Drawn %7d",k);

/* Print out Vector */

 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 {
 printf("\ntemp %d %d = %f", i,j,temp[i+j*3]);
 }
 }

 return(0);

}

10

How temp[] is Storing the Data:

0, =0
1, 0
2, 0
0, 1
1, 1
2, 1
0, 2
1, 2
2, 2

i j
i j
i j
i j
i j
i j
i j
i j
i j

= 
 = = 
 = =
 = = 
 = =
 
= = 

 = =
 
= = 

 = = 

11

Pointer_Simple.c

/* Pointer_simple.c -- Program illustrates fact that C works with both
 * the address of a variable and the value of the variable at the
 * address. */

#include <stdio.h>

int main(void)
{
/* Declare a character, an integer, and a double
 * Note that none are initialized so that there is no
 * "value" at the address of the variables! */
 char c;
 int i;
 double x;
/* %p = hex, %c = character */
 printf("c: address=%p, content=%10c\n", &c, c);
 printf("i: address=%p, content=%10d\n", &i, i);
 printf("x: address=%p, content=%10.4f\n", &x, x);
/* Now, set the character, integer, and double variables
 * to specific values and write them out again */
 c = 'A';
 i = 8;
 x = 123.45;
 printf("c: address=%p, content=%10c\n", &c, c);
 printf("i: address=%p, content=%10d\n", &i, i);
 printf("x: address=%p, content=%10.4f\n", &x, x);
 return(0);
}

12

Pointer_declaring.c

/* Pointer_declaring.c -- Program shows how pointers are declared and
 * used to point to memory locations */

#include <stdio.h>

int main(void)
{
/* Declare a character, an integer, and a double variable,
 * and a charter pointer, an integer pointer, and a double pointer
 */
 char c, *ptr_c;
 int i, *ptr_i;
 double x, *ptr_x;
/* Now, set the character, integer, and double variables
 * to specific values and write them out */
 c = 'A';
 i = 8;
 x = 123.45;
 printf("c: address=%p, content=%10c\n", &c, c);
 printf("i: address=%p, content=%10d\n", &i, i);
 printf("x: address=%p, content=%10.4f\n", &x, x);
/* Now, aim the pointers at the memory locations */
 ptr_c = &c;
 ptr_i = &i;
 ptr_x = &x;
/* Write them out again using the pointers -- Note that a pointer is
 * pointing to an address but it also has an address!!! */
 printf(" The address of ptr_c is %p, and the content is %p\n", &ptr_c, ptr_c);
/* Write out "dereferenced" pointer = value of variable */
 printf(" Dereferenced pointer *ptr_c => %c, c = %c\n", *ptr_c, c);

 printf(" The address of ptr_i is %p, and the content is %p\n", &ptr_i, ptr_i);
 printf(" Dereferenced pointer *ptr_i => %10d, i = %10d\n", *ptr_i, i);

 printf(" The address of ptr_x is %p, and the content is %p\n", &ptr_x, ptr_x);
 printf(" Dereferenced pointer *ptr_x => %10.4f, x = %10.4f\n", *ptr_x, x);

 return(0);
}

13

Control.c

/*
Illustrates various if-then-else branching
methods and the power function in C
 */
#include <stdio.h>
/* Miscellaneous math functions */
#include <math.h>
int main(void){

 int a=4;
 int b=10;
 double temp[10];
 double xa, xi;
 int i, j;
/* start, if-then-else branch structure */
 if(b == a){
 printf("\nb is exactly equal to a");
 j = 1;
 }
/* If not exactly equal, goes to else if */
 else if(b < a){
 printf("\nb is less than a");
 j = 2;
 }
/* If not less than, drops to else */
 else {
 printf("\na is less than b");
 j = 3;
 }
/* This is an error catch in case a > b */
 if(j == 3){
 while(a != b){
 a=a+1;
 printf("\na equals %i", a);
 }
 }
/* Do type conversion -- transfer integer "a" to double "xa" */
 xa = a;
 for(i=0;i<10;i++){
/* Do type conversion -- transfer integer "i" to double "xi" */
 xi = i;
/* Power function -- xa**xi -- Part of the Math.h functions -- types
 are double so temp[i] must also be double */
 temp[i] = pow(xa,xi);
 }

 for(i=0;i<10;i++){
 printf("\nElement %i in temp = %15.3f", i, temp[i]);
 }
return(0);
}

