

Bakker and Poole

There are two levels of identification in Relational Data Problems:

- 1) identifying the objective function for purposes of finding the optima;
- 2) identifying the objective function for purposes of exploring it with Markov Chain Monte Carlo Methods.

For (1), the number of constraints is equal to $s(s+1)/2$.

Namely, one point is placed at the origin for s constraints, a second point has $s-1$ coordinates placed at 0.0, a third point has $s-2$ coordinates placed at 0.0, etc. This fixes the rotation.

To see this consider $s=2$. Fix one point at the origin and then the rotation is fixed by selecting θ :

$$\Gamma = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \quad 0 \leq \theta \leq 2\pi$$

This is equivalent to placing one coordinate of a second point at 0.0

For (2), we need $s(s+2)/2 + 2^s - 1$ constraints. To see this, given a specific θ we have four rotation matrices:

$$\Gamma_1 = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \quad \Gamma_2 = \begin{bmatrix} -\cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \Gamma_3 = \begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta \end{bmatrix} \quad \Gamma_4 = \begin{bmatrix} -\cos \theta & -\sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

Or

$$\Gamma^* = \Delta \Gamma \text{ where } \Delta = \begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix} \quad (14)$$

That is, given a specific θ , there are 2^s sign flips corresponding to the s columns of the rotation matrix. In practice we have placed $s(s+1)/2$ zeroes in the coordinate matrix and this arbitrarily selects one rotation matrix. Hence, there are $2^s - 1$ further possible rotation matrices corresponding to the remaining sign flips.