FIGURE 2.1
Anatomy of a C program.

—— preprocessor instructions

main () is always the
first function called

- functions are
| —— made up of
statements

functions are the

Sy
En .
as“«s,

1 tements i

-

building blocks of C dedilaration
] assignment
5 types of e ST ¢
statements in ’ e TURGELON . ' operators |]
C language | _control “data
null .

language

Hello.c
/*

gcc -Wall %1.c -0 %l.exe

*/
#include <stdio.h>
int main(void){
printf(""\nHello world");

return(0);

The function prototype for printf

int printf(const char * restrict,

Preprocessor statement
Main function, begin
function call to screen
value returned to 0S

end

In <stdio.h>:

--)

fahrenheit.c

/* Program to Convert Fahrenheit to Celsius Degrees
and write them out to the screen and a file

Modified from the listing in Kernighan & Ritchie p. 9
Preprocessor Statement */
#include <stdio.h>
/* File Function, pointer to file */

FILE *kp;
int main(void)
{

/* File open, name & write */
kp=fopen(*'fahrenheit._dat”,"w');

/* int is a keyword and a variable type */
int fahr, celsius;
int lower, upper, step;

lower = 0; /* lower limit of temperature table */
upper = 110; /* upper limit of temperature table */
step = 5; /* step size */

fahr = lower;
/* Same as R */
while (fahr <= upper)
/* Begin Loop */
{
celsius = 5*(fahr-32)/9;
printfF("'%6d %6d\n",fahr,celsius);
fprintf(kp,"%6d %6d\n",fahr,celsius);
fahr = fahr + step;

}

/* end loop */

/* file close */
fclose(kp);
return(0);

Fahrenheit_real.c

/* Program to Convert Fahrenheit to Celsius Degrees
and write them out to the screen and a file
Modified from the listing in Kernighan & Ritchie p. 9

Preprocessor Statement */
#include <stdio.h>

/* File Function, pointer to file */
FILE *kp;

int main(void)

{

/* File open, name & write */

kp=fopen(*'fahrenheit.dat™”,w);

/* switch to real numbers */

double fahr, celsius;
double lower, upper, step;

lower = 0; /* lower limit of temperature table */
upper = 110; /* upper limit of temperature table */
step = 5; /* step size */

fahr = lower;
while (fahr <= upper)

{
celsius = 5*(fahr-32)/9;

/* Print real numbers */

printfF("'%10.0F %10.4F\n"",fahr,celsius);
fprintf(kp,"%10.0F %10.4F\n"",fahr,celsius);
fahr = fahr + step;

iclose(kp);

return(0);

}

}

Table 2-1 C Language Keywords
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Appendix E: C Language
Variable Types

Type Vatue Range Comments
char -128 to 127
unsigned char 0 to 255
int -32,768 to 32,767 16-hit

—-2,147,483,648 to 2,147,483,647 32-bit
unsigned int 0 to 65535 16-hit

0 to 4,294,967,295 32-bit

shortint -32,768 to 32,767
unsigned shortint 0 to 65535
long int -2,147,483,648 to 2,147,483,647
unsigned long int 0 to 4,294,967,295
float 1.17x10% to 3.40x10%® 8-digit precision
double 2.22x10°% to 1.79x10°® 15-digit precision

Some compilers treat the char type as signed, and others treat it as unsigned.
To be sure, use the signed or unsigned prefix if you absolutely need a signed
or unsigned char variable.

The size of the basic integer depends on the microprocessor. For most
modern microprocessors, a 32-bit width is used. Older computers used only
a 16-bit width. To ensure a 16-bit value, define your ints as short. To ensure
the 32-bit value, use Tong ints.

TABLE 4.3 Conversion Specifiers and the Resulting Printed Output

Conversion Output
Specification

%a Floating-point number, hexadecimal digits and p-notation (C99).
%A Floating-point number, hexadecimal digits and P-notation (C99).
%C Single character.
%d Signed decimal integer.
%e Floating-point number, e-notation.
%E Floating-point number, E-notation.
% Floating-point number, decimal notation.
%g Use % or %e, depending on value. The %e style is used if the exponent is less
than -4 or greater than or equal to the precision.
%G Use %f or %E, depending on value. The %E style is used if the exponent is less
than -4 or greater than or equal to the precision.
%1 Signed decimal integer (same as %d).
%0 Unsigned octal integer.
%P A pointer.
%S Character string.
%U Unsigned decimal integer.
%X Unsigned hexadecimal integer, using hex digits 0f.
%X Unsigned hexadecimal integer, using hex digits @F.
%% Print a percent sign.

Vector.c

/*

Il lustrates the use of vectors

*/

#include <stdio.h>
int main(void){

/*

/*

/*

/*
/*

/*

/*

/*
/*
/*

/*

declare an array of length 4 */
double numlist[4];
int i;

set the values */
numlist[0] = 3;
numlist[1l] = 4;
numlist[2] = 5;
numlist[3] = 10;

Simple Write to Screen*/

printf(C'\n numlist[0] == %f", numlist[0]);
printf(C'\n numlist[1] == %f", numlist[1l]);
printf(C'\n numlist[2] == %", numlist[2]);
printf(C"\n numlist[3] == %f", numlist[3]);

While Loop */
you need to initialize i */

i=0;
while(i < 4)

{
printf(C"\n %10.4f",numlist[i]);
old fashioned increment */
i=1+ 1;
s

While Loop With ++ increment operator -- ++i same as i=i+1 */
i=0;
while(i < 4)
{
printf("\n Nerd %10.4Ff" ,numlist[i]);
++i;

}
printfFC™\n\n\n"");

For Loop With ++ increment operator */
for loop -- for(initialize; test; update) */
loop begins with { */
for(1=0;1<4;i++)
{
printf("'Nerd For %10.4f\n",numlist[i]);

end for loop */
printf(""\n\nWhy will numlist[4] give an error?");

return(0);

Random_test.c

/* lllustrates Pseudo-Random Number Generation
in the Range of 0 to 1
srand() and rand() are part of the
general utilities defined in stdlib.h
srand() with an integer argument sets the
random number seed and rand() draws a
pseudo-random number between 1 and RAND_MAX

*/
#include <stdlib_h>
#include <stdio.h>

int main(void){

double temp;
int i;
srand(17);
/* check operating system limit value, %u = unsigned integer */
printf("'RAND_MAX=%u\n"", RAND_MAX);
for(i=0;i1<10;1++){
/* convert RAND MAX into double*/
temp = rand()/((double)RAND_MAX + 1);
printf('rand = %f\n",temp);

return(0);

Array.c

/*
Illustrates the use of both an array/matrix and a vector
to store data.
*/
#include <stdlib_h>
#include <stdio.h>

int main(void){

/* This somewhat awkward syntax is a matrix in C */

/* C is organized around vectors so that matrices need not be used*/
double randMat[3][3];
double temp[9];
int i, j, k;

srand(16);
printf("'RAND_MAX=%10d\n", RAND_MAX);
/* Store random numbers in a matrix and a vector -- print out matrix */

k = 0;
for(i=0;i<3;i++)

for(3=0;j<3;j++)

{
randMat[i][J] = rand()/((double)RAND_MAX + 1);
printf(C"\nrandMat[%d][%d] = %Ff", i,j,randMat[i][J]);
temp[i+j*3] = randMat[i][j];
k = k + 1;

}

/* Write total number of Random numbers drawn */
printf(""\n\nNumber of Random Numbers Drawn %7d",Kk);

/* Print out Vector */
for(i=0;i<3;i++)

for(J=0;J<3;j++)

{
printf("\ntemp %d %d = %f", i,j,temp[i+j*3]);
}
by
return(0);

How temp[] i1s Storing the Data:

[i=0,j=0]
i=1j=0
i=2,j=0
i=0,j=1
i=1j=1
i=2,j=1
i=0,j=2
i=1j=2

i=2,j=2]

10

Pointer_Simple.c

/* Pointer_simple.c -- Program illustrates fact that C works with both
* the address of a variable and the value of the variable at the
* address. */

#include <stdio.h>

int main(void)
{
/* Declare a character, an integer, and a double
* Note that none are initialized so that there is no
* "value'" at the address of the variables! */
char c;
int 1;
double x;
/* %p = hex, %c = character */
printf(*'c: address=%p, content=%10c\n", &c, c);
printf(""i: address=%p, content=%10d\n", &i, i);
printf("'x: address=%p, content=%10.4Ff\n", &x, X);
/* Now, set the character, integer, and double variables
* to specific values and write them out again */

cC = "A":
i =8;
X = 123.45;

printf(*'c: address=%p, content=%10c\n", &c, c);
printf(""i: address=%p, content=%10d\n", &i, i);
printf("'x: address=%p, content=%10.4Ff\n", &x, X);
return(0);

11

Pointer_declaring.c

/* Pointer_declaring.c -- Program shows how pointers are declared and
* used to point to memory locations */

#include <stdio.h>
int main(void)

/* Declare a character, an integer, and a double variable,
* and a charter pointer, an integer pointer, and a double pointer
*/
char c, *ptr_c;
int i, *ptr_i;
double x, *ptr_x;
/* Now, set the character, integer, and double variables
* to specific values and write them out */

c = "A":
i =8;
X = 123.45;

printf("'c: address=%p, content=%10c\n", &c, c);

printf("'i: address=%p, content=%10d\n", &i, i);

printf("'x: address=%p, content=%10.4F\n", &x, X);
/* Now, aim the pointers at the memory locations */

ptr_c = &c;
ptr_i = &i;
ptr_x = &x;
/* Write them out again using the pointers -- Note that a pointer is

* pointing to an address but it also has an address!!! */

printf("" The address of ptr_c is %p, and the content is %p\n', &ptr_c, ptr_c);
/* Write out "dereferenced" pointer = value of variable */

printf(*"" Dereferenced pointer *ptr_c => %c, c = %c\n", *ptr_c, c);

printf(** The address of ptr_i is %p, and the content is %p\n", &ptr_i, ptr_i);

printf(** Dereferenced pointer *ptr_i => %10d, i = %10d\n", *ptr_i, i);

printf("" The address of ptr_x is %p, and the content is %p\n", &ptr_x, ptr_x);
printf("" Dereferenced pointer *ptr_x => %10.4F, x = %10.4Ff\n", *ptr_x, X);

return(0);

12

Control.c

/*
Il1lustrates various if-then-else branching
methods and the power function in C
*/
#include <stdio.h>
/* Miscellaneous math functions */
#include <math.h>
int main(void){

int a=4;

int b=10;

double temp[10];

double xa, Xi;

int i, J;

/* start, if-then-else branch structure */

if(b == a){
printfF(C"\nb is exactly equal to a");
=1

/* 1T not exactly equal, goes to else if */
else if(b < a){
printf(''\nb is less than a');

1 =2;
by
/* 1T not less than, drops to else */
else {
printf('"\na is less than b');
=3
}
/* This iIs an error catch in case a > b */
iItTg == 3){
while(a = b){
a=a+l;
printf("\na equals %i", a);
}
/* Do type conversion -- transfer integer "a" to double "xa" */
xa = a;
for(i=0;i<10;i++){
/* Do type conversion -- transfer integer "i" to double "xi" */
Xi = 1;
/* Power function -- xa**xi -- Part of the Math_h functions -- types

are double so temp[i] must also be double */
temp[i] = pow(xa,xi);
}

For(i=0;i<10;i++){
printF(C"\nElement %i in temp = %15.3F", i, temp[i]);
}

return(0);

13

