BETA-BINOMIAL - BINOMIAL JOINT DISTRIBUTION OF THE SAMPLE
(“LIKELIHOOD”), BETA PRIOR
D. Uniform Prior, Binomial Likelihood:
1. Suppose we take a random sample from a Bernoulli distribution with

parameter p. Our joint distribution of the sample is (“Likelihood” function) is:

f,x|p)=][fx [p=p™ 1-p) ™ p(1-p)™..p" 1-p)™

i=1
=p’(1-p)”  and  y=)X,
i=1
2. Now, suppose our prior distribution of p is simply Uniform on 0 to 1; that is:

10 1
a<p>={ ~pe

0 otherwise
3. Hence the joint distribution of the sample and p is
h(x, , X, , Xy, o, X, P)=F,(X, 5%, X5 5, X, [ P)E(D)

Or simply:
hxp)= fux|0)EO) = p'(1-p)™ and  y=) X

4. The marginal distribution of the sample is:

0,(X, ,X, , X5 5 ey Xn)ZJ‘ph(x1 s Xy 5 X5 5, X, , p)AP=

I'(y+HI(n—-y+1)
I'(n+2)

[p*(1-pydp=
p

This result is from the form of the Beta distribution is:

T@HD) yarq_wyp 0<x<l
f(x|a,a,)=1T(@)I'(B) a>0, >0

0 otherwise



Where a=y+1 and f=n-y+1.
5. So that the posterior distribution is:

R L% Xy, L X, [0)8(0) _
g. (X, ,X, , X5, .05 X))

I'(n+2)

I(y+DI(n—-y+1)

EOIX, , Xy » X3 5 X))

p’(1-p)*
This is a Beta distribution with parameters:

a=y+1=Y X;+1 and B=n-y+1=n-) X, +1
i=1

i=1

6. The expected value and variance of the Beta distribution is:

E(X)=—%_ and VAR(X) = f‘ﬂ
a+pf (a+p) (a+p+1)

7. Hence, the Bayesian Estimator for the Mean and Variance is:
DX +1 ZX‘H](n_ZX‘”j
i=1

p =1 and VAR(] =[‘=‘
=" & (P) (N+2)*(n+3)

&. And the MLE for the Mean and Variance is:

>X,

N iz . A 1_ A
pmle = 1n and VARmIe( p) = Q

Note that, as the sample size increases:
pbayes - pmle
This is also true of the variances. To see this, divide the numerator and denominator by

nz; that is:



(ixi+1j[n—ixi+1j (ﬁm,e+l)(l—ﬁmle+l)
VAR(p) = i=1 i=l _ n n

(n+2)°(n+3) (n+4+4j(1+3j
n n

So that, as the sample size increases:

VARbayes ( ﬁ) - VAlee( ﬁ)

D. Conjugate Priors (Part 1) — Binomial Joint Distribution of the Sample
(“Likelihood function’) and Beta Prior Distribution — Bayesian Computation With R

example of Beta-Binomial

f.x|p)=[]fx Ip=p™1-p) p1-p) . p*(1-p)™

i=1

=p’(1-p)” and y=)X,
=1

__T(atP)

— “1-pf',0<p<l,a,p>0
F((x)F(B)p( p) p o, B

&(p)

Recall that the joint distribution of the sample and p is equal to the product of the joint
distribution of the sample (“likelihood function”) and the prior distribution of p:
h(Xla X2, o5 Xn, P ) = fn(l | P) E_;(p) =

I'(o+P) pa—l(l _p)[}-l _ I'(o+P) py+a-l

1_ n-y+p-1
T()L'(B) forg” 7P

p’(1-p™

To get the marginal distribution of the sample we need to integrate out p.

[(op) Ty+a)l'(n-y+p),

90 (%)= T@IP) T(n+a+p)
j‘ I'(n+a+f) P (1 - ) Hdp = I(otP) T'(y+a)I'(n—-y+ )
o T(yto)l(n-y+p) F@I'B) T'(n+a+p)

And the Posterior distribution is:



L(0tB)  yia 1 - o)™y B
nep_ rore” P

SPIX =" ) = Terp) Ty+ar -y +p5)
I'()I'(B) I'h+a+p)
I'(n+a+B) yho-1 (- p)n-y+[3-l

[(y+ta)I'(n-y+p)

This a Beta distribution with o* =y + a and f* =n —y + [, so the posterior is:

F(a*+B*) pr1
X)me——— P 1 -
P | 0=1 @ " (I-p)
The mean of the posterior is:

. o* y+a
EX: — p—
()pa*+ﬁ* w+pon

If we take a second sample and use the posterior as our new prior then

_ _ I'(a*+B*) a*l pr-1
EQIEP 1) p T ()

and the joint distribution of the sample is (“likelihood function”) for the second sample
is:

f, &, [p)=p”1-p™™
where the subscript gives the sample number. The posterior is the Beta distribution

I'(a + [3) “(1 -y

&I X )F———x @ )F(B)

where

a=y,+o*=y,+y+a and
B=n,-y,+p*=n,-y,*n-y+p=n +n,-y -y, +B

and



o __ Yty ta
at+p o+P+n +n,

E(X)=p=

As the total sample size gets large this converges to the MLE estimator:

ZYk
EX)=—=y=p

an
k=1



