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BETA-BINOMIAL – BINOMIAL JOINT DISTRIBUTION OF THE SAMPLE 

(“LIKELIHOOD”), BETA PRIOR 

D.  Uniform Prior, Binomial Likelihood: 

 1.  Suppose we take a random sample from a Bernoulli distribution with 

parameter p.  Our joint distribution of the sample is (“Likelihood” function) is: 
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 2.  Now, suppose our prior distribution of p is simply Uniform on 0 to 1; that is: 
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ξ(p)=  
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3.  Hence the joint distribution of the sample and p is 
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4. The marginal distribution of the sample is: 
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This result is from the form of the Beta distribution is: 
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Where α=y+1 and β=n-y+1. 

5. So that the posterior distribution is: 
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This is a Beta distribution with parameters: 
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6. The expected value and variance of the Beta distribution is: 
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7. Hence, the Bayesian Estimator for the Mean and Variance is: 
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8. And the MLE for the Mean and Variance is: 
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Note that, as the sample size increases: 

ˆ ˆbayes mlep p  

This is also true of the variances.  To see this, divide the numerator and denominator by 

n2; that is: 
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So that, as the sample size increases: 

ˆ ˆ( ) ( )bayes mleVAR p VAR p  

 

D.  Conjugate Priors (Part 1) – Binomial Joint Distribution of the Sample 

(“Likelihood function”) and Beta Prior Distribution – Bayesian Computation With R 

example of Beta-Binomial 
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 α-1 β-1Γ(α+β)
ξ(p)= p (1 - p)  , 0 < p < 1, α, β > 0

Γ(α)Γ(β)
 

Recall that the joint distribution of the sample and p is equal to the product of the joint 

distribution of the sample (“likelihood function”) and the prior distribution of p: 

h(x1, x2 , … , xn, p ) = fn(x | p) ξ(p) = 
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 To get the marginal distribution of the sample we need to integrate out p.   
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And the Posterior distribution is: 
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This a Beta distribution with α* = y + α and β* = n – y + β, so the posterior is: 

α*-1 β*-1Γ(α*+β*)
ξ(p | x)= p (1 - p)

Γ(α*)Γ(β*)
 

The mean of the posterior is: 
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If we take a second sample and use the posterior as our new prior then 

α*-1 β*-1
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and the joint distribution of the sample is (“likelihood function”) for the second sample 

is: 
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where the subscript gives the sample number.  The posterior is the Beta distribution  
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
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As the total sample size gets large this converges to the MLE estimator: 
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